导航:首页 > 研究方法 > 矿物自动定量分析方法通则

矿物自动定量分析方法通则

发布时间:2023-06-12 21:46:58

❶ 矿物物相及结构分析方法

在矿物物相分析和晶体结构研究中,最常用的方法是粉晶和单晶X射线衍射分析,其次为红外和拉曼光谱分析、热分析及阴极发光分析等。

1.X射线分析法

本方法在矿物晶体结构分析、矿物鉴定和研究等方面起着极其重要的作用,已成为不可缺少的常规分析手段。

X射线是一种波长很短(0.01~1nm)的电磁波,在实验室里它是通过一个高度真空的玻璃或陶瓷管(X射线管)产生的。X射线管中有两个金属电极,阴极为钨丝卷成,阳极为某种金属的磨光面(习称“靶”)。用两根导线通入阴极3~4A的电流,在钨丝周围产生大量热电子。在阴极和阳极之间加以高电压(30~50 kV),钨丝周围的热电子即向阳极作加速度移动。当高速运动的电子与阳极相碰时,运动骤然停止,电子的能量大部分变为热能,少部分变成X射线由靶面射出。射入晶体的X射线(称原始X射线S0),引起晶体中原子的电子振动,这些电子因而发出与原始X射线波长相同的次生X射线(如S1、S2)。晶体中各原子所射出的次生X射线在不同方向上具有不同的行程差,当某些方向上的行程差等于波长的整数倍时,X射线便相互叠加(增强)成为衍射线,通过探测器即可收集到衍射数据。

图24-6 面网对X射线的衍射

图24-6中各点代表晶体中相当的原子,面网1,2,3是一组平行的面网,面网间距为d,波长为λ的原始X射线S0沿着与面网成θ角(掠射角)的方向射入,并在S1方向产生“反射”。产生“反射”(即衍射)的条件是相邻面网所“反射”的X射线的行程差等于波长的整数倍,即:nλ=2dsinθ(n=1,2,3,…整数,称为“反射”的级次)。此式经转换可得到

结晶学与矿物学

式中:dhkl为面网(hkl)的面网间距;θhkl为面网(hkl)的掠射角;λ为波长。该公式称为布拉格公式。

X射线衍射分析是通过仪器得到晶体的面网间距d和衍射线的相对强度I/I0两组衍射数据,根据衍射数据进行物象分析。

X射线衍射分析有粉晶(多晶)衍射分析和单晶衍射分析两种方法。粉晶衍射采用粉末状(1~10μm)多晶为样品(50~100 mg),粉晶衍射仪通过转动2θ角,用辐射探测器和计数器测定并记录衍射线的方向和强度,获得衍射图谱(图24-7)。衍射图中每个衍射峰代表一组面网。每组面网的面网间距d直接打印在峰上,它的衍射强度与峰高成正比,用相对强度表示,即以最强峰的强度作为100,将其他各衍射峰与之对比确定相对强度I/I0。获得衍射数据后,与鉴定表(ICDD卡片或其他矿物X射线鉴定表)中标准数据对比,即可作出矿物鉴定,也可采用计算机数据库检索分析软件进行辅助鉴定。

粉晶衍射物相分析快速简便,分辨率高,记录图谱时间短,精度高,用计算机控制操作和进行数据处理,可直接获得衍射数据,对矿物定性、定量都十分有效,目前已得到了广泛的应用。

单晶衍射分析一般采用小于0.2~0.5mm的单个晶体(或单晶碎片)为测试样品。目前较多用四圆测角系统的单晶衍射仪。它是通过一束单色X射线射入单晶样品,用计算机控制4个圆协同作用,调节晶体的取向,使某一面网达到能产生衍射的位置,用计数器或平面探测器记录衍射方向和强度。据此,可测定晶胞参数,确定空间群,求解原子坐标,计算键长、键角,最终得到晶体结构数据。

图24-7 单晶硅粉末衍射图(Mo靶)

2.红外光谱和拉曼光谱分析法

红外光谱(IR)为红外波段电磁波(波长0.75~1000μm;频率13333~10cm-1)与物质相互作用而形成的吸收光谱,是物质分子振动的分子光谱,反映分子振动的能级变化及分子内部的结构信息。

红外吸收光谱是由矿物中某些基团分子不停地作振动和转动运动而产生的。分子振动的能量与红外射线的光量子能量相当,当分子的振动状态改变时,就可以发射红外光谱,而因红外辐射激发分子振动时便产生红外吸收光谱。分子的振动能量不是连续而是量子化的,但由于分子在振动跃迁过程中也常伴随转动跃迁,使振动光谱呈带状(图24-8)。分子越大,红外谱带也越多。将一束不同波长的红外光照射到矿物上,某些特定波长的红外射线被吸收,就形成了这个矿物的红外吸收光谱。每种矿物都有由其组成和结构决定的独有的红外吸收光谱,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。

红外光谱仪有两类。一类是单通道测量的棱镜和光栅光谱仪,属色散型,它的单色器为棱镜或光栅。另一类为傅里叶变换红外光谱仪,它是非色散型的,有许多优点:可实现多通道测量,提高信噪比;光通量大,提高了仪器的灵敏度;波数值的精确度可达0.01cm-1;增加动镜移动距离,可使分辨本领提高;工作波段可从可见区延伸到毫米区,可以实现远红外光谱的测定。

图24-8 石英的红外光谱图

拉曼光谱(RS)为分子振动能级间的跃迁产生的联合散射光谱。用单色光照射透明样品时,一部分光子与样品分子发生非弹性碰撞,进行能量交换(因分子大多处于基态,故光子通常将损失能量)后成为拉曼散射光。入射光频率(v)与散射光频率(v′)之差等于分子的某一简正振动频率(vi),而物质振动的频率及强度由物质内部分子的结构和组成决定,因此,拉曼散射谱线能够给出物质的组成和分子内部的结构信息。

现代激光拉曼光谱仪除其主要部件激发源(氩离子激光)、样品室、信号检测系统和数据处理系统外,还常加装显微镜,构成显微拉曼探针仪。其空间分辨率为1μm2,检测限为10-9~10-12g,是微粒、微区、微结构中的分子类别及含量鉴定的有力工具。

近几十年来,红外和拉曼光谱技术不断有新的发展,成为矿物学和矿床地球化学研究的重要手段。此外,随着宝玉石业的蓬勃发展,作为非破坏、快速鉴定的方法,红外、拉曼光谱也在宝玉石鉴定中被广泛认可和使用。

3.热分析法

热分析法是根据矿物在不同温度下所发生的热效应来研究矿物的物理和化学性质,目的在于求得矿物的受热(或冷却)曲线,以确定该矿物在温度变化时所产生的吸热或放热效应。此法常用于鉴定肉眼或其他方法难以鉴定的隐晶质或细分散的矿物;特别适于鉴定和研究含水、氢氧根和二氧化碳的化合物,如粘土矿物、铝土矿、某些碳酸盐矿物、含水硼酸盐及硫酸盐矿物、非晶质的铌、钽矿物等;还可以测定矿物中水的类型。

热分析法包括热失重分析和差热分析。

一些矿物在受热后可能发生脱水、分解、排出气体、升华等热效应引起物质质量发生变化,在程序控温下测量物质和温度变化关系的方法称热重分析法,在加热过程中测量得到物质质量和温度的关系曲线称热失重曲线(图24-9)。在含水矿物中测定矿物在不同温度条件下失去所含水分的质量而获得温度-质量曲线,从而查明水在矿物中的赋存状态和水在晶体结构中的作用。不同含水矿物具有不同的脱水曲线。利用这种方法,可以鉴定和研究含水矿物,如粘土矿物等。

操作过程是:从低温起至高温(1000℃左右)止逐渐以各种不同的固定温度加热矿物,至质量不再变化为止,然后称矿物的质量,算出因加热而损耗的质量(脱出的水分质量)。以损失质量的百分数及加热的温度为纵横坐标绘成曲线,即得失重曲线。

图24-9 热失重曲线图

差热分析法是将矿物粉末与中性体(不产生热效应的物质,常用煅烧过的Al2O3)分别同置于一高温炉中,在加热过程中,矿物发生吸热(因相变、脱水或分解作用等引起)或放热(因结晶作用、氧化作用等引起)效应,而中性体则不发生此效应,将两者的热差通过热电偶,借差热电流自动记录出差热曲线,线上明显的峰、谷分别代表矿物在加热过程中的吸热和放热效应。不同的矿物在不同的温度阶段,有着不同的热效应。由此可与已知矿物标准曲线进行对比来鉴定矿物。本方法对粘土矿物、氢氧化物、碳酸盐和其他含水矿物的研究最有效。

目前,矿物的差热分析法有了很大的进展,不仅用来定性地鉴定矿物,有时还可以做定量分析、探讨矿物在加热时结构的变化和研究矿物的类质同象混入物等。差热分析曲线的解释如下:

1)含水矿物的脱水:普通吸附水脱水温度为100~110℃;层间结合水或胶体水脱水温度在400℃内,大多数在200或300℃内;架状结构水脱水温度400℃左右;结晶水脱水温度在500℃内,分阶段脱水;结构水脱水温度在450℃以上。

2)矿物分解放出气体:CO2,SO2等气体的放出,曲线有吸热峰。

3)氧化反应表现为放热峰。

4)非晶态物质的析晶表现为放热峰。

5)晶型转变通常有吸热峰或放热峰。

6)熔化、升华、气化、玻璃化转变显示为吸热峰。

差热分析有一定的局限性,只适用于受热后有明显的物理、化学变化的物质,并有许多干扰因素而影响效果。因此,它必须和其他测试方法结合起来,如和X射线分析、电子显微镜、化学分析等密切配合使用。

4.阴极发光分析法

阴极发光是物质表面在高能电子束轰击下发光的现象。不同矿物或相同种类不同成因的矿物,在电子束的轰击下,会发出不同颜色或不同强度的光,同时能显示与晶体生长环境有关的晶体结构或生长纹,可辅助矿物鉴定。

阴极射线发光分析方法是研究矿物结构和能态的一种重要方法。近年来,这种分析方法的灵敏度和功能等都获得很大改善,特别是在扫描电镜中,将阴极射线发光、二次电子、背散射电子和X射线特征谱等结合起来形成的综合测量方法,成为研究矿物结构和微区性质的有力工具。

❷ 任务了解矿物鉴定的常用方法

一、鉴定矿物的化学方法

矿物鉴定的化学方法包括简易化学分析和化学全分析。

(一)简易化学分析法

简易化学分析法,就是以少数几种药品,通过简便的试验操作,能迅速定性地检验出样品 (待定矿物)所含的主要化学成分,达到鉴定矿物的目的。常用的有斑点法、显微化学分析法及珠球反应等。

1.斑点法

这一方法是将少量待定矿物的粉末溶于溶剂 (水或酸)中,使矿物中的元素呈离子状态,然后加微量试剂于溶液中,根据反应的颜色来确定元素的种类。这一试验可在白瓷板、玻璃板或滤纸上进行。此法对金属硫化物及氧化物的效果较好。

