导航:首页 > 研究方法 > 免费试学的数据分析方法

免费试学的数据分析方法

发布时间:2023-06-10 11:14:05

1. 数据分析的方法有哪些

数据分析是指通过统计分析方法对收集到的数据进行分析,将数据加以汇总、理解并消化,通过数据分析可以帮助人们作出判断,根据分析结果采取恰当的对策,常用的数据分析方法如下:

将收集到的数据通过加工、整理和分析的过程,使其转化为信息,通常来说,数据分析常用的方法有列表法和作图法,所谓列表法,就是将数据按一定规律用列表方式表达出来,是记录和处理数据最常用的一种方法;

表格设计应清楚表明对应关系,简洁明了,有利于发现要相关量之间的关系,并且在标题栏中还要注明各个量的名称、符号、数量级和单位等;

而作图法则能够醒目地表达各个物理量间的变化关系,从图线上可以简便求出实验需要的某些结果,一些复杂的函数关系也可以通过一定的变化用图形来表现。

想要了解更多关于数据分析的问题,可以咨询一下CDA认证中心。CDA行业标准由国际范围数据领域的行业专家、学者及知名企业共同制定并每年修订更新,确保了标准的公立性、权威性、前沿性。通过CDA认证考试者可获得CDA中英文认证证书。

2. 数据分析怎么

一、 具备基本的数据素养

1. 具备基本的统计学概念

先来说一下最基础的概念:平均值,中位数,百分位数,众数,离散程度,方差,标准差。这里不一一赘述,只简单说一下均值和中位数的差异。 均值:即平均数,优势是,均值跟所有数据都相关,劣势是容易受到极端值影响。
比如,你和你的3个好友,跟比尔盖茨组成一个团队,然后这个团队的人均身价是200亿美金,你会觉得自己是有钱人吗? 中位数:只跟排在中间的数据相关,优点是不受极端值影响,缺点是缺乏敏感性。

2. 避免数据逻辑错误常见数据逻辑谬误1:相关当因果

“有研究结果表明:颜值高的人收入也更高。” 听到这个结论,你会不会觉得应该去整容? 但有可能是因为,颜值高的人相对比较自信,而自信的人容易在职场上获得成功,所以收入高。也有可能,是收入高的人有能力装扮自己,所以看起来颜值更高。所以说,上面这个表达,只是在说颜值和收入相关,但没有说两者是因果关系。

二、数据沟通和表达:如何用数据讲故事

如果你能够具备足够的数据素养,知道如何呈现数据,同时能够把数据表达出来,那么就能在故事当中融入足够有说服力的数据,故事自然变得很有说服力。

1. 理解沟通目的和对象

如果你说服一个客户购买你的理财产品,你会怎么跟他说?

第一种:这个理财产品有10%的概率会亏;

第二种:这个理财产品有90%的概率能赚。

当然是后者,他听完大概率愿意买,但如果是前一种说法,他可能会很恐惧。 所以,当你在公司里面跟不同的对象沟通时,也应该呈现不一样的数据。
比如,高层可能关心公司整体营收、盈利等等相关数据,中层可能关心他们部门的KPI数据,而主管更关注某个活动、某个举措的成功失败情况。

2. 选择合适的数据表达类型

怎么样用更加合适的数据图表类型?这里有些经验干货分享给大家,常用表格适用范围如下:

o 散点图(适合相关)

o 折线图(适合趋势)

o 横的和竖的条形图(适合对比)

o 瀑布图(适合演变)

o 热力图(适合聚焦)

o 雷达图(适合多指标)

o 词云图(适合看分布)等等

3. 符合数据可视化原则

数据的可视化也非常重要,因为如果没有可视化,就是一些数字罗列,那就跟文字信息没什么差异了。
数据可视化的几个原则:阅读门槛别太高,不要过多颜色,突出关键信息,文本与数据呼应。

3. 统计数据分析的基本方法有哪些

1、对比分析法


就是将某一指标与选定的比较标准进行比较,比如:与历史同期比较、与上期比较、与其他竞争对手比较、与预算比较。一般用柱状图进行呈现。


2、结构分析法


就是对某一项目的子项目占比进行统计和分析,一般用饼图进行呈现。比如:A公司本年度营业额为1000万,其中饮料营业额占33.6%、啤酒占55%,其他产品的营业额占11.4%。


3、趋势分析法


就是对某一指标进行连续多个周期的数据进行统计和分析,一般用折线图进行呈现。比如:A公司前年度营业额为880万,去年900万,本年度1000万,预计明年为1080万。


4、比率分析法


就是用相对数来表示不同项目的数据比率,比如:在财务分析中有“盈利能力比率、营运能力比率、偿债能力比率、增长能力比率”。


5、因素分析法


就是对某一指标的相关影响因素进行统计与分析。比如,房价与物价、土地价格、地段、装修等因素有关


6、综合分析法


就是运用多种分析方法进行数据的统计与分析,比如:5W2H分析法、SWOT分析法、PEST分析法、漏斗分析法等。

4. 如何自学数据分析

很多人都觉得,自己是文科类出身,或者对数理专业不熟悉,会很难上手数据分析。其实不是这样子的,学习数据分析,不同于程序员,它不会专门要求我们一定要掌握编程,只是理解熟悉就可以。个人的逻辑思维能力、个人兴趣所在,以及自身的决心毅力,这些才是构成一个人学成与否的关键和最重要因素。
小编觉得最重要的一点就是,我们得清楚企业对数据分析师的基础技能需求是什么。这样我们才能有的放矢。我大抵总结如下:

