‘壹’ 傅里叶分析在电力系统的应用有哪些能举例子吗
一个主要的应用就是电力系统之中谐波分析。
传统的谐波分析理论基础是傅里叶分析,随着计算机、微处理器的广泛应用,数字技术在这一领域越来越多地被采用出现了离散采样的傅里叶变换(DFT),电力系统的谐波分析目前大多是通过该方法实现的。
电力系统谐波测试:
基于傅里叶变换的谐波测量。基于傅里叶变换的谐波测量是当今应用最多也是最广泛的一种方法。使用此方法测量谐波精度较高功能较多使用方便。
其缺点是需要一定时间的电流值,且需进行两次变换计算量大计算时间长,从而使得检测时间较长检测结果实时性较差。
而且在采样过程中当信号频率和采样频率不一致时使用该方法会产生频谱泄漏效应和栅栏效应使计算出的信号参数即频率、幅值和相位)不准确尤其是相位的误差很大无法满足测量精度的要求因此必须对算法进行改进加快测量数度。
(1)傅里叶分析方法扩展阅读:
基于DFT的谐波分析原理就是把时域信号变换到频域相当于使数据样本通过一个梳状滤波器各滤波器的中心频率恰好是各次谐波的中心点理论上只要满足这一条件就能保证各次谐波的准确测量。
电力系统中的电压与电流为周期函数且满足荻里赫利条件,因此可将电压和电流分解为傅里叶级数形式,从而可以求出基波分量以及各次谐波分量。
‘贰’ 傅里叶变换常用公式是什么
如下图:
傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。
相关信息:
尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。
"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅里叶变换具有非常好的性质,使得它如此的好用和有用。