现以测试黄铁矿中是否含镍 (Ni)为例,说明斑点法的具体做法。将少许矿粉置玻璃板上,加一滴HNO3并加热蒸干,如此反复几次,以便溶解进行完全,稍冷后加一滴氨水使溶液呈碱性,并用滤纸吸取,再在滤纸上加一滴2%的二甲基乙二醛肟酒精溶液(镍试剂),若出现粉红色斑点 (二甲基乙二醛镍),表明矿物中确有镍的存在。因此该矿物应为含镍黄铁矿。

2.显微化学分析法

该法也是先将矿物制成溶液,从中吸取一滴置载玻片上,然后加适当的试剂,在显微镜下观察反应沉淀物的晶形和颜色等特征,即可鉴定出矿物所含的元素。

这种方法用来区别某些相似矿物是很有效的,例如呈致密块状的白钨矿Ca[WO4]与重晶石Ba[SO4]相似,此时只要在前者的溶液中滴一滴1∶3H2SO4,如果出现石膏结晶(无色透明,常有燕尾双晶),表明要鉴定的矿物为白钨矿而不是重晶石。

3.珠球反应

这是测定变价金属元素的一种灵敏而简易的方法。测定时将固定在玻璃棒上的铂丝之前端弯成一直径约为1mm的小圆圈,然后放入氧化焰中加热。清污后趁热粘上硼砂 (或磷盐),再放入氧化焰中煅烧,如此反复几次,直到硼砂熔成无色透明的小球为止。此时即可将灼热的珠球粘上疑为含某种变价元素的矿物粉末 (注意!一定要少),然后将珠球先后分别送入氧化焰及还原焰中煅烧,使所含元素发生氧化、还原反应,借反应后得到的高价态和低价态离子的颜色来判定为何种元素。例如在氧比焰中珠球为红紫色,放入还原焰中煅烧一段时间后变为无色时,表明所试样品应为含锰矿物,具体矿物的名称可根据其他特征确定之。

(二)化学全分析

化学全分析包括定性和定量的系统化学分析。进行这一分析时需要较为繁多的设备和标准试剂,需要较纯 (98%以上)和较多的样品,需要较高的技术和较长的时间。因此,这一方法是很不经济的,除非在研究矿物新种和亚种的详细成分、组成可变矿物的成分变化规律以及矿床的工业评价时才采用。通常在使用这一方法之前,必须进行光谱分析,得出分析结果以备参考。

二、鉴定矿物的物理方法

矿物鉴定的物理方法是以物理学原理为基础,借助各种仪器测定矿物的各种物理性质来鉴定矿物。主要方法有:

1.偏光显微镜和反光显微镜鉴定法

偏光显微镜鉴定方法是根据晶体的均一性和异向性,并利用晶体的光学性质而鉴定矿物的方法。应用这种方法时,须将矿物、岩石磨制成薄片,在透射光作用下,观察和测定矿物的晶形、解理和各项光学性质 (颜色、多色性、突起、干涉色、折射率、双折射、消光类型、消光角、延性符合以及轴性、光性符号等)。

反光显微镜 (也称矿相显微镜)主要用以观察和测定不透明矿物 (金属矿物)的光学性质 (矿物的反射率、双反射率、反射色、反射多色性、内反射等),以确定矿石矿物成分、矿石结构、构造及矿床成因方面的问题。

2.电子显微镜研究法

电子显微镜研究法是一种适宜于研究粒度在1μm以下的微粒矿物的方法,尤以研究粒度小于5μm的具有高分散度的黏土矿物最为有效。可分为扫描电子显微镜和透射电子显微镜两种方法。

黏土类矿物由于颗粒极细 (一般2μm左右),常呈分散状态,研究用的样品需用悬浮法进行制备,待干燥后,置于具有超高放大倍数的电子显微镜下,在真空中使通过聚焦系统的电子光束照射样品,可在荧光屏上显出放大数十万倍甚至百万倍的矿物图像,据此以研究各种细分散矿物的晶形轮廓、晶面特征、连晶形态等,用此来区别矿物和研究它们的成因。

此外,超高压电子显微镜发出的强力电子束能透过矿物晶体,这就使得人们长期以来梦寐以求的直接观察晶体结构和晶体缺陷的愿望得到实现。

3.X射线分析法

X射线分析法是基于X射线的波长与结晶矿物内部质点间的距离相近,属于同一个数量级(Å),当X射线进入矿物晶体后可以产生衍射。由于每一种矿物都有自己独特的化学组成和晶体结构,其衍射图样也各有其独有的特征。对这种图样进行分析计算,就可以鉴定结晶矿物的相 (每个矿物种就是一个相),并确定它内部原子 (或离子)间的距离和排列方式。因此,X射线分析已成为研究晶体结构和进行物相分析的最有效方法。

4.光谱分析

光谱分析法的理论基础是,各种化学元素在受到高温光源 (电弧或电火花)激发时,都能发射出它们各自的特征谱线,经棱镜或光栅分光测定后,既可根据样品所出现的特征谱线进行定性分析,也可按谱线的强度进行定量分析。这一方法是目前测定矿物化学成分时普遍采用的一种分析手段。其主要优点是样品用量少 (数毫克),能迅速准确地测定矿物中的金属阳离子,特别是对于稀有元素也能获得良好的结果。缺点是仪器复杂昂贵,并需较好的工作条件。

5.电子探针分析

电子探针分析是一种最适用于测定微小矿物和包体成分的定性、定量以及稀有元素、贵金属元素赋存状态的方法。其测定元素的范围由从原子序数为5的硼直到92的铀。仪器主要由探针、自动记录系统及真空泵等部分组成,探针部分相当于一个X射线管,即由阴极发出来的高达35~50kV的高速电子流经电磁透镜聚焦成极细小 (最小可达0.3μm)的电子束——探针,直接打到作为阳极的样品上,此时,由样品内所含元素发生的初级X射线 (包括连续谱和特征谱),经衍射晶体分光后,由多道记数管同时测定若干元素的特征X射线的强度,并用内标法或外标法算出元素含量。

6.红外吸收光谱

简称红外光谱,是在红外线的照射下引起分子中振动能级 (电偶极矩)的跃迁而产生的一种吸收光谱。由于被吸收的特征频率取决于组成物质的原子量、键力以及分子中原子分布的几何特点,即取决于物质的化学组成及内部结构,因此每一种矿物都有自己的特征吸收谱,包括谱带位置、谱带数目、带宽及吸收强度等。

红外吸收光谱分析样品一般需要1.5mg,最常使用的制样方法是压片法,即把试样与KBr一起研细,压成小圆片,然后放在仪器内测试。

目前红外吸收光谱分析在矿物学研究中已成为一种重要的手段。根据光谱中吸收峰的位置和形状可以推断未知矿物的结构,是X射线衍射分析的重要辅助方法,依照特征峰的吸收强度来测定混入物中各组分的含量。此外,红外光谱分析对考察矿物中水的存在形式、配阴离子团、类质同象混入物的细微变化和矿物相变等方面都是一种有效的手段。

三、鉴定矿物的物理-化学方法

当前用于矿物鉴定最主要的物理-化学方法有热分析、极谱分析及电渗分析等。其中,热分析是一种较为普遍的方法,几乎适用于各类矿物,特别是对黏土矿物,以及碳酸盐、硫酸盐、氢氧化物矿物的鉴定最为有效。

热分析法是根据矿物在不同温度下所发生的脱水、分解、氧化、同质多象转变等热效应特征,来鉴定和研究矿物的一种方法。它包括热重分析和差热分析。

1.热重分析

热重分析是测定矿物在加热过程中的质量变化来研究矿物的一种方法。由于大多数矿物在加热时因脱水而失去一部分质量,故又称失重分析或脱水试验。用热天平来测定矿物在不同温度下所失去的质量而获得热重曲线。曲线的形式决定于水在矿物中的赋存形式和在晶体结构中的存在位置。不同的含水矿物具有不同的脱水曲线。

这一方法只限于鉴定、研究含水矿物。

2.差热分析

矿物在连续地加热过程中,伴随物理—化学变化而产生吸热或放热效应。不同的矿物出现热效应时的温度和热效应的强度是互不相同的,而对同种矿物来说,只要实验条件相同,则总是基本固定的。因此,只要准确地测定了热效应出现时的温度和热效应的强度,并和已知资料进行对比,就能对矿物做出定性和定量的分析。

差热分析法的具体工作过程是,将试样粉末与中性体 (在加热过程中不产生热效应的物质,通常用煅烧过的Al2O3)粉末分别装入样品容器,然后同时送入一高温炉中加热。

由于中性体是不发生任何热效应的物质,所以在加热过程中,当试样发生吸热或放热效应时,其温度将低于或高于中性体。此时,插在它们中间的一对反接的热电偶 (铂-铑-铂热电偶)将把两者之间的温度差转换成温差电动势,并借光电反射检流计或电子电位差计记录成差热曲线。

图1-1中的实线曲线为高岭石的差热曲线,其横坐标表示加热温度 (℃),纵坐标表示发生热效应时样品与中性体的温度差 (ΔT)。高岭石的差热曲线特点是:在580℃时,由于结构水 (OH)-的失去和晶格的破坏而出现一个大的吸热谷,980℃时,因新结晶成γ-Al2O3,而显出一个尖锐的放热峰。

图1-1 高岭石差热曲线(1)和脱水曲线(2)

差热分析的优点是样品用量少 (100~200mg),分析时间短 (90min以下),而且设备简单,可以自行装置。缺点是许多矿物的热效应数据近似,尤其当混合样品不能分离时,就会互相干扰,从而使鉴定工作复杂化。为了排除这种干扰,应与其他方法 (特别是X射线分析)配合使用。

对非专业鉴定人员而言,主要是根据工作的目的、要求和具体条件,正确地选择适当而有效的测试方法 (表1-1),按送样要求进行加工,并正确地使用测试结果。

表1-1 矿物鉴定方法的选择

续表

以上介绍的是目前最常使用的方法,其他方法还很多,如中子活化分析、核磁共振、顺磁共振、穆斯堡尔效应、包裹体研究、稳定同位素研究等,需要时可查阅专门资料。

学习指导

通过学习情境的学习了解矿物鉴定的基本方法,目的是为了我们在今后工作中知道怎样去鉴定矿物,并不要求我们掌握所有的鉴定方法,目前只需要掌握肉眼鉴定和简易化学试验方法即可,但要知道鉴定矿物的一般步骤、正确选择鉴定方法。

练习与思考

1.名词解释

矿物 矿物鉴定 肉眼鉴定 仪器鉴定

2.选择题

(1)确定矿物的外部特征采用哪种方法? ()

A.肉眼鉴定法

B.显微镜

C.化学分析

D.核磁共振

(2)测定矿物的化学成分用哪种方法? ()

A.均一法

B.光谱分析

C.热分析

D.质谱分析

(3)测定矿物某种物性或晶体结构数据采用哪种方法? ()

A.冷冻法

B.简易化学分析法

C.电子显微镜

D.中子活化分析

3.简答题

(1)怎样鉴定矿物? 怎样选择矿物鉴定方法?

(2)肉眼鉴定矿物时应注意的问题?

