1.可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2. 数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计 学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如 果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3. 预测性分析
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4. 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5.数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
大数据的技术
数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取: 关系数据库、NOSQL、SQL等。
基础架构: 云存储、分布式文件存储等。
数据处理: 自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。
统计分析: 假设检验、显着性检验、差异分析、相关分析、T检验、 方差分析 、 卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、 因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘: 分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测 :预测模型、机器学习、建模仿真。
结果呈现: 云计算、标签云、关系图等。
大数据的处理
1. 大数据处理之一:采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除 此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户 来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间 进行负载均衡和分片的确是需要深入的思考和设计。
2. 大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这 些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使 用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
3. 大数据处理之三:统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通 的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于 MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
4. 大数据处理之四:挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数 据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于 统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并 且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。
B. 数学建模的方法有哪些
预测模块:灰色预测、时间序列预测、神经网络预测、曲线拟合(线性回归);
归类判别:欧氏距离判别、fisher判别等 ;
图论:最短路径求法 ;
最优化:列方程组 用lindo 或 lingo软件解 ;
其他方法:层次分析法 马尔可夫链 主成分析法 等 。
建模常用算法,仅供参考:
蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决 问题的算法,同时间=可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 。
数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数 据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具) 。
线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多 数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用Lindo、Lingo 软件实现) 。
图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算 法,涉及到图论的问题可以用这些方法解决,需要认真准备) 。
动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算 法设计中比较常用的方法,很多场合可以用到竞赛中) 。
最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些 问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助, 但是算法的实现比较困难,需慎重使用) 。
网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很 多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 。
一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替 积分等思想是非常重要的) 。
数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分 析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编 写库函数进行调用) 。
图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问 题,通常使用Matlab 进行处理)。
C. 大数据建模常用方法有哪些
第一步:选择模型或自定义模式
一般情况,模型都有一个固定的模样和形式。但是,有些模型包含的范围较广,比如回归模型,其实不是某一个特定的模型,而是一类模型。我们知道,所谓的回归模型,其实就是自变量和因变量的一个函数关系式而已,如下表所示。因此,回归模型的选择,也就有了无限的可能性,回归模型的样子(或叫方程)可以是你能够想到的任何形式的回归方程。所以,从某种意义上看,你自己想出一个很少人见过的回归方程,也可以勉强算是自定义模型了哈!
第二步:训练模型
当模型选择好了以后,就到了训练模型这一步。
我们知道,之所以叫模型,这个模型大致的形状或模式是固定的,但模型中还会有一些不确定的东东在里面,这样模型才会有通用性,如果模型中所有的东西都固定死了,模型的通用性就没有了。模型中可以适当变化的部分,一般叫做参数,就比如前面回归模型中的α、β等参数。
所谓训练模型,其实就是要基于真实的业务数据来确定最合适的模型参数而已。模型训练好了,也就是意味着找到了最合适的参数。一旦找到最优参数,模型就基本可用了。
第三步:评估模型
模型训练好以后,接下来就是评估模型。
所谓评估模型,就是决定一下模型的质量,判断模型是否有用。
前面说过,模型的好坏是不能够单独评估的,一个模型的好坏是需要放在特定的业务场景下来评估的,也就是基于特定的数据集下才能知道哪个模型好与坏。
第四步:应用模型
如果评估模型质量在可接受的范围内,而且没有出现过拟合,于是就可以开始应用模型了。
这一步,就需要将可用的模型开发出来,并部署在数据分析系统中,然后可以形成数据分析的模板和可视化的分析结果,以便实现自动化的数据分析报告。
应用模型,就是将模型应用于真实的业务场景。构建模型的目的,就是要用于解决工作中的业务问题的,比如预测客户行为,比如划分客户群,等等。
五步:优化模型
优化模型,一般发生在两种情况下:
一是在评估模型中,如果发现模型欠拟合,或者过拟合,说明这个模型待优化。
二是在真实应用场景中,定期进行优化,或者当发现模型在真实的业务场景中效果不好时,也要启动优化。
如果在评估模型时,发现模型欠拟合(即效果不佳)或者过拟合,则模型不可用,需要优化模型。所谓的模型优化,可以有以下几种情况:
1)重新选择一个新的模型;
2)模型中增加新的考虑因素;
3)尝试调整模型中的阈值到最优;
4)尝试对原始数据进行更多的预处理,比如派生新变量。
不同的模型,其模型优化的具体做法也不一样。比如回归模型的优化,你可能要考虑异常数据对模型的影响,也要进行非线性和共线性的检验;再比如说分类模型的优化,主要是一些阈值的调整,以实现精准性与通用性的均衡。
D. 论文模型怎么构建
论文模型构建方法如下:
首先要明确撰写论文的目的。
建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员读了之后,相信模型假设的合理性,理解在建立模型过程中所用方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。
当然,一篇好的论文是以作者所建立的模型的科学性为前提的。其次,要注意论文的条理性。
E. 数据仓库数据建模的几种思路
数据仓库数据建模的几种思路主要分为一下几种
1. 星型模式
星形模式(Star Schema)是最常用的维度建模方式。星型模式是以事实表为中心,所有的维度表直接连接在事实表上,像星星一样。星形模式的维度建模由一个事实表和一组维表成,且具有以下特点:a. 维表只和事实表关联,维表之间没有关联;b. 每个维表主键为单列,且该主键放置在事实表中,作为两边连接的外键;c. 以事实表为核心,维表围绕核心呈星形分布;
星座模型
F. 大数据建模一般有哪些步骤
1、数据测量
数据测量包括ECU内部数据获取,车内总线数据获取以及模拟量数据获取,特别是对于新能源汽车电机、逆变器和整流器等设备频率高达100KHz的信号测量,ETAS提供完整的解决方案。
2、大数据管理与分析
目前的汽车嵌入式控制系统开发环境下,人们可以通过各种各样不同的途径(如真实物体、仿真环境、模拟计算等)获取描述目标系统行为和表现的海量数据。
正如前文所述,ETAS数据测量环节获取了大量的ECU内部以及模拟量数据,如何存储并有效地利用这些数据,并从中发掘出目标系统的潜力,用以指引进一步的研发过程,成为极其重要的课题。
3、虚拟车辆模型建模与校准
基于大数据管理与分析环节对测量数据进行的分析,我们得到了一些参数之间的相互影响关系,以及相关物理变量的特性曲线。如何将这些隐含在大量数据中的宝贵的知识和数据保存下来并为我们后续的系统仿真分析所用呢?
