㈠ 简述激素细胞膜受体介导的信号转导途径
细胞外信号(第一信使)作用到并结合细胞膜受体,导致受体变构并活化,通过偶联的G蛋白或酶、或受体本身激酶活性、或组枝轿成的离子通道开放,将胞外信息传递到胞内,产生第改汪二信使,继而激活相应的酶,行使快速的生理代谢反应调节功能。或者活化转录因核搭仔子,转位到细胞核中调节基因表达。
㈡ 信号传导的受体分类及与受体相关的信息转导途径
受体是细胞膜上或细胞内能识别生物活性分子并与之结合的成分,他能把识别和接受的信号正确无误地放大并传递到细胞内部,进而引起生物学效应。 存在于细胞质膜上的受体称为膜受体,化学本质绝大部分是糖镶嵌蛋白;位于胞液和细胞核中的受体称为胞内受体,它们全部为DNA结合蛋白。
受体在识别相应配体(第一信使)并与之结合后,雹氏清细胞内环磷酸腺苷(cAMP)、环磷酸鸟苷(cGMP)、钙离子(Ca)、肌醇磷脂(第二信使)等物质增加,参与细胞的各种生物调控过程,将获得的信息增强、分化、整合并传递给效应器,才能发挥特定的生理功能或药理效应。这种将细胞外信息传递到细胞内的过程称为信号传导。 5.1.1 环状受体 指配体依赖性离子通道。神经递质与这类受体结合后,可使离子通道打开或关闭,从核做而改变膜的通透性。受体在神经冲动的快速传递中发挥重要作用,参与快速而精确的神经反射调节。
5.1.2 G蛋白耦联受体 G蛋白耦联受体及其所介导的信息转导途径在人体中发挥着至关重要的作用。
5.1.2.1 G蛋白耦联受体的结构及分类
G蛋白耦联受体(GPCRs),又称七个α螺旋跨膜蛋白受体,是体内最大的蛋白质超家族,迄今已报道了近2000种不同的GPCRs。该类受体对多种激素和神经递质作出应答,配体主要包括生物胺、感觉刺激(如光和气味等)、脂类衍生物、肽类、糖蛋白、核苷酸、离子和蛋白酶等。GPCRs因能结合和调节G蛋白活性而得名。大多数的GPCRs的确是通过G蛋白来调节细胞内的信号传递,但也有研究发现有些GPCRs通过酪氨酸激酶、Src、Stat3等途径来传递信息,与细胞增殖、细胞转化有关。
GPCRs的肽链由N末端,7个跨膜α螺旋(TM1→TM7),C末端,3个胞外环(ECL1→ECL3)及3~4个胞内环(ICL1→ICL4)组成。N端在胞外,C端在胞内,7个跨膜的α螺旋反复穿过细胞膜的脂双层,每个TM由20~27个疏水氨基酸组成,N端有7~595个氨基酸残基,C端有12~359个氨基酸残基,ECL、ICL各有5~230个氨基酸残基。至于GPCRs高分辨率的空间结构目前尚未阐明。
按G蛋白耦联受体一级结构的同源性,将GPCRs主要分为A、B、C3族。三族的GPCRs都具有各自的结构特征,而结构的特异性也就决定了功能上的独特性,各族受体都具有各自特有的配体群。一般认为GPCRs功能是通过其单体而实现的,近年的研究表明GPCRs存在二聚体及多聚体形式,特别对二聚体的研究得到广泛关注。两个单体可能是共价连接(例如二硫键)也可能是非共价连接(例如跨膜螺旋的疏水作用力),或者两者兼而有之。近来,人们对GPCRs的二聚化功能研究取得了一定的进展,主要有以下方面:①二聚化对受体转运起着作用;②二聚化可以扩展药理多样性,不同受体产生的异二聚体可能有着比单体更多的药理学功能;③二聚化可以影响受体的活性和调控等。
5.1.2.2 与受体耦联的G蛋白的结构与分类
G蛋白是一类与GTP或GDP结合的、具有GTP酶活性、位于细胞膜胞浆面的外周蛋白。它由三个亚基组成,分别是α亚基(45kD)、β亚基(35kD)、γ亚基(7kD)。总分子质量为100kD左右。G蛋白有两种构像,一种是以αβγ三聚体存在并与GDP结合,为非活化型;另一种构象是α亚基与GTP结合并导致βγ二聚体的脱落,此为活化型。不同种类的G蛋白有相应的基因编码,在各种G蛋白亚基中,α亚基差别最大,常将其作为一个区别不同G蛋白的标志。
G蛋白有很多种,常见的有激动型G蛋白(Gs)、抑制型G蛋白(Gi)和磷脂酶C型G蛋白(Gp)。不同的G蛋白能特异地将受体和与之相适应的效应酶耦联起来。源前G蛋白在结构上尽管没有跨膜蛋白的特点,但它们可以通过其亚基氨基酸残基的脂化修饰锚定在细胞膜上。目前已把G蛋白结构、氨基酸序列及进化的相似性与功能等结合起来作为分类的依据,主要包括四类,其中至少含有21种不同的α亚基、5种不同的β亚基和8种γ亚基。