❸ 各类矿物的定量分析

电子探针分析的对象是固体无机材料,如合金和矿物等。通用的ZAF修正程序对合金分析比较有效;但用于各类矿物分析时,由于各类矿物具有不同的化学组成和化学物理性质,因而在选择实验条件时,或在选择修正方法时均要作一些特殊的考虑,才能取得较好的分析结果。本节仅对几类较为常见的矿物,如硅酸盐氧化物、含钾钠碱金属的矿物和玻璃、硫化物、黏土矿物等较为特殊的定量分析作某些讨论。

89.3.2.1 硅酸盐及其他含氧矿物的分析

这类矿物包括氧化物、硅酸盐、碳酸盐、硫酸盐、硼酸盐、砷酸盐等以及其他一切含氧盐类。这些矿物的化学组成中都含有超轻元素氧,即使采用ZAF法或ZAF氧化物法修正,也总不能获得较好的结果。所以尽管早期的α因子经验修正法校正目前较少使用,仍是一个值得参考的方法。

硅酸盐、氧化物的α因子经验修正法基于任何一个复杂的含氧矿物或化合物均可看做是由简单的端元氧化物,如H2O、CO2、Na2O、MgO、Al2O3、SiO2、P2O5、SO3、K2O、CaO、TiO2、Cr2O3、MnO、FeO、NiO、R2O3、PbO等组成,据此进行端元体系中含氧矿物的修正计算。如硅灰石CaSiO3可看是CaO和SiO2两个端元氧化物组成的矿物。只要当CaO对SiKα的α因子和SiO2对CaKα的α因子已知,就可以按照T.O.Ziebold等人提出的二元或多元合金的α因子法进行修正,氧元素不作任何单独考虑。即对上述图CaSiO3这样一个两端元系统中,令A、B分别代表CaSiO3中的两个端元氧化物。αAAB和αBAB分别代表A、B端元氧化物的α因子,wAAB和wBAB分别为A、B两端元的质量分数(%)。α因子近似于ZAF法3项修正因子的乘积。

岩石矿物分析第四分册资源与环境调查分析技术

事实上自然界的氧化物总是由A、B、C……n多端元氧化物组成,故引入多元修正因子β,并令 ,以u代替多端元ABC……n,则得

式中kAu是试样中A元素的相对强度比,即IAu/IAA,所以:

岩石矿物分析第四分册资源与环境调查分析技术

这里wAu是该多端元试样中A端元氧化物的质量分数(%),βAu为A端元组分的修正因子,IAu为A元素的特征X射线强度。由于纯端元氧化物标样不易获得等原因,实际工作中常用多端元化合物作标样,此时未知试样A端元氧化物的质量分数(%)可由下式求得:

岩石矿物分析第四分册资源与环境调查分析技术

式中:wAws、IAws和βAws分别表示两端元或多端元标样中A端元氧化物含量、特征X射线强度和修正因子β。

因此,在实际工作中,只要试样和标样的β值已知,即可从测量数据算得试样中A端元氧化物的含量。修正因子β可由二元系统中α因子推算而得。在多元系统中某端元A的修正因子β应是各端元(包括端元A本身)对A元素特征X射线的修正因子α的重量加权,即可用下式表示:

岩石矿物分析第四分册资源与环境调查分析技术

由此可知,α和β因子是以简单氧化物为端元组分进行经验修正计算的最基本参数,而其中只要知道每个端元组分的α值,任一多元体系的每一元素的β值便能推算出来。从这个意义来说,α因子是本经验方法的最基本参数,其精度直接影响本方法的精度。合理确定α值是重要的基本工作。

用α因子作经验修正,除了要有精确的α因子数值外,在做定量分析时还必须准确选择实验条件,确定过量氧的影响,准确选择标样等。

硅酸盐氧化物主要由原子序数11~28的元素组成,所以通常选择的工作电压为15kV,束流为2×10-8A。当其主要的组成为重元素时,则应选用较高的工作电压及其相应的α因子值,如分析锆铪、稀土、钨钼铅和铀等硅酸盐氧化物时。此外,对于一些含水或含碱金属元素的硅酸盐,由于在电子束轰击下易发生变化,而且这些矿物通常不易磨平,束斑通常可选用10μm或20μm。

由于氧对大多数元素的X射线强度有较大影响,还应关注过量氧的影响。经验修正通常只用低价氧化物作为端元组分,α因子表中也只给出低价氧化物的α值,故必须考虑高价氧化物中过量氧的影响。在计算试样中某一端元组分的β因子时,必须包括试样中的全部氧。此外,许多矿物和岩石中含有少量的H2O、OH等组分,它们对各种元素的特征X射线的影响与过量氧相近。为便于修正计算,上述组分通常都可视作为过量氧处理,以算出各实测元素的β值。当然也有要分别考虑的情况,如分析磁铁矿和沸石类矿物时,在FeO-O2系统中,过量氧对FeO的α值为1.135;而FeO-O2系统中,水对FeO的α值约为1.25。

鉴于上述原因,在计算某些同时含有高价或低价氧化物的矿物,如铬尖晶石类矿物时,应根据矿物的化学结构式正确估算FeO和Fe2O3的比值,以确定过剩氧的影响。

标样的选择更是一个重要的前提,通常都选用氧化物。可以是端元氧化物,也可以是两端元氧化物或多端元氧化物或硅酸盐,选择一个与试样组成相近的同类矿物为最理想,这就是需要更多种类标样的原因。表89.6列举了常用的氧化物、硅酸盐标准样品。

表89.6 常用的氧化物、硅酸盐标准样品

对岩石试样,可用成分已知的硅酸盐粉末或成分相近的同类岩石作为探针分析标样,如某些花岗岩、闪长岩、超基性岩等。

用作标准的矿物、岩石样品,应预先计算出各元素的修正系数β备用。要分析的硅酸盐、氧化物和岩石试样很多是属于同一类型的,有了β因子值表,测量时便可立即估算所得数值加合是否达到百分之百。若试样的组成与预算矿物相近,则可直接用于计算。这对于快速一级近似定量分析更为优越。特别值得一提的是根据预算的β值,可以假设一个与试样成分最为接近的初始值,以减少迭代计算的次数,甚至只需作一次修正,就使修正后的值与假定值很接近,无需再进行计算,大大地节省修正计算的工作量。

α经验修正法和ZAF氧化物法都有待于进一步完善和发展,以提高修正法的精度和准确度等,有以下几个方面值得注意:

1)地质试样中常见的一些碳酸盐、磷酸盐和硫酸盐等矿物,在一些文献中也初步列了有关的α因子,用经验修正方法可以得到较好的分析结果。在实际分析中应用较少,需进一步做些基础研究工作,使其普遍应用。

2)硫化物大多属于有用矿物,是地质工作者的重要研究对象。这类不透明矿物用通常的光学显微镜鉴定较困难,使用电子探针较为容易。鉴于硫化物的化学性质与氧化物、硅酸盐差别很大,但从各自的大类来说有相似的特点。如能提供一组有关常见硫化物(包括硫酸盐)中各元素的或端元硫化物的α值,将非常有意义,应是一个发展方向。

3)有人提出以某些更为复杂的矿物为端元组分的因子,并提出元素、氧化物和矿物的因子互算问题,对于扩大这种经验修正方法的使用范围很有意义。矿物的α因子的提出,对某些种类矿物的鉴定分析更为便利。例如,对于Na-K-Ca-Sr-Ba长石、Mg-Ca-Mn-Fe-Ni橄榄石、Ca-Mg-Fe-Mn碳酸盐等类质同象系列的矿物,若能推算出比较正确的α因子,即可迅速简便地分析出类质同象系列中端元矿物的质量分数(%)。如在斜长石系列中,即可立即分别算出钠长石(NaAlSi3O8)和钙长石(CaAl2Si2O8)的含量,直接鉴定出斜长石的类别。

4)对于长石、辉石、橄榄石等类质同象系列矿物,用α因子经验修正法预先算出一系列的X射线强度,并与其对应的成分作成图表或编制成程序,对类质同象系列矿物进行快速测点,效果极为理想,见表89.7。

表89.7a 斜长石-钠长石系列中Ca、NaK系X射线相对强度和化学成分

续表

表89.7b 正长石系列中K、NaK系X射线相对强度和化学成分

89.3.2.2 硫化物及硫酸盐的定量分析

硫化物及硫盐矿物都属不透明金属矿物,它们是组成Co、Ni、Cu、Ag、Pb、Zn、Sb、Bi、Hg等多种金属矿床的主要矿物。这些矿物的电子探针分析研究不仅直接关系着矿产的综合评价与综合利用,也是研究矿床成因的重要基础;同时,硫化物和硫盐矿物的复杂的结晶化学的深入研究,也有助于材料科学的进一步发展。所以,在地质学领域内,硫化物和硫盐的电子探针分析具有重要的意义。

自然界生成硫化物和硫盐矿物的元素主要有:Fe、Co、Ni、Cu、Zn、As、Ag、Cd、Sn、Sb、Hg、Pb、Bi等,它们和硫形成的化学键有离子键、共价键和金属键。按说,这类矿物的电子探针定量分析应问题不大,因为这类矿物中除S为非金属以外,其余均为金属或半金属元素,所形成的矿物多为导体或半导体,一般不需镀膜即可进行分析。实际情况并非如此,有时即使分析一个成分最简单的黄铁矿(FeS2)、磁黄铁矿(Fe1-xS)或方铅矿(PbS)也得不到理想的结果,其主要原因有以下几个方面。

1)硫化物和硫盐与硅酸盐和氧化物的化学组成不一样。例如在橄榄石中,Fe和Mg的离子半径、电荷电子活性完全相似,Mg2SiO4和Fe2SiO4之间可以形成固溶体。硫化物之间的替代就不那么简单。硅酸盐中没有Si-Si键,O-O键,在硫化物中有金属-金属键和S-S键。所以,在硫化物形成过程中,金属元素的替代不一定是一一对应的。例如,磁黄铁矿中Fe和S就不是1∶1的关系,原因就在于硫化物中不只是有金属-硫键,还有金属-金属键和S-S键。黝铜矿的理论化学式为Cu3SbS4,但实测的化学式常常为Cu12Sb4S13或Cu12+xSb4S13,原因就在于其中有Sb-S键、Sb-Sb键或S-S键。

从这一点来说,硫化物的分子式比硅酸盐更复杂,这就增加了定量分析的难度。例如,磁黄铁矿有许多类型,通常至少可区分为六方磁黄铁矿和单斜磁黄铁矿。前者含Fe原子百分比为47.0%~47.8%,其分子式可表达为Fe11S12-Fe9S10。后者Fe原子百分比为46.5%~47%,其分子式为Fe7S8。两者硫成分的最大变化范围为36.48%~39.13%。磁黄铁矿本身又易氧化,因此,正确区分六方和单斜磁黄铁矿并不十分容易。

2)硫化物和硫盐矿物的硬度一般不大,磨光性能较好,样品制备比较容易,因而制样过程中可能产生的试样表面状态的改变和一些污染问题容易被忽略,影响定量分析的结果。实验证明,用硅油作为悬浮液载体,以金刚砂磨料抛光黄铜矿,从表面向里可依次形成三层薄膜:①非晶质的Si、C、O污染层;②铁的硫盐层;③铁的氧化物和富铜硫化物层。用氧化铬磨料抛光时,则只见到③层。对于那些抛光后搁置在空气中的黄铜矿,表面还会形成一些铁氧化物,使其形成彩色晕斑。被包裹于硅酸盐中的黄铜矿,这些次生层较薄,但包裹于硫化物中的黄铜矿次生层较厚。上述这些现象的产生,直接影响到定量分析的结果。当使用电子探针分析用硅油作载体的金刚砂抛光的黄铜矿时,分析结果的总量加合仅达98.08%左右,Cu、S、Fe系统偏低,其中以Cu最为明显,约低1%,S次之。分析用氧化铬抛光过的黄铜矿,只有Cu略有偏低。