(1)SQL数据库的基本操作,会基本的数据管理
(2)会用Excel/SQL做基本的数据分析和展示
(3)会用脚本语言进行数据分析,Python or R
(4)有获取外部数据的能力,如爬虫
(5)会基本的数据可视化技能,能撰写数据报告
(6)熟悉常用的数据挖掘算法:回归分析、决策树、随机森林、支持向量机等
之后,怎么安排自己的业余时间就看个人了。总体来说,先学基础,再学理论,最后是工具。基本上,每一门语言的学习都是要按照这个顺序来的。
1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。
2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。
3、学习数据分析工具,软件结合案列的实际应用,关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,stata,R,Python,SAS等。
4、学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。

5. 常用的数据分析方法有哪些

①对比分析法

通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。利用对比分析法可以对数据规模大小、水平高低、速度快慢等做出有效的判断和评价。常见的对比有横向对比和纵向对比。


②分组分析法


分组分析法是指根据数据的性质、特征,按照一定的指标,将数据总体划分为不同的部分,分析其内部结构和相互关系,从而了解事物的发展规律。根据指标的性质,分组分析法分为属性指标分组和数量指标分组。所谓属性指标代表的是事物的性质、特征等,如姓名、性别、文化程度等,这些指标无法进行运算;而数据指标代表的数据能够进行运算,如人的年龄、工资收入等。分组分析法一般都和对比分析法结合使用。


③预测分析法


预测分析法主要基于当前的数据,对未来的数据变化趋势进行判断和预测。预测分析一般分为两种:一种是基于时间序列的预测,例如,依据以往的销售业绩,预测未来3个月的销售额;另一种是回归类预测,即根据指标之间相互影响的因果关系进行预测,例如,根据用户网页浏览行为,预测用户可能购买的商品。


④漏斗分析法


漏斗分析法也叫流程分析法,它的主要目的是专注于某个事件在重要环节上的转化率,在互联网行业的应用较普遍。比如,对于信用卡申请的流程,用户从浏览卡片信息,到填写信用卡资料、提交申请、银行审核与批卡,最后用户激活并使用信用卡,中间有很多重要的环节,每个环节的用户量都是越来越少的,从而形成一个漏斗。使用漏斗分析法,能使业务方关注各个环节的转化率,并加以监控和管理,当某个环节的转换率发生异常时,可以有针对性地优化流程,采取适当的措施来提升业务指标。


⑤AB测试分析法


AB 测试分析法其实是一种对比分析法,但它侧重于对比A、B两组结构相似的样本,并基于样本指标值来分析各自的差异。例如,对于某个App的同一功能,设计了不同的样式风格和页面布局,将两种风格的页面随机分配给使用者,最后根据用户在该页面的浏览转化率来评估不同样式的优劣,了解用户的喜好,从而进一步优化产品。

6. 数据分析方法有哪些

常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。

1、聚类分析(Cluster Analysis)

聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。

2、因子分析(Factor Analysis)

因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。

3、相关分析(Correlation Analysis)

相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。

4、对应分析(Correspondence Analysis)

对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。

5、回归分析

研究一个随机变量Y对另一个(X)或一组(X1,X2,?,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。

6、方差分析(ANOVA/Analysis of Variance)

又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显着性检验。由于各种因素的影响,研究所得的数据呈现波动状。

想了解更多关于数据分析的信息,推荐到CDA数据认证中心看看,CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。

7. 统计学中常用的数据分析方法有哪些

1、描述统计


描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析、离中趋势分析和相关分析三大部分。


2、假设检验


参数检验:参数检验是在已知总体分布的条件下(一般要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。


非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。


3、信服分析


介绍:信度(Reliability)即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。


信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。信度分析的方法主要有以下四种:重测信度法、复本信度法、折半信度法、α信度系数法。

阅读全文

与免费试学的数据分析方法相关的资料

热点内容
万用表测量直流电压的方法视频 浏览:686
荔枝核食用方法 浏览:173
红掌养护方法怎么养 浏览:992
如何避免被电的小方法 浏览:672
鼻腔里有异物如何处理方法 浏览:690
预先危险性分析辨识方法 浏览:919
苹果6s的苹果键在哪里设置方法 浏览:324
用什么方法可以把血管去掉 浏览:421
去掉痘印最快的方法是什么 浏览:852
浴缸防滑垫的使用方法 浏览:287
慢中耳炎怎么治疗方法 浏览:134
几招鉴别问题蔬菜的方法 浏览:424
安卓手机手柄设置在哪里设置方法 浏览:327
检测氧传感器方法 浏览:418
如何判断断奶的正确方法 浏览:389
烹饪香和味的组配主要有哪些方法 浏览:233
女生系围巾的方法图片 浏览:397
常见阴离子鉴别方法 浏览:761
如何讨好婆婆最有效的方法 浏览:831
锻炼治腰间盘方法 浏览:347