5.1.2.3 G蛋白耦联受体的信号转导机制
G蛋白通过与受体的耦联,在信息转导过程中常发挥着分子开关的作用。其跨膜信号转导一般分为以下几步:(1)当外部没有信号或没有受外部刺激时,受体不与配体结合,G蛋白处于关闭(失活)状态,以异源三聚体形式存在,即α亚基与GDP紧密结合,βγ亚基与α亚基、GDP的结合较为疏松;(2)当外部有信号时,G蛋白受体与其相应的配体结合,随之诱导G蛋白的α亚基构象变化,并使αβγ三个亚基形成紧密结合的复合物,从而使GDP与GTP交换,但是与GTP的结合导致α亚基与βγ亚基分开,α亚基被激活,即处于所谓的开启状态,随后作用于效应器,产生细胞内信号并进行一系列的转导过程,从而引起细胞的各种反应。(3)G蛋白的α亚基具有GDPase的活性,在Mg2+存在的条件下可以水解GTP,α亚基与GDP复合物重新与βγ亚基结合,使G蛋白失活,处于关闭状态。以上三个过程依次循环完成信号地传递。G蛋白在信号转导的过程中主要发挥了分子开关作用与信号放大作用,通过G蛋白的激活与失活的循环,将信息精确无误地传到细胞并引起一系列的细胞内反应。
5.1.2.4 G蛋白主要的效应器及相关信息的转导途径介绍
(一)腺苷酸环化酶(AC)系统
腺苷酸环化酶系统主要介导cAMP-蛋白激酶A途径,是激素调节物质代谢的主要途径。胰高血糖素、肾上腺素和促肾上腺皮质激素等与靶细胞质膜上的特异性受体结合,形成激素受体复合物而激活受体。活化的受体催化G蛋白形成αs-GTP。释放的αs-GTP能激活腺苷酸环化酶,催化ATP转化成cAMP,使细胞内cAMP浓度升高,cAMP能进一步激活PKA(蛋白激酶A),PKA再通过一系列化学反应(如磷酸化其他蛋白质的丝/苏氨酸)将信号进一步传递,达到信号转导的目的。腺苷酸环化酶(AC)由GS激活而被Gi抑制。这种环化酶的同工酶中,AC2和AC4是被Gβγ和Gα亚基共同激活; AC1型被Gα亚基激活而被Gβγ抑制,因此不能被G蛋白活化; AC3,AC5,AC6和AC9不能与Gβγ直接作用。
(二) 磷脂酶C(PLC)系统
是由G蛋白耦联受体介导的一个重要的信息转导途径。促甲状腺素释放激素、去甲肾上腺素和抗利尿激素等与靶细胞膜上特异性受体结合后,活化的G蛋白直接作用于PLCB,经PLCB调节蛋白转导,可激活磷脂酰肌醇特异性磷脂酶C(PI-PLC),后者催化膜内侧组分――磷脂酰肌醇4,5-二磷酸(PIP2)水解产生肌醇三磷酸( IP3 )与二酯酰甘油(DAG) 。后两者都可作为第二信使发挥作用。DAG生成后仍留在质膜上,在磷脂酰丝氨酸和Ca离子的配合下激活蛋白激酶C(PKC),蛋白激酶C也能通过磷酸化一系列靶蛋白的丝/苏氨酸残基来达到进一步转导信息的目的。
(三) 相关离子通道的调节
GαS亚基在重组系统中被证明可调节至少两种离子通道:即骨骼肌细胞中的Ca离子通道和心肌中的Na离子通道;Gαi也能抑制Ca离子通道而激活K离子通道。在心肌K离子通道的激活能力上Gβγ比Gαi更有效。通过G蛋白,调节相关离子通道的开放来达到信息的转导也是G蛋白耦联受体介导的一种有效调控方式。
5.1.2.5 G蛋白耦联受体传导通路的研究展望
近年来,人们在G蛋白耦联受体传导通路的研究上取得了不少进展,但是,仍然存在很多机制上不清楚的地方,主要有以下方面:
(1)GPCRs显然不仅仅是简单的开关装置,而是高度动态的结构,处于非活性和活性构象的平衡之中,那么GPCRs活化的具体机制是什么,还有对GPCRs的各种调节机制特别是受体的失敏和内吞机制仍不十分清楚,是今后的重要研究方向;
(2)在G 蛋白的研究上也还存在着一些问题,如G蛋白仅提供了不同的受体信号相互整合以及将不同的信号分送到不同的效应系统的最初机会,不同的效应系统通过完全不同的方式传递信号,诱发生理功能,而有关效应系统之间的联系研究很少;关于活化G蛋白和效应应答之间的联系,目前了解得很少;另外,通过一些实验,如GTP 结合试验、免疫反应、分离纯化以及分子生物学和生理实验发现在植物中存在G蛋白的类似物,但其结构是否与动物G蛋白相同还不清楚等;