3)硫化物和硫盐的制样过程中常常发生元素表面的扩散作用或相邻矿物之间的沾污现象,引起显着误差。例如分析两个产地含Ag量不同的黄铜矿,一个黄铜矿取自澳大利亚昆士兰的Hilton矿,含Ag1500μg/g,呈类质同象,很少有银矿物与它连生;另一个黄铜矿取自苏联西伯利亚的Bankofsky矿,它本身实际不含Ag,但被许多螺状硫银矿Ag2S包裹。采用不同的工作电压进行测量,并用ZAF法和X射线分布函数!(ρz)法进行修正计算,获得了两种截然不同的情形(表89.8)。

表89.8 Hilton矿和Bankofaky矿的黄铜矿中Ag的分析结果

续表

Hilton的黄铜矿含Ag约1500μg/g,不随工作电压的改变而改变。Bankofsky矿的黄铜矿有两种颜色,一种为橘黄色,含银较高,一种为黄色,含银量较低,且两者都随着工作电压的升高而迅速降低,说明银并不以类质同象存在于黄铜矿中,而是呈薄膜粘附于黄铜矿的表面。进一步研究还证实,Bankofsky矿的黄铜矿表面有一层Ag2S+Fe2O3的薄膜,若假定该层中的Ag含量为30%,那么用!(ρZ)法推算该薄膜厚度约为150nm。

4)大多数硫化物和硫盐对电子束轰击是稳定的,但有些银矿物,如螺状硫银矿、深红银矿、淡红银矿、硫锑铜银矿、砷硫锑铜银矿、硫砷铜银矿等是不稳定的,各种元素的X射线计数强度将随时间而变化。例如硫砷铜银矿在电子束照射下,Cu、As、S的X射线强度逐渐降低,只有Ag的X射线强度逐渐增加。这是由于矿物受电子束轰击分解后,Ag相对地集中于电子束照射部位而S蒸发所致。螺状硫银矿也有相似情形,当该矿物受到1×10-5μA/μm2电子束流轰击时,刚开始时Ag减少,30s以后经过最低点而开始逐渐上升,并达到一定数值时即再继续变化。含银硫化物和硫盐的这种不稳定状态的变化是由矿物本身的特性和实验条件所决定的,尚难用数学模式进行修正。因此,较好的办法是:①喷镀碳膜或适当加厚碳膜,以增加试样的导电导热能力,减少矿物的分解。如硫砷铜银矿在喷镀碳膜后可以使它对电子束的轰击趋于稳定;②减小束流,增大束斑,降低试样单位面积接收的电子数;③降低电压;④分析中移动试样。

5)目前硫化物的定量修正多数采用一般的ZAF法程序,这种修正本身也是分析误差的一个来源。δ因子法虽然并不是硫化物的专用程序,但对硫化物比较适用。δ因子法是在α因子法的基础上发展起来的。鉴于二元或多元体系(以纯元素为端元)中下述线性关系不完全成立:

岩石矿物分析第四分册资源与环境调查分析技术

如在Fe-Cr、Sb-S等二元体系中,Cr和S的wAAB/KAAB与wAAB的关系都表现为不同形式的曲线,在一些多元体系中则表现为一个曲面。因此,有人在α的基础上引出了δ因子及其相应的修正公式:

岩石矿物分析第四分册资源与环境调查分析技术

岩石矿物分析第四分册资源与环境调查分析技术

其他元素B、C……n的βB、βC……βn的计算与βA相同。所以只要α和δ值已知,即可作修正计算,比ZAF法简便很多。而且,它能更确切地表达w/K(即β)与w的关系,使α因子得到进一步的改善。δ因子修正的实际计算步骤如下:

图89.14 δ因子修正计算步骤

以不锈钢为例说明δ因子定量修正计算实例:

测量值K表

w表

δ表(Crkα)

β表(Cr)

δ表(FeKα)

β表(Fe)

δ表(NiKα)

β表(Ni)

岩石矿物分析第四分册资源与环境调查分析技术

a.将实测的X射线强度计算成相对强度比,即K值,并列成K表。

b.作δ表。对于不锈钢样品,应分别作出CrKα、FeKα、NiKα三个δ表(数据可从附录中查得)。

c.作w表,即作第一次修正计算的假定含量表。此表的具体作法见下面最后一个表。表中A、B、C分别代表不同元素,K是X射线相对强度比,w是假定含量。可用矿物的已知理论成分作为假定含量,可减少迭代次数。

d.作β表。计算各元素的修正系数β值。具体计算方法是将w表和δ表中的相应数值相乘,然后求出各自的总和,即得β值。

e.最后,根据公式w=K×β,求出第一次修正值(即下面实例中计算所得的Cr18.22%,Fe75.08%,Ni7.94%)。

f.判断是否收敛。判据可根据实际情况设定。通常可取修正值与假定值的相对误差小于0.5%为判据。小于此数时可不再进行迭代计算。否则,应再次从假定浓度开始,进行下一次修正计算,直至收敛为止。

89.3.2.3 含碱金属的矿物和玻璃的分析

Lineweaver发现用电子探针测定钠、钾含量时越测越低。这是因为当电子束轰击试样时,入射电子形成了一个很小的静电场,引起带正电荷的碱金属离子向试样内部迁移,引起键的破坏而氧则向表面移动。这种迁移和试样内部结构有关。非晶体结构的玻璃与有一定晶体结构的矿物相比,钠、钾的减少要明显。例如,分析玄武玻璃,选择工作电压15kV,束流0.01μA,束斑为5μm,钠的减少可达50%,钾亦减少很多。对于陆源火山碎屑和深海火山碎屑沉积物,工作电压选用15kV,束流0.0125μA,束斑5~10μm,计数时间为30s,钠减少仍达50%以上。对一些常见的钠钾造岩矿物,如钠长石、钾长石、霞石、方钠石、钠沸石、针柱石、硬玉等,由于这些矿物具有不同的化学成分和不同的结构,钠钾减少的速度也不同。钠长石、钠沸石是架状硅酸盐,钠位于架状结构的空洞中,易于迁移。硬玉是链状硅酸盐,钠必须沿链运动,因而难于迁移。钠、钾的迁移亦与它们与周围的配阴离子有关。在方钠石中,Na+是四配位,且与Cl-有关,因而比钠长石中六配位的Na+较不易迁移。故对于NaCl类试样,Na+是不会迁移的。从钾钠长石的相互比较还可以看到,由于K+比Na+离子半径大,因而K+的迁移比Na+困难。

下列实验条件十分重要:

1)加速电压。加速电压愈高,试样的温度也随之略有升高,钠钾迁移速度越大。

2)电子束流的大小和束斑的大小的影响。在同一束斑条件下,束流愈大,钠钾迁移愈快,反之则愈慢。这种影响对Na+要比对K+更为明显些。在一定束流条件下,随着电子束斑直径由小变大,作用于单位体积的入射电子数将作级数递减,钠钾的迁移明显减少。

3)试样温度的影响。实验表明,试样本身的温度对于Na+和K+的迁移有较大的影响。Na+和K+的迁移随着温度的升高而加快。当试样冷却至-140℃时,即用工作电压15kV,束流0.05μA,束斑直径1μm,钠长石和钾长石中的Na+和K+几乎没有任何迁移的迹象。

因此,作这类试样分析时应视实验室的条件采取必要的措施:

1)选择适当的工作条件,减小加速电压,减小束流,增加束斑直径,常选用的工作条件是:加速电压<15kV,束流<0.02μA,束斑>10μm,测量时间在满足一定精度要求下应<10s。同时,在测量顺序上应首先测定钾、钠等元素,以减少迁移的影响。

2)分析时不断移动试样,当移动速度达到1μm/s时,钠长石和钾长石中Na+和K+的迁移接近零,可得理想的结果。没有自动马达带动的样品台时,可手动操作。

3)选择与试样相近的标样,使由于碱金属离子迁移的影响与试样相同或接近。当没有合适的标样时,也可以使用经验修正法测定在电子束轰击下碱金属含量的衰减曲线,然后用外推法求出原始含量。

4)用液氮或干冰将试样冷却到-160~-50℃,使碱金属迁移减小到零。这种方法需要一定设备和条件且费时,不如经验修正法简便。

❹ 鉴定和研究矿物的其他主要方法简介

鉴定和研究矿物的方法,随工作目的和要求的不同而异(表16-1)。不同的方法各有其特点,它们对样品的要求及所能解决的问题也各不相同。下面仅介绍某些重要方法的简要特点。

1.成分分析方法

此类方法所得结果即为物质的化学成分数据。除经典化学分析系化学方法外,其他常用方法均属物理方法,大多可同时分析多种元素,但一般不能区分变价元素的价态。

1)经典化学分析

此法准确度高,但灵敏度不很高,分析周期长,很不经济。样品要求是重量超过500mg的纯度很高的单矿物粉末。

此法只适用于矿物的常量组分的定性和定量分析。主要用于新矿物种或亚种的详细成分的确定和组成可变的矿物成分变化规律的研究。但不适用于稀土元素的分析。

表16-1 鉴定和研究矿物的主要方法一览表

2)光谱分析

此法准确度较差(尤其是对含量大于3%的常量元素),但灵敏度高,且快速、经济。可测元素达70多种。一次测试即能获得全部主要元素及微量元素的信息。样品要求:仅需数十毫克甚至数毫克的粉末样品。

光谱分析通常用于矿物的微量和痕量元素的定性或半定量分析。特别是对于稀有分散元素也能获得良好的效果。常作为化学分析的先导,以初步了解样品中元素的种类和数量,供进一步分析或研究时参考。

3)原子吸收光谱分析

原子吸收光谱(AAS)分析灵敏度高,干扰少,快速、精确且较经济。可测70多种元素,但一次只能分析一种元素,不宜于定性分析。样品用量少,仅需数毫克粉末样。

AAS主要用于10-6数量级微量元素和10-9数量级痕量元素的定量测定。适宜于测定沸点低、易原子化的金属元素及部分半金属元素。也可进行常量分析。但对稀土、Th、Zr、Hf、Nb、Ta、W、U、B等高温元素的测定的灵敏度较低,对卤族元素、P、S、O、N、C、H等尚不能测定或效果不佳。

4)X射线荧光光谱分析

X射线荧光光谱(XRF)分析准确度较高,成本低,速度快,可不破坏样品。可分析元素的范围为9F~92U。XRF要求数克至十克(一般4~5g,最少可至数十毫克)较纯的粉末样。液态样品也可分析。

XRF用于常量元素和微量元素的定性或定量分析。尤其对稀土元素及稀有元素Nb、Ta、Zr、Hf等的定量分析有效。但不能测定变价元素的价态。

5)等离子体发射光谱分析

等离子体发射光谱(ICP)分析比光谱分析更为快速和灵敏,检测下限可达(0.1×10-9)~(10×10-9)。精度较高,可达±3%,可测定除H、O、N和惰性气体以外的所有元素。样品要求:粉末,最少可以数毫克,也可以为液态样品。