模型是一个比较好的保存方式,我们可以通过建立虚拟车辆及虚拟ECU模型库,为后续车辆及ECU的开发验证提供标准化的仿真模型。ETAS除提供相关车辆子系统模型,还提供基于数据的建模和参数校准等完整解决方案。
4、测试与验证(XiL)
在测试与验证环节,通常包含模型在环验证(MiL),软件在环验证(SiL),虚拟测试系统验证(VTS)以及硬件在环验证(HiL)四个阶段,ETAS提供COSYM实现在同一软件平台上开展四个环节仿真验证工作。
关于大数据建模一般有哪些步骤,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
G. 在做数学建模题时,都有那些方法可以处理大量数据
结合数模培训和参赛的经验,可采用数据挖掘中的多元回归分析,主成分分析、人工神经网络等方法在建模中的一些成功应用。以全国大学生数学建模竞赛题为例,数据处理软件Excel、Spss、Matlab在数学建模中的应用及其重要性。
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。
数学建模一般应用于高新技术领域和工程领域,对于寻常生活来说,并无很大的应用。而学生参与数学建模的学习和竞赛主要是培养学生的数学思维、创新思维、逻辑思维、团队协作能力和论文写作技巧等。此外,若能在数学建模中获奖,有利于本科、研究生等的学校申请。
数学建模的一般过程:模型准备、模型假设、模型建立、模型求解、模型分析、模型检验。
数学建模是一种数学的思考方法,是运用数学的语言和方法,把错综复杂的实际问题简化、抽象为合理的数学结构,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。数学建模是数学来源于生活而有应用与生活的桥梁和纽带。
H. 数据分析建模步骤有哪些
1、分类和聚类
分类算法是极其常用的数据挖掘方法之一,其核心思想是找出目标数据项的共同特征,并按照分类规则将数据项划分为不同的类别。聚类算法则是把一组数据按照相似性和差异性分为若干类别,使得同一类别数据间的相似性尽可能大,不同类别数据的相似性尽可能小。分类和聚类的目的都是将数据项进行归类,但二者具有显着的区别。分类是有监督的学习,即这些类别是已知的,通过对已知分类的数据进行训练和学习,找到这些不同类的特征,再对未分类的数据进行分类。而聚类则是无监督的学习,不需要对数据进行训练和学习。常见的分类算法有决策树分类算法、贝叶斯分类算法等;聚类算法则包括系统聚类,K-means均值聚类等。
2、回归分析
回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,其主要研究的问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。按照模型自变量的多少,回归算法可以分为一元回归分析和多元回归分析;按照自变量和因变量间的关系,又可分为线性回归和非线性回归分析。
3、神经网络
神经网络算法是在现代神经生物学研究的基础上发展起来的一种模拟人脑信息处理机制的网络系统,不但具备一般计算能力,还具有处理知识的思维、学习和记忆能力。它是一种基于导师的学习算法,可以模拟复杂系统的输入和输出,同时具有非常强的非线性映射能力。基于神经网络的挖掘过程由数据准备、规则提取、规则应用和预测评估四个阶段组成,在数据挖掘中,经常利用神经网络算法进行预测工作。
4、关联分析
关联分析是在交易数据、关系数据或其他信息载体中,查找存在于项目集合或对象集合之间的关联、相关性或因果结构,即描述数据库中不同数据项之间所存在关系的规则。例如,一项数据发生变化,另一项也跟随发生变化,则这两个数据项之间可能存在某种关联。关联分析是一个很有用的数据挖掘模型,能够帮助企业输出很多有用的产品组合推荐、优惠促销组合,能够找到的潜在客户,真正的把数据挖掘落到实处。4市场营销大数据挖掘在精准营销领域的应用可分为两大类,包括离线应用和在线应用。其中,离线应用主要是基于客户画像进行数据挖掘,进行不同目的针对性营销活动,包括潜在客户挖掘、流失客户挽留、制定精细化营销媒介等。而在线应用则是基于实时数据挖掘结果,进行精准化的广告推送和市场营销,具体包括DMP,DSP和程序化购买等应用。