(3)G蛋白在细胞内转导信息的过程中,有很多的路径与相关的效应器,对这些效应器作用机制仍然缺乏一个全面清晰的了解,因此对具体作用机制的研究也是一个极为重要的方向。
5.1.3 单个α螺旋受体
这类受体主要有酪氨酸激酶受体型和非酪氨酸激酶受体型,介导的传递途径包括体内传递信息的重要路径酪氨酸蛋白激酶体系等,此处从略。
5.1.4 具有鸟氨酸环化酶活性的受体 胞内受体多为反式作用因子,当与相应配体结合后,能与DNA的顺式作用元件结合,调节基因转录。能与该型受体结合的信息物质有类固醇激素、甲状腺激素和维甲酸等。
㈢ 细胞信号转导的传递途径主要有哪些
专业名词叫细胞信号转导
从大类上看共分为
1.G蛋白介导的信号转导途径G蛋白可与鸟嘌呤核苷酸可逆性结合.由x和γ亚基组成的异三聚体在膜受体与效应器之间起中介作用.小G蛋白只具有G蛋白亚基的功能,参与细胞内信号转导.信息分子与受体结合后,激活不同G蛋白,有以下几种途径:(1)腺苷酸环化酶途径通过激活G蛋白不 细胞信号转导同亚型,增加或抑制腺苷酸环化酶(AC)活性,调节细胞内cAMP浓度.cAMP可激活蛋白激酶A(PKA),引起多种靶蛋白磷酸化,调节细胞功能.(2)磷脂酶途径激活细胞膜上磷脂酶C(PLC),催化质膜磷脂酰肌醇二磷酸(PIP2)水解,生成三磷酸肌醇(IP3)和甘油二酯(DG).IP3促进肌浆网或内质网储存的Ca2+释放.Ca2+可作为第二信使启动多种细胞反应.Ca2+与钙调蛋白结合,激活Ca2+/钙调蛋白依赖性蛋白激酶或磷酸酯酶,产生多种生物学效应.DG与Ca2+能协调活化蛋白激酶C(PKC).
2.受体酪氨酸蛋白激酶(RTPK)信号转导途径受体酪氨酸蛋白激酶超家族的共同特征是受体本身具有酪氨酸蛋白激酶(TPK)的活性,配体主要为生长因子.RTPK途径与细胞增殖肥大和肿瘤的发生关系密切.配体与受体胞外区结合后,受体发生二聚化后自身具备(TPK)活性并催化胞内区酪氨酸残基自身磷酸化.RTPK的下游信号转导通过多种丝氨酸/苏氨酸蛋白激酶的级联激活:(1)激活丝裂原活化蛋白激酶(MAPK),(2)激活蛋白激酶C(PKC),(3)激活磷脂酰肌醇3激酶(PI3K),从而引发相应的生物学效应.
3.非受体酪氨酸蛋白激酶途径此途径的共同特征是受体本身不具有TPK活性,配体主要是激素和细胞因子.其调节机制差别很大.如配体与受体结合使受体二聚化后,可通过G蛋白介导激活PLC-β或与胞浆内磷酸化的TPK结合激活PLC-γ,进而引发细胞信号转导级联反应.
4.受体鸟苷酸环化酶信号转导途径一氧化氮(NO)和一氧化碳(CO)可激活鸟苷酸环化酶(GC),增加cGMP生成,cGMP激活蛋白激酶G(PKG),磷酸化靶蛋白发挥生物学作用.
5.核受体信号转导途径细胞内受体分布于胞浆或核内,本质上都是配体调控的转录因子,均在核内启动信号转导并影响基因转录,统称核受体.核受体按其结构和功能分为类固醇激素受体家族和甲状腺素受体家族.类固醇激素受体(雌激素受体除外)位于胞浆,与热休克蛋白(HSP)结合存在,处于非活化状态.配体与受体的结合使HSP与受体解离,暴露DNA结合区.激活的受体二聚化并移入核内,与DNA上的激素反应元件(HRE)相结合或其他转录因子相互作用,增强或抑制基因的转录.甲状腺素类受体位于核内,不与HSP结合,配体与受体结合后,激活受体并以HRE调节基因转录.
总之,细胞信息传递途径包括配体受体和转导分子.配体主要包括激 细胞信号转导素细胞因子和生长因子等.受体包括膜受体和胞内受体.转导分子包括小分子转导体和大分子转导蛋白及蛋白激酶.膜受体包括七个跨膜α螺旋受体和单个跨膜α螺旋受体,前一种膜受体介导的信息途径包括PKA途径,PKC途径,Ca离子和钙调蛋白依赖性蛋白激酶途径和PKG途径,第二信使分子如cAMP、DG、IP3、Ca、cGMP等参与这些途径的信息传递.后一种膜受体介导TPK—Ras—MAPK途径和JAKSTAT途径等.胞内受体的配体是类固醇激素、维生素D3、甲状腺素和维甲酸等,胞内受体属于可诱导性的转录因子,与配体结合后产生转录因子活性而促进转录.通过细胞信息途径把细胞外信息分子的信号传递到细胞内或细胞核,产生许多生物学效应如离子通道的开放或关闭和离子浓度的改变酶活性的改变和物质代谢的变化基因表达的改变和对细胞生长、发育、分化和增值的影响等.