ICP适用于常量、微量和痕量元素的定性或定量分析。特别宜于分析包裹体中含量极低的重金属离子。

6)激光显微光谱分析

激光显微光谱(LMES)分析灵敏度高,快速,有效,成本低,且被破坏样品的面积小。可测70多种元素。样品可以是光片、不加盖玻璃的薄片或大小合适的手标本,样品表面应抛光,切忌被污染;重砂、粉末或液体样品要作某些处理。

LMES适于微粒、微量、微区的成分测定。用于研究矿物的化学成分及元素的赋存状态,特别适用于微细疑难矿物的分析和鉴定。但是,目前对O、N、S等许多非金属元素尚无法分析,对碱金属、难熔金属(如Mo、Ta等)的检测灵敏度较低。

7)质谱分析

质谱分析灵敏度和准确度均高,且分析速度快。以纯度≥98%、粒径<0.5mm的单矿物为样品。样量视矿物种不同而异,如硫化物需0.1~0.2g,硫酸盐需2~5g。应避免用化学方法、浮选法等处理分离矿物,以防被污染。

质谱分析系10-6数量级定量分析,常用于准确测定各种岩石、矿物和有机物中元素的同位素组成。从10~30g的陨石标本中提取的稀有气体即足以为分析所用。

8)中子活化分析

中子活化分析(NAA)灵敏度高,大多数元素的灵敏度达10-6~10-13g。准确度高,精度高(一般在±1%~±5%)。可测的元素达80多种。可同时测定多种元素,分析速度快,且不破坏样品。样品要求是纯的单矿物粉末,样量仅需数毫克至数十毫克。

NAA系超痕量、痕量、半微量甚至常量元素的定量分析。可直接测定浓度很低的贵金属元素,对稀土元素的分析特别有效。广泛用于同位素组成、同位素地质年龄的测定。此外,也常用于测定包裹体成分。适用于分析陨石和月岩样品的组成。

9)电子探针分析

电子探针分析(EPMA)灵敏度高,检测下限可达10-16g。精度一般可达1%~2%,但对微量元素的精度则可差于20%。分辨率高(约7nm)。放大倍数为数十倍至数十万倍。分析速度快,直观,且不破坏样品。可测元素的范围大:波谱分析为4Be~92U,能谱分析为11Na~92U。样品可以是光片、不加盖玻璃的薄片或矿物颗粒,且表面必须清洁、平坦而光滑。

EPMA系微米数量级微区的成分分析,宜于常量元素的定量分析。既可定点作定性或定量分析,又能作线扫描和面扫描分析,以研究元素的种类、分布和含量,了解矿物成分分布的均匀程度和元素在矿物中的赋存状态,定量测定矿物内部各环带的成分。最适于微小矿物和包裹体成分的定性或定量分析,以及稀有元素、贵金属元素的赋存状态的研究。此外,还可辅以形貌观察。EP-MA只能分析固态物质,对有机物质的分析有困难;不能分析元素的同位素、各种形式的水(如 H2 O和 OH-等)及其他挥发组分,无法区分 Fe2+和 Fe3+

2.结构分析方法

此类方法一般不破坏样品,其分析结果是各种谱图,用于研究物质的晶体结构、分子结构、原子中电子状态的精细结构。有些还可借以鉴定样品的物相,如宝石学上目前常利用红外吸收光谱、激光拉曼光谱、可见光吸收光谱等技术来鉴别天然宝石和合成宝石。

1)X射线分析

X射线分析是晶体结构研究和物相分析的最常用而有效的方法。其具体方法种类繁多,一般可归为单晶法和粉晶法两类。

(1)单晶法:通常称为X射线结构分析,又有照相法和衍射仪法之分。目前主要采用四圆单晶衍射仪法,其特点是自动化程度高,快速,准确度高。单晶法要求严格挑选无包裹体、无双晶、无连晶和无裂纹的单晶颗粒样品,其大小一般在0.1~0.5mm。因此在应用上受到一定限制。单晶法主要用于确定晶体的空间群,测定晶胞参数、各原子或离子在单位晶胞内的坐标、键长和键角等;也可用于物相鉴定,绘制晶体结构图。

(2)粉晶法:又称粉末法,也有照相法和衍射仪法之分。粉晶法以结晶质粉末为样品,可以是含少数几种物相的混合样品,粒径一般在1~10μm。样品用量少,且不破坏样品。照相法只需样品5~10mg,最少可至1mg左右;衍射仪法用样量一般为200~500mg。粉晶衍射仪法简便,快速,灵敏度高,分辨能力强,准确度高。根据计数器自动记录的衍射图(diffraction diagram),能很快查出面网间距d值和直接得出衍射强度,故目前已广泛用于矿物或混合物之物相的定性或定量分析。粉晶法主要用于鉴别结晶质物质的物相,精确测定晶胞参数,尤其对鉴定粘土矿物及确定同质多象变体、多型、结构的有序—无序等特别有效。

2)红外吸收光谱分析

红外吸收光谱(IR)测谱迅速,数据可靠,特征性强。傅里叶变换红外光谱仪具有很高的分辨率和灵敏度及很快的扫描速度。样品不受物理状态限制,可以是气态、液态、结晶质、非晶质或有机化合物。干燥固体样品一般只需1~2mg,并研磨成2μm左右的样品。

IR已广泛应用于物质的分子结构和成分研究。适用于研究不同原子的极性键,可精确测定分子的键长、键角、偶极矩等参数;推断矿物的结构,鉴定物相;对研究矿物中水的存在形式、络阴离子团、类质同象混入物的细微变化、有序—无序及相变等十分有效。IR广泛用于粘土矿物和沸石族矿物的鉴定,也可对混入物中各组分的含量作定量分析。

3)激光拉曼光谱分析

激光拉曼光谱(LRS)系无损分析,其测谱速度快,谱图简单,谱带尖锐,便于解释。几乎在任何物理条件(高压、高温、低温)下对任何材料均可测得其拉曼光谱。样品可以是粉末或单晶(最好是5mm或更大者),不需特别制备,粉末所需量极少,仅0.5μg即可。也可以是液体样品(10-6ml)。

LRS和IR同为研究物质分子结构的重要手段,两者互为补充。LRS适用于研究同原子的非极性键的振动。

4)可见光吸收光谱分析

可见光吸收光谱分析简便、可信,不需挑选单矿物,不破坏样品。以0.03mm标准厚度的薄片为样品,但研究多色性时则需用单晶体。

此法主要用于研究物质中过渡元素离子的电子构型、配位态、晶体场参数和色心等。也常用于颜色的定量研究,探讨透明矿物的呈色机理。可适于研究细小(粒径在1~5mm)的矿物颗粒。

5)穆斯堡尔谱分析

穆斯堡尔谱分析又称核磁伽马共振(NGR)。分析准确、灵敏、快速,解谱较为容易。目前仅可测40多种元素近90种同位素。所研究的元素可以是主成分,也可是含量为万分之几的杂质。样品可以是晶质或者非晶质;既可是单晶,也可是矿物或岩石的粉末。但样品中必须含有一定浓度的与放射源中γ射线的核相同的元素。含铁矿物样品中Fe原子浓度为5mg/cm2为宜,硅酸盐样品量一般为100mg左右,因样品中Fe含量等因素而异。

NGR主要用于研究57Fe和119Sn元素离子的价态、配位态、自旋态、键性、磁性状态、占位情况及物质结构的有序—无序和相变等,也可用于物相鉴定和快速成分分析。对粘土矿物及陨石、月岩、海底沉积物等晶质多相混合物的研究很有效。

6)电子顺磁共振分析

电子顺磁共振(EPR)分析也称电子自旋共振(ESR)分析。灵敏度高。不破坏样品。只适于研究顺磁性离子:室温下能测定的主要有V4+、Cr3+、Mn2+、Fe3+、Ni2+、Cu2+、Eu2+、Gd3+等;而Ti3+、V3+、Fe2+、Co2+及多数稀土元素离子则只能在低温下测定。EPR分析对样品要求不高:固体、液体(0.1~0.01ml)、压缩气体或有机化合物均可;可以是单晶,也可以是粉末多晶混合物,但一般以单晶(粒径在2~9mm)为好。样品中顺磁性离子的浓度不超过1%,以0.1%~0.001%为宜。样品不需任何处理。

EPR主要用于研究过渡金属离子(包括稀土元素离子)的微量杂质的价态、键性、电子结构、赋存状态、配位态、占位情况、类质同象置换及结构的电子—空穴心、结构的有序—无序、相变等。也可作微量元素的定性或定量分析及地质年龄的测定等。在宝石学上,常用于鉴别天然宝石与合成宝石及研究宝石的染色机制。

7)核磁共振分析

核磁共振(NMR)分析目前最常用的高分辨的核磁共振仪广泛应用于某些分子结构的测定,其分辨率高,灵敏度高,测量速度快。但可测元素的种类有限,主要有1H、7Li、9B、11B、13C、19F、23Na、27Al、29Si、31P、40Ca等。样品可以是较浓的溶液(约0.5ml)、固体(一般20~80mg)或气体。

NMR主要用于研究矿物中水的存在形式、质子的结构位置及离子的键性、配位态和有序—无序分布特征等,研究相变和晶格缺陷。

3.其他测试方法

1)透射电子显微镜分析

透射电子显微镜(TEM)分析的功能主要是利用透射电子进行高分辨的图象观察,以研究样品的形貌、晶格缺陷及超显微结构(如超显微双晶和出溶片晶等)等特征,同时用电子衍射花样标定晶体的结构参数和晶体取向等。配有能谱仪(或波谱仪)者尚可进行微区常量元素的成分分析。TEM具有很高的分辨率(达0.1nm左右)和放大倍数(为100倍~200万倍),可以直接观察到原子。样品可以是光片、不加盖玻璃的薄片或粉末样,表面须平坦光滑。

2)扫描电子显微镜分析

扫描电子显微镜(SEM)分析的主要功能是利用二次电子进行高分辨率的表面微形貌观察。通常也辅以微区常量元素的点、线、面扫描定性和定量分析,查明元素的赋存状态等。SEM的分辨率高(达5nm左右),放大倍数为10倍~30万倍。样品可以是光片、不加盖玻璃的薄片、粉末颗粒或手标本。其制样简单,图象清晰,立体感强,特别适合粗糙表面的研究,如矿物的断口、晶面的生长纹和阶梯等观察及显微结构分析等。

3)微分干涉(相衬)显微镜分析

微分干涉(相衬)显微镜(DIC)能够观察矿物表面纳米数量级的分子层厚度。反射型显微镜用于研究晶体表面微形貌,观察晶体表面上的各种层生长纹和螺旋生长纹,从而探讨晶体的生长机制;透射型显微镜用于研究岩石薄片中矿物的结晶状态及内部显微构造,能清晰看到微米数量级的微裂纹,从而有助于研究岩石受应力作用的方向和性质。微分干涉(相衬)显微镜的纵向分辨率高,立体感强。其样品可以是带晶面的晶体颗粒或者薄片。

