1. 学习需要分析的方法有哪些
学习需要分析主要是进行三方面的工作:一是深入调查研究,分析教学中需要解决的问题是什么;二是通过分析该问题产生的原因,以确定解决该问题的必要途径;三是分析现有的资源条件和制约因素,明确设计教学方案以解决该问题的可行性。
2. 数学分析学习方法
数学分析课程有一个特点是重要、枯燥。重要是显而易见的,数学分析作为专业基础课程,对其它后继课程的学习至关重要;同时它又是枯燥乏味的,这似乎是一对矛盾,要处理这对矛盾,就要解决一个数学分析学习当中的技巧性问题和心理问题。当然不可能人人都能把数学分析学好,由于各人的性向不同,有的人倾向于人文学科,有的人倾向于逻辑思维,有的人倾向于空间思维,有的人则倾向于动手能力….各人的倾向性不一样,擅长的方 面也各不相同,对数学分析能达到的程度也不一样。一. 数学分析中关于概念的问题�6�1 概念的形成需要一个过程。与人生哲理等概念不同,数学分析概念具有叠加性,也就是说新概念是在旧概念叠加的基础上来认识的。概念是数学分析中的一个根本问 题,不是靠背,而是在不断地运用中逐渐形成的,须经过比较、实践、摸索、总结、归纳等过程,最后建立一个完整的概念。这个过程甚至可以说是痛苦的,漫长的 一个阶 段。�6�1 概念具有长期性。每个概念都有一个失败— 认识 —再失败的过程,伴随着你对这个概念的错误理解,在挫折中不断加深的。�6�1 概念是随着一个人知识的增加而不断深入的。学数学分析对一个人建立完整的思维方式很重要,随着对不同数学分析概念的深入理解,人们处理问题的方式可以越来越趋于严谨。�6�1 要建立一个数学分析的概念网。数学分析是一个个概念的点阵,所有的相关的、从属的概念要在头脑中形成一个网络。学概念要把不能纳入其中的或相关概念认识清楚。总概念中各相关概念是怎样发展的要有一个清晰的脉络。�6�1 从不同的层面上来理解一个数学概念。有比较才有认识,对于一个数学分析概念要擅于从正面、侧面、上面、下面等各个层面上来认识它。对于相似的、类似的概念或概念的内部关系认识不清,不利于理解概念,这说明数学分析末学深入。二. 运算能力 符号化、模式化是数学分析的一大特点,对这点我们应该有深刻的认识。1. 模式化。数学分析的一些定理、原理、公理都有一定的模式,“因为……所以…”即最简单的一种模式,对各种数学模式的理解认识也是对人的逻辑思维能力的训练。符号化。数学分析的符号与表达性符号不同,文学艺术中的表达性符号是需要我们仔细体会其中的含义的;而数学分析 中的符号是一种替代性符号,它无需我们想其含义,作用就在于推导,它只是一个替身,帮助我们进行数学思维,所以我们不可以在它的含义上耗费太多的精力。数 学就是符号游戏,我们对符号必须精通,才能进行迅速变形。三. 做题技巧�6�1 从做题方式来分,平时作业可分为硬作业和软作业两种:硬作业是指每天需要认认真真做的作业,这类作业要按正规的步骤一丝不苟地做,旨在训练自己的笔头功夫 和书写能力;软作业是指每日需抽出一定的时间来浏览若干习题,这类题主要是用来锻炼自己的思维能力的,具体做法是无需动笔,眼睛看着习题,大脑中迅速掠过 这道题的思路、做法,整个过程有点类似空对空。所以在平日做题中两种方式要搭配使用,认真做的题和浏览的题要相济并用。�6�1 做题要有节奏,难易结合。做题要讲质量,不能把精力都放在做偏、难、怪的题型上,若平时将重心放在难题上,基础知识难免会偏失,所以平时适度地做一些中等难度的题即可,关键是要学好基础知识,循序渐进。�6�1 做题要留下体会,留下痕迹,学习分为三个过程:模仿、品味、迁移。模仿是初始阶段经常作用的一种方式,以老师或教科书为参照,按部就班地做。经过一次次地 模仿,我们自己对这些记忆中的题型在大脑中进一步地加工、体会,形成自己对这类题的成型的理解。经过前两个阶段的积累,最后达到将原知识体系与现有知识的 相互融合,就实现了对新、旧知识的最新体会。四. 数学分析学习方法 常见的数学方法有如下几种:�6�1 化归法。将复杂化问题化为若干个简单的问题的一种思想。�6�1 注意经常对知识进行归纳、整理、总结,促进学过的知识更加系统化、条理化,解题时就能比较顺利地将内在关系理顺。�6�1 做题时应树立一种次序和关联的思想。数学的题干中各要素一般都是按一定的次序和关系排放的,做题前要审清题意,分先后,分主次,各个击破。