㈣ 口腔执业医师考点:胞内受体介导的信号转导机制
已知通过胞内受体调节的激素有糖皮质激素、盐皮质激素、雄激素、孕激素、雌激素、甲状腺素、维A酸、1,25-(OH)2维生素D3。位于细胞内的受体多为转录因子,当与相应配体结合后进入细胞核内,与DNA的顺式作用元件结合,在转录水平调节基因表达。
例题:激素的第二信使不包括:
A.PIP2 B.cAMP C.DG D.Ca2+ E.IP3
答案:A
概述:
细胞内受体的本质是激素激活的基因调控蛋白。在细胞内,受体与抑制性蛋白(如Hsp90)结合形成复合物,处于非活化状态。配体(如皮质醇)与受体结合,将导致抑制性蛋白从复合物上解离下来,从而使受体暴露出DNA结合位点而被激活。这类受体一般都有三个结构域:位于C端的激素结合位点,位于中部富含Cys、具有锌指结构的DNA或Hsp90结合位点,以及位于N端的转录激活结构域。
甾 类激素类:
甾 类激素分子是化学结构相似的.亲脂性小分子,分子相对质量为300Da左右,可以通过简单扩散跨越质膜进入细胞内。每种类型的 甾 类激素与细胞质内各自的受体蛋白结合,形成激素-受体复合物,并能穿过核孔进入细胞核内,激素和受体的结合导致受体蛋白构象的改变,提高了受体与DNA的结合能力,激活的受体通过结合于特异的DNA序列调节基因表达。受体与DNA序列的结合已得到实验证实,结合序列是受体依赖的转录增强子,这种结合可增加某些相邻基因的转录水平。
甾 类激素诱导的基因活化分为两个阶段:①直接活化少数特殊基因转录的初级反应阶段,发生迅速;②初级反应的基因产物再活化其他基因产生延迟的次级反应,对初级反应起放大作用。如果蝇注射蜕皮激素后仅5~10min便可诱导唾腺染色体上6个部位的RNA转录,再过一段时间至少有100个部位合成RNA,致使大量合成次级反应所特有的蛋白质产物。慧耐这类激素作用通常表现为如影响细胞分化等长期的生物学效应。
甲状腺素和雌激素也是亲脂性小分子,其受体位于细胞核内,作用机理与 甾 类激素相同。也有个别的亲脂性小分子,如前列腺素,其受体在细胞膜上。
NO途径:
NO是另一种可进入细胞内部的信号分子,能快速透过细胞膜,作用于邻近细胞。R.Furchgott等三位美国科学家因发现NO作为信号分子而获得1998年诺贝尔医学与生理学奖。
血管内皮细胞和神经细胞是NO的生成细胞,NO的生成由一氧化氮合酶(nitric oxide synthase,NOS)催化,以L精氨酸为底物,以还原型辅酶Ⅱ(NADPH)作为电子供体,生成NO和L瓜氨酸。NO没有专门的储存及释放调节机制,靶细胞上NO的多少直接与NO的合成有关。
血管内皮细胞接受乙酰胆碱,引起胞内Ca2+浓度升高,激活一氧化氮合酶,细胞释放NO,NO扩散进入平滑肌细胞,与胞质鸟苷酸环化酶(GTP-cyclase,GC)活性中心的Fe2+结合,改变酶的构象(图8-32),导致酶活性的增强和cGMP合成增多。cGMP可降低血管平滑肌中的Ca2+离子浓度。引起血管平滑肌的舒张,血管扩张、血流通畅前返春。
硝酸甘油治疗心绞痛具有百年的历史,其作用机理是在体内转化为NO,可舒张世陆血管,减轻心脏负荷和心肌的需氧量 。
㈤ 信号通路研究思路
原文:信号通路研究思路_网络文库 https://wenku..com/view/449d5a41ec3a87c24128c450
证明一个药物能通过抑制P38表达而发挥保护细胞的作用,需要做的是:
要证明你的药物是通过抑制P38表达而发挥保护作用,
首先 ,要证明P38表达增加会导致损伤。
其次,要证明你的药物存在保护作用。
再次,证明你的药物可以抑制P38表达。
最后,证明你的药物是由于抑制了P38表达而发挥保护作用。
这里需要建立一个损伤模型。正如你提到的,钙离子导致P38mapk的增高,如果某种损伤可以通过钙离子导致P38mapk的增高,那么你就建立起了一个损伤模型。这时,对P38做个RNA干扰,使其表达下降,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说P38mapk的增高会导致损伤。
这里最好不要用P38的抑制剂SB来处理,因为这个抑制剂是针对P38活性的抑制剂,抑制的是P38的磷酸化,而不是表达量。
如果说明的问题是p38磷酸化水平增加而导致损伤,那么我建议用抑制剂。这时还可以用Dominant-negative。抑制剂的实验证实该药物不影响P38表达,而影响其活化。(应该首先考虑选用抑制剂,因为目前一些药物的作用机制不是抑制靶点的表达,而是抑制靶点的激活。如果在此应用RNAi的话,很可能会漏掉这个机制或增加实验步骤。)
当然就是用你的药物先处理一下,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说你的药物存在保护作用。
用你的药物先处理一下,再来损伤刺激,再检测P38表达,如果用药组相对于没有用药组P38表达下降,那么可以说你的药物可以抑制P38表达。
这一步看似不必要,其实是最重要的步骤,而国内的文章往往忽略了这一关键环节。
这里建议还是用RNA干扰P38表达,再用你的药物处理,再进行损伤刺激,如果用药组与没有用药组的损伤程度一致,那么才可以说你的药物是由于抑制了P38表达而发挥保护作用。