4)热分析

热分析系根据矿物在加热过程中所发生的热效应或重量变化等特征来鉴定和研究矿物。广泛采用的有差热分析和热重分析。

(1)差热分析(DTA):是测定矿物在连续加热过程中的吸热(脱水、分解、晶格的破坏和类质同象转变等)和放热(氧化、结晶等)效应,以研究矿物的结构和成分变化。用于了解水的存在形式,研究物质的内部结构和结晶度,研究类质同象混入物及其含量,可进行物相的鉴定及其定量分析。尤其对粘土矿物、氢氧化物和其他含水矿物及碳酸盐类等矿物的研究最为有效。DTA只适用于受热后有明显的物理、化学变化的物质,一般仅用于单相物质纯样的研究,样量仅需100~200mg,粒度在0.1~0.25mm。DTA设备简单,用样量少,分析时间较短,但破坏样品,且干扰因素多,混合样品不能分离时会相互干扰。因此,必须与X射线分析、电子显微镜、化学分析等方法配合使用。

(2)热重分析(TG):是测定矿物在加热过程中质量的变化。热重曲线的形式取决于水在矿物中的存在形式和在晶体结构中的存在位置。TG仅限于鉴定和研究含水矿物,并可确定其含水量。TG以纯的矿物粉末为样品,样量一般需2~5g,且破坏样品。TG常与DTA配合使用。目前正向微量(10-5g)分析发展。

❺ 重矿物分析法

重矿物是指碎屑岩中密度大于2.86g/cm3的陆源碎屑矿物。在搬运沉积过程中,性质不稳定的重矿物随着搬运距离的增大而逐渐减少,而稳定重矿物的相对含量逐渐升高(和钟铧等,2001)。重矿物分析的主要内容是统计各种重矿物的含量、绘制重矿物在剖面上和平面上的分布图、解释重矿物分布规律及其沉积控制因素等(刘岫峰,1990;曾允孚等,1984)。目前,Z TR指数是一种最常用的方法。Z TR指数由稳定矿物锆石、电气石和金红石组成的透明矿物的百分含量。Z TR 指数越大,说明矿物的成分成熟度越高。研究中,采用了重矿物的Z TR指数分析法与其他重矿物的组合对研究区目的层段进行了重矿物分析。

由于岩石中的重矿物类型组合与其母岩类型有着密切的因果联系,因此通过对研究区的重矿物类型聚类分析,可以判别出不同油层的母岩类型。母岩类型判断是在以因子分析为主、聚类分析为辅找出每一段地层的重矿物组合的基础上,对每段的单矿物数据进行统计分析,求出其正态概率分布,然后对数据进行自然对数变量转换,求出其自然正态概率分布;综合其统计分布特征,定性判别每种矿物来源是否单一,最后结合研究区实际地质资料数据,对每段根据重矿物组合判断的母岩类型进行约束和校正,以达到最大程度反映实际地质现象的目的。通常情况下,当某两口井在某一特定的地层内其主要重矿物和次要重矿物在统计分布图上呈现出相同或相近的组合规律时,说明这两口井在这个目的层段的地层是来自同一物源;而且据物源越远,各种重矿物的百分含量就越高,否则,则可能来自于不同的物源。其统计分布图上各种重矿物的百分含量以及它们之间组合形态的相似程度代表了它们同种物源的符合程度。

从目的层段的重矿物百分含量统计分析可见其中锆石、石榴子石和钛铁矿为主要重矿物,含量在10%以上,部分样品达到50%以上;次要矿物为电气石、黄铁矿、赤铁矿(有的区域为主要矿物),含量大都在1%~10%之间;偶尔出现的矿物为辉石、锡石等。

如图4-1所示的红色井标记的为重矿物分析的井。对有重矿物分析的井进行对比分析如下。

图4-1 研究区及其外围井位分布图

●标注的井位为有重矿物分析的井位,虚线为研究区的外延范围

1.沙三中亚段研究区物源分析

从重矿物百分含量统计分布图4-2可以看出沙三中亚段沉积时期莱1井和辛7井的主要重矿物(含量>10%)都是锆石、石榴子石、钛磁铁矿、黄铁矿。从图中我们可以看到,除了主要重矿物外,其他次要的重矿物像电气石、重晶石的含量也极为相似;另外,从整体上看它们所有的重矿物的组合也是很相似的,而且从莱1井到辛7井,这些重矿物的百分含量有所的增加。根据上面述及的用重矿物判别物源方向的理论,可知在莱1井—辛7井这条线上,物源是来自于莱1井,即物源沿着莱1井—辛7井这条线路,由莱1井经研究区向辛7井推进的。换言之,在沙三中亚段沉积时期研究区的物源有一部分是来自东南方向的。

图4-2 沙三中亚段重矿物百分含量统计分布图

从重矿物百分含量统计分布图4-3可以看出沙三中亚段沉积时期永8井、辛4井和辛15井的主要重矿物(含量>10%)都是锆石、石榴子石、钛磁铁矿、黄铁矿。除了上述的主要重矿物外,从图中我们可以看到,其他次要的重矿物像电气石、赤褐铁矿的含量也很相似;它们之间相互组合的特征也有一定的相似性。同时,从这3个重矿物百分含量统计分布图上我们还可以看出主要重矿物的百分含量辛4井、辛15井较永8井的多些,说明物源是从永8井方向向辛4井和辛15井的方向推进,结合图4-1的井位分布图,我们可以得出结论:研究区在沙三中亚段沉积时期,物源除了来自东南方向外,东北方向也是研究区物源补给的重要方向。

图4-3 沙三中亚段重矿物百分含量统计分布图

2.沙三下亚段研究区物源分析

研究区沙三下亚段物源的方向,我们可以从重矿物百分含量统计分布图4-4和图4-5中分析得出。从重矿物百分含量统计分布图4-4可以看出在沙三下亚段沉积时期莱1井和辛7井的主要重矿物(含量>10%)都是锆石、石榴子石、钛磁铁矿、黄铁矿,除了上述的主要重矿物外,从图中我们还可以看到,其他次要的重矿物(在1%至10%之间)像电气石、重晶石、赤褐铁矿的含量也很相似。另外,这些主要重矿物的百分含量,在辛7井上也有所增加。可以推知,物源是沿着莱1井—辛7井这条线路,由莱1井向辛7井方向推进的。由于研究区是物源从莱1井向辛7井推进的必经之路,结合图4-1的井位分布图分析可知,研究区在沙三下亚段沉积时期,沉积物物源有一部分是来自东南方向的。

图4-4 沙三下亚段重矿物百分含量统计分布图

图4-5 沙三下亚段重矿物百分含量统计分布图

图4-6 沙四上亚段重矿物百分含量统计分布图

由重矿物百分含量统计分布图4-5可以看出在沙三下亚段沉积时期永8井和辛4井的主要重矿物(含量>10%)都是锆石、石榴子石、钛磁铁矿、黄铁矿,除了上述的主要重矿物外,从图中我们还可以看到,其他次要的重矿物(在1%至10%之间)像电气石、赤褐铁矿等的含量也很相似。从图中我们可以明显地看出这些重矿物之间相互组合的特征也非常的相似。与永8井相比辛4井在该层段的各种重矿物的百分含量明显增高。基于上述分析,结合图4-1的井位分布图可以推知研究区沉积物的物源是由永8井向辛4井方向推进的,即由北向南推进的。另外,比较永8井和辛7井可以看出这两口井无论在主要重矿物的组成、百分含量以及与其他重矿物的组合特征都有一定的相似性,由此可知研究区在沙三下亚段沉积时期,沉积物的物源从北方除了向南推进外还向西南方向推进,换言之,研究区在该时期的物源除了来自东南方向外,还有一部分来自东北方向。

3.沙四上亚段研究区物源分析

由重矿物百分含量统计分布图4-6可以看出在沙四上亚段沉积时期莱1井和莱41井的主要重矿物(含量>10%)都是锆石、石榴子石、黄铁矿、重晶石;除了上述的主要重矿物外,从图中我们还可以看到,其次要的重矿物(在1%至10%之间)像电气石、钛磁铁矿和赤褐铁矿等的含量也很相似。从图中我们可以明显的看出这两口井的各种重矿物的之间相互组合的特征也非常的相似。由此可知,在沙四上亚段沉积时期沉积物的物源是由莱1井向莱41井推进的,即沉积物由南向北推进的。另外,比较辛7井与莱41和莱1井可以看出,与这两口井相比辛7井无论在主要重矿物的组成、百分含量以及与其他重矿物的组合特征都有一定的相似性,且主要重矿物的百分含量有所增加。基于上述分析,结合图4-1的井位分布图可以推知研究区在沙四上亚段沉积时期,沉积物的物源从南方除了向北推进外还向西北方向推进,换言之,研究区在该时期的物源有一部分来自东南方向。

❻ 矿物成分分析方法

矿物化学成分的分析方法有常规化学分析,电子探针分析,原子吸收光谱、激光光谱、X射线荧光光谱,等离子光谱和极谱分析,中子活化分析及等离子质谱分析等。

在选择成分分析方法时,应注意检测下限和精密度。

检测下限(又称相对灵敏度)指分析方法在某一确定条件下能够可靠地检测出样品中元素的最低含量。显然,检测下限与不同的分析方法或同一分析方法使用不同的分析程序有关。

精密度(又称再现性或重现性)指某一样品在相同条件下多次观测,各数据彼此接近的程度。通常用两次分析值(C1和C2)的相对误差来衡量分析数值的精密度。即

相对误差RE=

×100%

常量元素(含量大于或等于0.1%)分析中,根据要求达到分析相对误差的大小,对分析数据的精密度作如下划分:

定量分析:RE<±5%近似定量分析:RE<±(5~20)%

半定量分析:RE=(20~50)%

定性分析:RE>±100%

定量分析要求主要是对常量组分测定而言的,微量组分测定要达到小于±5%的相对误差则比较困难。

1.化学分析法

化学分析方法是以化学反应定律为基础,对样品的化学组成进行定性和定量的系统分析。由于化学分析通常是在溶液中进行化学反应的分析方法,故又称“湿法分析”。它包括重量法、容量法和比色法。前两者是经典的分析方法,检测下限较高,只适用于常量组分的测定;比色法由于应用了分离、富集技术及高灵敏显色剂,可用于部分微量元素的测定。

化学分析法的特点是精度高,但周期长,样品用量较大,不适宜大量样品快速分析。

2.电子探针分析法

电子探针X射线显微分析仪,简称电子探针(EMPA)。它是通过聚焦得很细的高能量电子束(1μm左右)轰击样品表面,用X射线分光谱仪测量其产生的特征X射线的波长与强度,或用半导体探测器的能量色散方法,对样品上被测的微小区域所含的元素进行定性和定量分析。样品无论是颗粒,还是薄片、光片,都可以进行非破坏性的分析。

电子探针的主体由电子光学系统、光学显微镜、X射线分光谱仪和图像显示系统4大部分组成。此外,还配有真空系统、自动记录系统及样品台等(图24-3)。其中测定样品成分的可分为X射线波谱仪和X射线能谱仪,过去电子探针只采用前者,因为它分辨率高,精度高,但速度慢。现代新型电子探针一般两者皆用。能谱分析方法可做多元素的快速定性和定量分析,但精度较前者差。