抑制剂也有其局限性,有时是“致命”的,主要原因是抑制剂缺乏特异性。虽然我们在文章里看到用抑制剂的时候都说是什么什么的特异性抑制剂,但真的那么特异吗?其实往往是作者为了写文章发文章的需要而夸大了抑制剂的特异性。细胞里无数的信号通路,谁也不能保证抑制剂在作用于靶分子时不会影响其他信号通路。其实无论什么抑制剂,对剂量的要求都相对比较苛刻,为什么?就是因为一旦浓度高了,就不知道会干扰到其他哪些信号通路,从而产生很多说不清道不明的现象。
PI3K的抑制剂---LY294002和wortmannin,它们都能抑制PI3K和相关的激酶,但LY294002的浓度达到200μM常用来抑制DNA依赖的蛋白激酶(DNA-PK);wortmannin在浓度超过3μM常用来抑制运动失调性毛细血管扩张基因突变(ATM)以及DNA-PK。相对而言,MEK1/2的抑制剂U0126和PD98059以及P38MAPK的抑制剂SB203580就要好一些。所以研究人员一般应用LY294002时采用20μM,应用wortmannin时采用0.2μM,以此来最小化其他的效应。有些学者们同时应用两种抑制剂进行对比,也许也有顾及于此的原因吧。
但是,从严谨的角度讲起特异性的话,RNAi也不能说是绝对特异的,我们只能说它是高特异性,因为RNAi的机制中还有很多没有完全阐明。 一些研究者会在RNAi处理后,还要在实验中应用Western来同时检测该蛋白所在家族的其他成员的表达量变化以检测其特异性和选择性,以表严谨 。举个例子:
比如针对Survivin进行RNAi之后,你最好同时检测XIAP , cIAP1/2等蛋白。当然,如果你所针对基因的siRNA构建已经很成熟,有前人的文章检测特异性做基础,那就另当别论了,所以给科研态度很严谨的lwjssry兄弟提个醒,如果你的siRNA序列尚无很好的文献应用基础,这个问题你也许应该考虑的。
临时找到一个描诉相关内容的06年文献,影响因子3分多,截取其中的内容供参考
信号通路有细胞特异性和条件特异性,即同一信号通路在不同的细胞之间或同一细胞在不同的条件下,作用机理可能是不同的。
细胞内的信号通路之间存在复杂的相互作用,想证明哪一个分子是另一分子的充要条件真的很难。本人最近研究了一个信号系统的两个信号分子,A和B。A在细胞质,B在细胞核。以往的研究已经证明A是B的上游信号通路之一。我们的研究是想证明在某种病理过程中A和B作为一个系统发挥作用。我们首先应用能够提升该系统的药物干预,发现A升高的同时B也得到升高,但这也不能说明什么问题。所幸的是A分子目前有特异性的阻断剂,于是我们便对A分子的激活进行阻断,结果发现B分子的激活也收到抑制。由此初步推测A和B可能在某种病理过程中作为一个系统发挥作用。但也只能证明了A是B的必要条件而已。
做信号传导的在于你研究一种的机制有什么作用,其机制是否于信号传导有关,有哪些关系,是什么原因导致此信号传导的表达,表达后的下游基因怎么变化,这中间最好有基因敲出或者抑制剂和激动剂干预后看看上游 下游之间的变化和你预期的结果有没有关系。如果单纯的做信号传导而去做没有什么意义的,就像前面楼上说的一样信号的启动/最终发挥功能!
“想证明哪一个分子是另一分子的充要条件真的很难”。 我最近正在做一个实验,证明A对B的作用。先用外源物处理细胞,跑wetern blot,发现A和B都有所增加,B的量增加在A之后。于是用抑制剂抑制A,以及用siRNA使A knockdown,然后看B的表达量也下来了。但是这也只能证明A和B有关联,无法证明A对B是直接作用还是间接作用。甚至无法说明B的改变是A信号knockdown造成的,还是A信号knockdown以后,细胞为了弥补该信号的不足,补充促进了C信号,而C信号可以改变B信号。最近在考虑用Co-IP证明A和B有结合作用,也许能证明A和B的直接关系。
探讨信号转导中分子间的充要条件,与探讨数学中的充要条件是不一样的,因为细胞中信号转导通路往往存在反馈机制。即使X是上游信号,Y是下游信号,改变Y信号也会通过反馈机制使得X信号发生改变。所以,在考虑生物体内的信号分子间充要条件时会复杂得多,要慎之又慎下结论。
信号分子的环路效应普遍存在
个人觉得研究A分子与某个信号通路应该更具体得分为两种情况:
1,以前还不知道A分子是这个信号通路的成分,这时我们要证明A分子是这个信号通路的成分,这时的研究就是上文谈到的研究内容了。
2,A分子是信号通路的成分,这是已知的,现在发现某个现象跟这个通路有关,现在我们要证明A分子是这个信号通路参与这个现象的关键分子,则又是另一种模式。1,“创造信号通路”,别人没有研究过A和B 之间的相互作用,而你发现了,并证明了,这就是创造,其实准确点说应该是“发现”,因为信号通路是客观存在的,只不过被找到了而已,不过用“创造”这个词比较形象。这一类的研究是开创性的,比较困难的,研究的时候常常是用免疫共沉淀去把与某个蛋白结合的一堆蛋白都搞出来,再做质谱分析,进行鉴定,再进一步证明两者间的相互作用,这就涉及到充分必要条件的证明。单纯进行这一类的研究缺乏目的性和研究的意义,所以通常还是建立于某种现象基础上的,用自己“创造”的信号通路来解释某种现象,也就是下面说的第二种模式。