图24-3 电子探针结构示意图

电子探针可测量元素的范围为4Be—92U。灵敏度按统计观点估计达十万分之三,实际上,其相对灵敏度接近万分之一至万分之五。一般分析区内某元素的含量达10-14就可感知。测定直径一般最小为1μm,最大为500μm。它不仅能定点作定性或定量分析,还可以作线扫描和面扫描来研究元素的含量和存在形式。线扫描是电子束沿直线方向扫描,测定几种元素在该直线方向上相对浓度的变化(称浓度分布曲线)。面扫描是电子束在样品表面扫描,即可在荧屏上直接观察并拍摄到该元素的种类、分布和含量(照片中白色亮点的稠密程度表示元素的浓度)。目前,电子探针已卓有成效地应用于矿物的成分分析、鉴定和研究等各个方面。

值得注意的是,电子探针一个点的分析值只能代表该微区的成分,并不是整个矿物颗粒的成分,更不能用来代表某工作区该矿物的总体成分。因为在矿物中元素的分布是不均一的,不能“以点代面”。对微米级不均匀的矿物,只有采用适当的多点测量,以重现率高的点为依据讨论矿物成分的特征和变化,才能得到较可靠的认识。此外,电子探针对查明混入元素在矿物中存在形式的能力是有限的。它能分析已构成足够大小的矿物相的机械混入物,而对以类质同象混入物形式存在的元素,电子探针是无能为力的。要解决这个问题,必须用综合的手段。应当指出,根据在电子探针面扫描图像上,将分布均匀的混入元素视为类质同象混入物的依据是不够充分的,因为混入元素的均匀分布,并不都是因为呈类质同象形式所引起,还可以由固溶体分解而高度离散所致。而现代电子探针的分辨率(约7.0μm),还不能区分它们,需要用高分辨的透射电镜(分辨率达0.5~1nm,相当于2~3个单位晶胞)、红外光谱分析、X射线结构分析等方法相互配合,才能解决混入元素在矿物中存在的形式问题。

电子探针分析法对发现和鉴定新矿物种属起了重要的作用。这是由于电子探针在微区测试方面具有特效,因而对于难以分选的细小矿物进行鉴定和分析提供了有利条件。如对一些细微的铂族元素矿物、细小硫化物、硒化物、碲化物的鉴定都很有成效。

电子探针也有它的局限性。例如,它不能直接测定水(H2O,OH)的含量;对Fe只能测定总含量,不能分别测出Fe2+和Fe3+含量等。

电子探针分析的样品必须是导电体。若试样为不导电物质,则需将样品置于真空喷涂装置上涂上一薄层导电物质(碳膜或金膜),但这样往往会产生难于避免的分析误差,同时也影响正确寻找预定的分析位置。样品表面必需尽量平坦和光滑,未经磨光的样品最多只能取得定性分析资料,因为样品表面不平,会导致电子激发样品产生的X射线被样品凸起部分所阻挡,所得X射线强度会减低,影响分析的精度。

3.光谱类分析法

光谱类分析法是应用各种光谱仪检测样品中元素含量的方法。此类分析方法很多,目前我国以使用发射光谱分析(ES)、原子吸收光谱分析(AA)、X射线荧光光谱分析(XRF)和电感耦合等离子发射光谱(ICP)、原子荧光光谱(AF)、极谱(POL)等较为普遍。它们的特点是灵敏、快速、检测下限低、样品用量少。适于检测样品中的微量元素,对含量大于3%者精度不够高。

光谱分析的基本原理概括起来是:利用某种试剂或能量(热、电、粒子能等)对样品施加作用使之发生反应,如产生颜色、发光、产生电位或电流或发射粒子等,再用光电池、敏感膜、闪烁计数器等敏感元件接收这些反应讯号,经电路放大、运算,显示成肉眼可见的讯号。感光板、表头、数字显示器、荧光屏或打印机等都是显示输出装置。光谱分析的流程见图24-4。

图24-4 光谱分析流程图

4.X射线光电子能谱分析法

X射线光电子能谱仪由激发源、能量分析器和电子检测器(探测器)三部分组成。其工作原理是:当具有一定能量hv的入射光子与样品中的原子相互作用时,单个光子把全部能量交给原子中某壳层上一个受束缚的电子,这个电子因此获得能量hv。如果hv大于该电子的结合能Eb,该电子就将脱离原来的能级。若还有多余能量可以使电子克服功函数ϕ,电子将从原子中发射出去,成为自由电子。由入射光子与原子作用产生光电子的过程称光电效应。只有固体表面产生的光电子能逸出并被探测到。所以光电子能谱所获得的是固体表面的信息(0.5~5nm)。

光电过程存在如下的能量关系:

hv=Eb+Ek+Er

式中:Er为原子的反冲能;Eb为电子结合能;Ek为发射光电子的动能。Er与X射线源及受激原子的原子序数有关(随原子序数的增大而减小),一般都很小,从而可以忽略不计。Ek可实际测得,hv为X射线的能量,是已知的。因此从上式可算出电子在原子中各能级的结合能(结合能是指一束缚电子从所在能级转移到不受原子核吸引并处于最低能态时所需克服的能量)。光电子能谱就是通过对结合能的计算并研究其变化规律来了解被测样品的元素成分的。

X射线光电子能谱仪可用于测定固、液、气体样品除H以外的全部元素,样品用量少(10-8g),灵敏度高达10-18g,相对精度为1%,特别适于做痕量元素的分析,而且一次实验可以完成全部或大部分元素的测定,还可选择不同的X射线源,求得不同电子轨道上的电子结合能,研究化合物的化学键和电荷分布等,还可测定同一种元素的不同种价态的含量。

5.电感耦合等离子质谱分析法

电感耦合等离子体质谱(Inctively Coupled Plasma Mass Spectrometry,简称ICP-MS)技术是1980年代发展起来的、将等离子体的高温(8000K)电离特性与四极杆质谱计的灵敏快速扫描优点相结合而形成的一种新型的元素和同位素分析技术。

ICP-MS的工作原理及其分析特性:在 ICP-MS 中,等离子体作为质谱的高温离子源(7000K),样品在通道中进行蒸发、解离、原子化、电离等过程。离子通过样品锥接口和离子传输系统进入高真空的四极快速扫描质谱仪,通过高速顺序扫描分离测定所有离子,扫描元素质量数范围从6到260,并通过高速双通道分离后的离子进行检测,直接测定的浓度范围从10-12到10-6。因此,与传统无机分析技术相比,ICP-MS技术提供了最低的检出限、最宽的可测浓度范围,具有干扰最少、分析精密度高、分析速度快、可进行多元素同时测定以及可提供精确的同位素信息等分析特性。

ICP-MS的谱线简单,检测模式灵活多样,主要应用有:①通过谱线的质荷之比进行定性分析;②通过谱线全扫描测定所有元素的大致浓度范围,即半定量分析,不需要标准溶液,多数元素测定误差小于20%;③用标准溶液校正而进行定量分析,这是在日常分析工作中应用最为广泛的功能;④利用ICP-MS测定同位素比值。

在矿物研究方面的应用有:矿物稀土、稀散以及痕量、超痕量元素分析;铂族元素分析;溴、碘等非金属元素的分析;同位素比值分析;激光剥蚀固体微区分析等。

6.穆斯堡尔谱

穆斯堡尔谱为一种核γ射线共振吸收谱。产生这种效应的约有40多种元素、70多种同位素。目前得到广泛应用的是57Fe和119Sn。

图24-5 某透闪石石棉的穆斯堡尔图谱

由于地壳中铁的分布相当广泛,很多矿物都含铁,因此铁的穆斯堡尔谱已成为矿物学研究中一个重要课题。应用这种方法可以测定晶体结构中铁的氧化态、配位以及在不同位置上的分布等。图24-5 为某一透闪石石棉的穆斯堡尔谱,图中显示了 Fe2+离子在两种八面体配位位置M1和M2中的分配情况,AA′双峰表示M1位的Fe2+,CC′双峰表示M2位的Fe2+

穆斯堡尔谱技术可鉴定铁、锡矿物种类;确定矿物中铁、锡的氧化态(如 Fe3+,Fe2+含量及比值)、电子组态(如低自旋、高自旋)、配位状态及化学键;确定铁、锡离子的有序度、类质同象置换及含铁、锡矿物的同质多象变体;进而探讨不同温压下矿物的相转变过程。

穆斯堡尔技术目前还不太成熟,通常要求低温工作条件,可测的元素种类不多,谱线解释理论也不够完善,但却是矿物学研究中一个很有远景的新技术。

如何定量分析矿物中的碳酸钡

郭敦颙回答:
样品制备后,称取0 .5000克试样,用水洗涤,洗去水溶性矿物(计量),烘去结晶水(计量),对水不溶性无水剩余矿物进行全分析,测定阴离子(氧化物),CO₃,SO₄,SiO₂,Al₂O₃,PO₄,和阳离子(金属),钙(Ca),镁(Mg),钡(Ba),等等,
矿物中可能含有CaCO₃,MgCO₃,BaCO₃,Ca SO₄,Ba SO₄,CaPO₄,等
再通过列方程计算BaCO₃的含量。详略。

❽ 矿物学的研究方法

野外研究方法包括矿物的野外地质产状调查和矿物样品的采集。室内研究方法很多。手标本的肉眼观察,包括双目显微镜下观察和简易化学试验,是矿物研究必要的基础。偏光和反光显微镜观察包括矿物基本光学参数的测定广泛用于矿物种的鉴定。矿物晶体形态的研究方法包括用反射测角仪进行晶体测量和用干涉显微镜、扫描电子显微镜对晶体表面微形貌的观察。检测矿物化学成分的方法有光谱分析,常规的化学分析,原子吸收光谱、激光光谱、X射线荧光光谱和极谱分析,电子探针分析,中子活化分析等。在物相分析和矿物晶体结构研究中,最常用的方法是粉晶和单晶的X射线分析,用作物相鉴定,测定晶胞参数、空间群和晶体结构。
此外,还有红外光谱用作结构分析的辅助方法,测定原子基团;以穆斯堡尔谱测定铁等的价态和配位;用可见光吸收谱作矿物颜色和内部电子构型的定量研究;以核磁共振测定分子结构;以顺磁共振测定晶体结构缺陷(如色心);以热分析法研究矿物的脱水、分解、相变等。透射电子显微镜的高分辨性能可用来直接观察超微结构和晶格缺陷等,在矿物学研究中日益得到重视。为了解决某方面专门问题,还有一些专门的研究方法,如包裹体研究法,同位素研究法等。矿物作为材料,还根据需要作某方面的物理化学性能的试验(见地质仪器)。
矿物是结晶物质,具有晶体的各种基本属性。因此,结晶学与化学、物理学一起,都是矿物学的基础。历史上,结晶学就曾是矿物学的一个组成部分。矿物本身是天然产出的单质或化合物,同时又是组成岩石和矿石的基本单元,因此矿物学是岩石学、矿床学的基础,并与地球化学、宇宙化学都密切相关。

❾ 矿物识别方法和工作流程

目前,矿物识别制图的方法是特征谱带识别和基于相似性测度的识别:①利用岩石矿物的特征谱带构造识别技术,该方法相对直观,简单可行,但是单一的特征往往造成岩石矿物的错误识别,其精度难以达到工程化应用的需求,同时对成像光谱数据的信噪比、光谱重建的精度要求较高;②从岩石矿物光谱的整体特征出发,与成像光谱视反射率数据进行整体匹配、拟合或构造模型进行分解,这也是目前研究的重点,能有效地避免因岩石矿物光谱漂移或光谱变异而造成的单个光谱特征的不匹配,并能综合利用弱的光谱信息,避免局部性特征(如单一特征构建的识别方法)造成识别的混淆,识别的精度高。

对于成像光谱上百个波段而言,数据量非常之大,尤其在目前无论是航空成像光谱数据,如AVIRIS、CASI、HyMap等,还是在轨的航天成像光谱数据,如Hyperion航带都普遍比较窄,一般在3~10km,给大面积应用带来很多不便,增加了大面积数据处理的难度,并使工作量在目前微机配置的条件下成倍增加。因此,无论是从岩石矿物光谱的局域特征还是整体特征开展对矿物的识别,在保证识别精度要求的条件下进行工程化的处理,必须探索新的技术流程。

在对成像光谱数据特征与识别方法的比较研究中,结合工作实际以及进行工程化处理的初步要求,在确保识别精度的条件下,设计出标准数据库光谱+光谱-特征域转换+矿物识别方法的技术流程。该流程的主要作用:

(1)直接开展蚀变矿物的识别与信息提取:在对试验区岩石类型、构造、热液活动以及矿产综合研究的基础之上,提炼与矿化关系密切的蚀变矿物,利用标准库的光谱或野外实测光谱作为参考光谱。

(2)进行光谱域与特征域的转换,实现数据减维与数据压缩,降低工作量,提高工作效率:成像光谱数据波段上百,不同的航带宽度与记录长度使单次处理的数据量达1Gbytes,中间过渡文件单航带可达10Gbytes;在以前的处理中常常将航带分割成较小的区域进行处理后再进行拼接,利用MNF技术可以将整个光谱域空间转换到特征域空间,消除原有光谱向量间各分量之间的相关性,从而去掉信息量较少噪声较高的向量,使数据处理从成百的光谱域集中到去噪的特征域中进行,减低数据量,缩短数据处理时间,提高数据处理的效率。

(3)特征分离,增加不同矿物的可分性,提高矿物识别的精度:在成像光谱数据MNF变换并剔除噪声波段的特征域空间中,不同的波段被赋予了不同的物理或数学意义,地物的光谱特征在特征域发生分离,地物的细微特征得到放大,增加了数据的可分性。

4.4.2.1 光谱特征域转换

光谱分辨率的提高,一方面提高了数据的分类识别的精度以及应用能力,另一方面,增加了数据的容量,也使数据高冗余高相关。有效的数据压缩与特征提取势在必行。一般地,利用传统的主成分变换进行相应的变化,衍生出一系列的成像光谱数据压缩与特征提取方法,如MNF变换(Kruse,1996;Green et al.,1998),NAPC(Lee et al.,1990)、分块主成分变换(Jia et al.,1998)以及基于主成分的对应分析(Carr et al.,1999)等。空间自相关特征提取(Warner et al.,1997)、子空间投影(Harsanyi et al.,1994)和高维数据二阶特征分析(Lee et al.,1993;Haertel et al.,1999)也得到相应的重视。利用非线形的小波、分形特征(Qiu et al.,1999)也在研究之中。

主成分分析(PCA)是根据图像的统计特征确定变换矩阵对多维(多波段)图像进行正交线性变换,使变换后新的组分图像互不相关,并且把多个波段中有用信息尽可能地集中到少数几个组分图像中(图4-4-1)。一般地,随着主成分阶次的提高,信噪比逐渐减小。但在波段较多时并不完全符合这一规律。

为改善主成分在高光谱维中的数据处理能力,相应地利用最大噪声组分变换(MNF)的方法(甘甫平,2001;甘甫平等,2002~2003)。该方法是利用图像的噪声组分矩阵(ΣNΣ-1)的特征向量对图像进行变换,使按特征值由大到小排序的变换分量所包含的噪声成分逐渐减小,而图像质量顺次提高。Σ为图像的总协方差矩阵,ΣN为图像噪声的协方差矩阵。MNF相当于所有波段噪声方差都相等时的主成分分析,因此可分为两步实现,第一步先将图像变换到一个新的坐标系统,使变换后图像噪声的协方差矩阵为单位阵;第二步再对变换后的图像施行主成分变换。此改进的算法称为“噪声调节主成分变换(NAPC)”。

对P波段的高光谱图像

Zi(x),i=1,2,…,p (4-4-1)

可以假设

Z(x)=S(x)+N(x) (4-4-2)

这里,ZT(x)={Z1(x),…,Zp(x)},S(x)和N(x)分别为Z(x)中不相关的信息分量和噪声分量。因此,

Cov{Z(x)}=∑=∑S+∑N (4-4-3)

S和∑N分别为S(x)和N(x)的协方差矩阵。因此,可以定义第i波段噪声分量,

Var{Ni(x)}/Var{Zi(x)} (4-4-@4)

选择线形转换,MNF变换可以表示为

成像光谱岩矿识别方法技术研究和影响因素分析

在变换中,确保

成像光谱岩矿识别方法技术研究和影响因素分析

同时,为使噪声与信息分离,S(x)分别与Z(x)和N(x)正交。

图4-4-1 MNF变换的特征值曲线

MNF有两个重要的性质,一是对图像的任何波段作比例扩展,变换结果不变;二是变换使图像矢量、信息分量和加性噪声分量互相垂直。乘性噪声可通过对数变换转换为加性噪声。变换后可针对性地对各分量图像进行去噪,或舍弃噪声占优势的分量。MNF变换的特征值曲线如图4-4-1。

4.4.2.2 特征分离

在MNF变换后的特征域中不同波段具有不同物理与数学意义。比如变换后的第1波段表示地物的亮度信息,第7 波段或第8 波段表示地形信息。在MNF变换中,通过信号与噪声分离,使信息更加集中于有限的特征集中,一些微弱信息则在去噪转化中被增强。同时在MNF转换过程中,使光谱特征向量集汇聚,增强分类信息。

图4-4-2是一些矿物光谱通过MNF变换前后的曲线剖面图,从右图可见信息与噪声分别有序地集中在一些有限的波段内。通过舍弃噪声波段或其他处理,相应地降低或消除噪声的影响。同时信息也比原始数据更易区分。

4.4.2.3 矿物识别

矿物识别主要选用光谱相似性测度的方法。基于整个谱形特征的相似性概率的大小,能有效地避免因岩石矿物光谱漂移或光谱变异而造成的单个光谱特征的不匹配,并能综合利用弱的光谱信息。

图4-4-2 矿物光谱MNF变换前后特征比较

基于整个光谱形特征的识别方法主要有光谱角技术、光谱匹配滤波、光谱拟合与线形分解等。利用大气校正后的重建光谱数据,可选择性地利用上述矿物识别技术开展端元矿物的识别。光谱角方法可直接选择端元矿物进行匹配,最终生成二值图像,简单易行,在阈值合理可靠的前提下能够获取较高的识别精度。

在成像光谱岩矿地质信息识别与提取方法中,光谱角技术是一种较好的方法之一(王志刚,1993;刘庆生,1999)。光谱角识别方法是在由光谱组成的多维光谱矢量空间,利用一个岩矿矢量的角度测度函数(θ)求解岩矿参考光谱端元矢量(r)与图像像元光谱矢量(t)的相似性测度,即:

成像光谱岩矿识别方法技术研究和影响因素分析

这里,‖*‖为光谱向量的模。参考端元光谱可来自实验室、野外测量或已知类别的图像像元光谱。θ介于0到π/2,其值愈小,二者相似度愈高,识别与提取的信息愈可靠。通过合理的阈值选择,获取矿化蚀变信息的二值图像。

4.4.2.4 阈值的选择与航带间信息的衔接

无论是光谱角技术还是光谱匹配以及混合光谱分解,都存在对非矿物信息的分割,因此阈值的选择是一个必须面临的重要问题。这不仅关系到所识别矿物的可靠度,也关系到矿物分布范围大小的界定。同时由于是分航带提取,不同航带间因大气校正的误差和噪声的影响而使同一地物的光谱特征存在差异,可能使所提取的矿物空间展布特征在航带之间所有诊断和一致性,增加了制图的困难。因此对于阈值的选择,需遵循以下原则:在去除明显假象信息、保留可靠的矿化蚀变信息情况下考虑整体的一致性以及航带的过渡性。

4.4.2.5 技术流程

结合成像光谱数据预处理,根据实际应用情况,可以总结出成像光谱遥感地质调查工作的技术流程,如图443所示。

❿ 化学分析矿物定量法的原理是什么

定量化学分析
quantitative chemical analysis
用化学分析方法准确测定物质中各成分(元素或基团)的含量或物质纯度的过程。可以分为:①重量分析。又称重量法,它既可以是将待测组分经分离并灼烧至具有一定组成的物质称重测定,也可以是加入适宜试剂使待测组分成为挥发物质逸去 ,从失重求得其含量 。② 容量法 。又称滴定法,它是以计量标准溶液的体积和浓度来完成测定的方法,即先将待测物质或元素制成溶液,然后向此溶液中逐滴加入与该待测组分有定量反应关系的标准溶液,直至全部待测组分刚好反应完毕(以指示剂指示)为止,从所消耗的标准溶液体积计算该待测组分含量。容量分析包括酸碱滴定、氧化还原滴定、络合滴定和沉淀滴定,以及非水滴定、光度滴定、电位滴定等。③比色法和分光光度法。在含待测组分的试液中,以待测组分本身的颜色,或加入某种试剂使形成一定的有色物质,然后与相应的已知浓度的标准系列比较,进行测定 。直接用眼睛观察,或用光电比色计测量颜色深浅的,称为比色法。用分光光度计测量时,称为分光光度法。④其他都是以化学反应为基础的定量分析方法。
另外还有一种半定量分析法,其准确性比定量分析稍差,但快速简便,适用于不要求很准确含量的测定,或试样少而又无理想的定量分析方法可采用的情况。

阅读全文

与矿物自动定量分析方法通则相关的资料

热点内容
瓶子循环使用方法视频 浏览:569
有什么方法可以增大 浏览:65
常用药品消毒方法和消毒浓度 浏览:287
运用比较方法分析论文 浏览:340
脚踝怎么去除最简单方法 浏览:947
有什么方法可以降低龟头敏感度 浏览:130
肠蠕动按摩的方法有什么 浏览:642
棒针织毛衣收针方法视频 浏览:100
苹果手机竖屏锁定设置方法 浏览:524
苹果笔记本的关机在哪里设置方法 浏览:3
工业异丁烯分析方法的缺点 浏览:972
女孩梳头发方法简单 浏览:402
小脚发胀发酸发软的治疗方法 浏览:926
贴片电阻焊接方法视频 浏览:357
抽象方法怎么赋值 浏览:978
三角梅开花图片及养殖方法 浏览:649
小奶龟怎么养殖方法和注意事项 浏览:173
生产板块信息设计方法研究 浏览:904
720除458的简便计算方法 浏览:179
数控切割机故障大全及解决方法 浏览:298