2,“利用信号通路”,利用别人或自己“创造”的信号通路来解释某个具体的现象,比如,某个药物、某种毒物、某种应激、某种射线、等等,在这些刺激下,具体到某种细胞的某条信号通路发挥调控作用。
在第一类中,是用充分必要条件来证实A分子与B分子的作用。
在第二类中,是用充分必要条件来证实A现象与B信号通路之间的关系。
看文献是最基础的训练,看文献,一是看思路,二是学技术和逻辑思维。思路告诉我们为什么去做,技术和逻辑思维教我们怎么去做。
过表达A基因,发现B基因的mRNA水平明显增加,对应的B的蛋白水平也明显增加;干扰A基因表达,发现B基因的mRNA水平明显降低,对应的B的蛋白水平也明显降低。投稿,被拒稿,主要原因是审稿人提出:应该弄清楚A是如何调控B的表达的。请问各位老师,A调控B可能是通过什么途径?需要做什么实验?A和B都是脂类代谢中的酶基因,它们在胞浆和核内都有表达。
回答:
1、下一步应该搞清楚B基因mRNA改变的原因是什么,在转录水平还是影响了RNA的稳定性。
2、假设A和B是直接关联的(假定A影响B的转录),是否一般得做两个实验:Luciferase reporter assay和CHIP assay?只做一个CHIP实验行不行?其中Luciferase reporter assay是否就是为了检验A蛋白是否能结合到B基因的Promoter区?是不是A蛋白必须得是转录因子才有可能结合到B基因的Promoter区?另外,怎么知道A蛋白是不是转录因子呢?
针对这个问题的回答:不过建议找几篇JBC上的文章看看,JBC上这种调调的文章挺多的,精读3-5篇,把它的outline搞清楚,你就胸有成竹了。——我打开JBC网站一看,呵呵,每期专门有Gene Regulation板块。根据JBC上面的文章,A调控B基因,很多都是通过第三者如转录因子实现的。我再翻出以前自己的Real-time PCR实验结果,发现过表达A基因后,转录因子C的mRNA水平显着增加,而干扰A基因表达,转录因子C的mRNA水平显着降低。目前这个现象还没有文献报道。后期,我准备通过Luciferase reporter assay和CHIP assay来验证转录因子C是否能与B基因作用。我想请教的问题是:A基因调控转录因子C,除了前期的Real-time PCR实验(当然再补一个Western Blot实验),我还需要做其他实验吗?会不会审稿人再提出:你需要弄清楚A基因如何调控转录因子C才行。说简单点:A基因通过转录因子C调控基因B,是否要将A影响C,C影响B两步都弄清楚?——看你的目标杂志了,如果是JBC这样偏机制的,估计会要你说清楚的
3、A可以影响B的mRNA水平,也能影响B的蛋白水平,这样的话,可能是只通过影响B的RNA水平影响B的蛋白表达,也可能同时影响B的RNA水平和B的蛋白稳定性。B的蛋白稳定性你可以通过加入CHX检测B的半衰期。另外就是你说的Luciferase reporter assay实验。
4、A和B的变化总是一致的,应该很有可能是通过转录水平调控的,因为你的mRNA、蛋白都变了。既然是转录水平,那就要找到B的启动子的序列,对应和这个序列结合的蛋白,这个蛋白可能是A也可能是其他的间接的。
http://..com/question/187327495.html
将两种因子A和B分别做基因沉默,沉默A gene 看看A和B表达的情况,然后沉默B gene 再看看A和B表达的情况。上游的因子被沉默表达后,下游的因子肯定表达下调或不表达。而下游因子被沉默表达后,上游因子的表达不会受影响。还可以做个免疫共沉淀,看看上游因子是不是直接结合(作用)于下游因子的基因启动子区,开启下游表达。如若不是,可能另有其他的环节在中间过程。
http://www.helixnet.cn/bbs/thread-19295-1-1.html
《受体信号转导研究方法(第2版) 》
作者: (英)维拉斯(Willars,G.B.),(英)查理斯(Challiss,R.A.J)原着,
张幼怡主译
出 版 社: 北京大学医学出版社
出版时间: 2008-3-1 <wbr>
这本书全面反映了G蛋白偶联受体(GPCR)及其信号转导领域中最新的研究现状和成就,详细介绍了受体及其信号转导研究的技术、方法及原理。内容涉及受体与配体的结合、受体抗体的制备、受体与G蛋白的相互作用和激动、受体表达和定位、受体内化和翻译后修饰、GPCR与蛋白质相互作用以及如何利用敲除和敲人策略研究受体生理与药理功能等新技术、新策略。
可以通过对受体 加抗体处理 或者 RNAi/过表达 等方式,调节受体表达量,然后用 基因芯片技术 研究下游通路各基因的表达情况。
在上述方法做完后,可以用受体的好用的抗体,做个免疫共沉淀(CoIP),将所有和它相互作用的蛋白抓下来,直接煮珠子(protein A-argrose-beads),做SDS-PAGE,用IgG做对照,然后打质谱,鉴定出差异蛋白,当然这只是补充试验,胶图上分子量大的可能是下游蛋白,而分子量小的可能是上下游信号蛋白。
㈥ 雌激素受体的雌激素受体的信号转导途径
雌激素细胞内信号转导包括:核启动的类固醇信号传送(nuclear-initiatedsteroidsignaling,NISS)即基因组作用模式和膜启动的类固醇信号传送(membraneinitiatedsteroid signaling,MISS)即为非基因组作用模式。 MAPK/ERK信号转导途径——ER活化MAPK/ERK的过程主要靠相关分子形成复合体来介导,主要有ERα-Shc-IGFR复合体和PELPl/MNAR-ER-Src复合体。前者主要是在Shc 的PTB/SH2 结构和ERa 的AF-1的参与下,通过磷酸化的Shc、IGFR与ERα结合,从而发挥生物效应。而后者中,PELP1/MNAR既定位于细胞核又定位于细胞膜,MNAR 和PELP1上有两种不同的模体,可以分别ERa、c-Src结合形成复体,从而发挥作用。PI3K/Akt信号转导途径——PI3K与多种细胞因子转导途径相关,已有报道PI3K可以与EGFR和IGFIR相互作用,即可能有ERct-PI3K-生长因子受体复合体的存在,IGF-1R是乳腺癌细胞增殖的关键受体,主要通过PI3K/Akt途径抑制细胞的凋亡。PI3K 可以介导多种细胞效应,而Akt则是PI3K的下游分子,Akt的活化能是因为ERα与PI3K相互作用。雌激素可以通过Ras/PI3K/Akt通路诱导凋亡相关蛋白BAD的磷晌游酸化,提PK3K/Akt 信号通路在雌激素抵抗肿瘤坏死因子、超氧化物等因素诱导凋亡的过程中具有潜在的重要意义。JNK信号转导途径—— 在表达ER的CHO细胞中,E2通过ERβ激活JNK,而通过ERα抑制这种激酶。JNK可以诱导细胞的凋亡作用,但有些激活JNK亡信号被存活信号通路所阻断,包括NF-kB、Akt/PKB和ERK。GPER1介导的信号转导途径MAPK/ERK信号转导途径—— 雌激素结合GPER1通过下游分子Src、Ras、Raf、Mek级联快速激活ERK,促进细胞增生并延长其生长周期。MAPK激活后在胞质中激活一系列其他蛋白激酶或进入核内引起转录因子AP-l、NF-kB磷酸化而调控基因的表达。用MCF-7乳腺癌细胞实验首次证实雌激素可以通过激活ERK信号级联反应刺激乳腺细胞的增生。GPER1介导的MAPK途径和下文介绍的PI3K途径都是通过反式激活EGFR来完成的。PI3K/Akt途径——ER介导的PI3K-Akt-NO转导途径中,ER主要靠和其他配体结合成聚合体来起作用,如在血管内皮细胞中轮宏,膜ERα与Gai的偶联才促进雌激素刺激eNOS的活化。在单层扁平上皮细胞、成纤维细胞、平滑肌细胞以及脂肪细胞中大量存在的小窝结构中,也是形成了一个ERα/纹蛋白/小窝蛋白/eNOS复合体来发挥作用的。GPER1介导的转导途径主要靠PI3K-Akt-NO途径来完成,雌激素与GPER1结合后,激活磷脂酰肌醇-3(PI3)激酶,进宴桐销而激活蛋白激酶B(Akt)激酶,调节eNOS活性,产生NO。Vivacqua等发现活化的EGFR同时还能动员胞内钙离子和激活磷脂酰肌醇-3激酶-Akt(PI3K/Akt)途径,同样达到促细胞增殖的效果cAMP/PKA途径—— 雌激素可以通过GPER1活化腺苷酸环化酶(AC),并通过其作用使胞内环磷酸腺苷(cAMP)增加,激活cAMP依赖的蛋白激酶A(PKA),使Raf-1失活而减少ERK的量, 进而调控细胞生长。如雌激素可刺激cAMP-PKA途径活化,激活cAMP反应元件介导的转录活性,而使细胞周期蛋白D1(Cyclin D1)的表达增高加速器分裂增殖。Ca2+途径——Revankar等用离体研究发现在调节Ca2+途径来实现生物效应;Dennis等发现在转染了GPER1的SKBr3细胞也存在这种现象。Romanò等在体研究发现GPER1参与了雌激素对下丘脑促性腺激素释放激素细胞内Ca2+的调节并涉及到GABAA受体。
ER-X和Gaq-ER介导的信号转导途径
ER-X介导的雌激素受到脑发育以及缺血性脑损伤的调节并涉及到MAPK-ERK1/2信号途径,ERK1和ERK2 的激活对神经元的存活和生长非常重要。Qiu等在敲除ER鼠下丘脑的弓状核用一种作用与雌激素相仿的非甾体类混合物STX来靶向标记PLC-PKC-PKA,由此发现Gaq-ER参与了对PLC-PKC-PKA途径的调节,具体程可能是:雌激素通过结合受体来激活Gaq,激活的Gaq再激活PLC,从而使PIP2水解出DAG激活PKC,PKC活化cAMP,升高的cAMP再激活PKA,从而使胞膜的钾离子通道打开诱发相应的生物学效应。
㈦ 细胞生物学:受体与配体相互作用及研究方法
细胞通过化学信息进行通讯的能力取决于信号分子的合成与分泌以及受体与配体的相互识别和结合,配体与受体的结合又与配体与受体的结构和化学性质相关联。
■ 表面受体超家族(surface receptor superfamilies)
根据表面受体进行信号转导的方式将受体分为三大类,若是根据表面受体与质膜的结合方式则可分为单次跨膜、7次跨膜和多亚单位跨膜等三个家族(图5-13)。
图5-13 单次、7次与多亚基跨膜的表面受体
■ 受体与配体相互作用的特点
多细胞生物体中的细胞,其周围环境中常常有多达几百种的化学信号分子,细胞如何去识别?是否一种信号分子只能作用于一种类型的细胞?受体与配体如何结合?这些都是由受体自身的特性决定的。
● 特异性(specificity) 受体与配体的结合是高度特异性的反应,但不是绝对的, 有受体交叉(receptor crossover)现象 .
请设计一个实验研究受体与配体结合的特异性
● 高亲和力(high affinity binding)
受体与配体结合的能力称为亲和力。通过配体与受体结合反应的动力学分析可获得亲和力的信息。受体对其配体的亲和力很强, 亲和力越强, 受体越容易被占据。亲和力的大小常用受体-配体复合物的解离常数(Kd)值来表示, 通常是10-9 M左右。
● 饱和性(saturation)
由于细胞含有有限数量受体分子,提高配体分子的浓度,可使细胞的受体全部被配体大槐所占据,此时的受体处于饱和状态,因为即使增加配体的浓度也不会增加配体与受体的结合。由于滚顷友一个细胞或一定组织内受体的数目是有限的, 因此受体与配体的结合是可以饱和的。
● 可逆性(reversibility)
配体与受体的结合是通过非共价键,所以是快速可逆的。 当引发出生物效应后, 受体-配体复合物解离, 受体可以恢复到原来的状态, 并再次使用。受体与配体结合的可逆性有利于信号的快速解除,避免受体一直处于激活状态。
● 生理反应 (physiological response)
信号乎饥分子与受体的结合会引起适当的生理反应,反应的强弱与结合配体的受体数量正相关。如在胰岛素与受体的结合时,会激发葡萄糖向靶细胞的运输,并且,葡萄糖运输的数量随受体结合胰岛素的数量增加而增加。
㈧ 如何研究信号传导通路请问研究某种受体或蛋白的下游信号传导通路,实验设计的一般方法,都有哪些谢谢
在KEGG或BioCarta这些pathway数据库里找到你感兴趣的通路,在pathway图上找到你感兴趣的蛋白后就能确认它的下游。实验方法大体上就是上调(瞬时表达、mimics)或下调(Knockout、RNAi)你的Gene of Interest,再检测下游的蛋白发生了上调还是下调,看看你的GOI和它们什么联系。
㈨ 信号传导的信号转导的基本步骤
信号转导通常包括以下步骤:特定的细胞释放信息物质→信息物质经扩散或血循环到达靶细胞→与靶细胞的受体特异性结合→受体对信号进行转换并启动细胞内信使系统→靶细胞产生生物学效应。通过这一系列的过程,生物体对外界刺激作出反应。
㈩ 简述经膜受体介导的信号转导途径。
(1)受体-G蛋白-Ac途径:激素为第一信使,带着内外界环境变化的信息,作用于靶细胞膜上的相应受体,经G-蛋白耦联,激活膜内腺苷酸环化酶(Ac),在Mg2+作用下,催化ATP转变为环磷酸腺苷(cAMP),则细胞内的cAMP作为第二信使,激活cAMP依赖的蛋白激酶(PKA),进而催化细胞内多种底物磷酸化,最后导致细胞发生生物效应,如细胞的分泌,肌细胞的收缩,细胞膜通透性改变,以及细胞内各种酶促反应等。
(2)受体-G蛋白PLC途径:胰岛素、缩宫素、催乳素,以及下丘脑调节肽等与膜受体结合使其活化后,经G蛋白耦联作用,激活膜内效应器酶——磷脂酶C(PLC),它使磷脂酰二磷酸肌醇(PIP2)分解,生成三磷酸肌醇(IP3)和二酰甘油(DG)。IP3和DG作为第二信使,在细胞内发挥信息传递作用。IP3首先与内质网外膜上的ca2+通道结合,使内质网释放Ca2+入胞浆,导致胞浆内Ca2+浓度明显增加,Ca2+与细胞内钙调蛋白(CAM)结合,激活蛋白激酶,促进蛋白质酶磷酸化,从而调节细胞的功能活动。DG的作用主要是特异性激活蛋白激酶C(PKC)。PKC与PKA-样可使多种蛋白质或酶发生磷酸化反应,进而调节细胞的生物效应。