① 数学建模方法和步骤
数学建模的主要步骤:
第一、 模型准备
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
第二、 模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建
模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以
高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应
尽量使问题线性化、均匀化。
第三、 模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间
的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老
人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱
大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工
具愈简单愈有价值。
第四、模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,
特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计
算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。
第五、模型分析
对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作
出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差
分析,数据稳定性分析。
数学建模采用的主要方法有:
(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模
型。
1、比例分析法:建立变量之间函数关系的最基本最常用的方法。
2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。
3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策
等学科中得到广泛应用。
4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。
5、偏微分方程:解决因变量与两个以上自变量之间的变化规律。
(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型
1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由
于处理的是静态的独立数据,故称为数理统计方法。
2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由
于处理的是静态的独立数据,故称为数理统计方法。
4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
(三)、仿真和其他方法
1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验。①离散系统仿真,有一组状
态变量。②连续系统仿真,有解析表达式或系统结构图。
2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构
。
3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的
可能变化,人为地组成一个系统。
数学建模分析方法大体分为机理分析和测试分析两种。
机理分析:根据对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明确的物理或现实意义。
测试分析:将研究的对象看做一个“黑箱”系统(意思是它的内部机理看不清楚),通过对系统输入、输出数据的测量和统计分析,按照一定的准则找出与数据拟合最好的模型。
希望对你有帮助
③ 数学建模方法和步骤
数学建返碰大模的方法:
一、机理分析法:吵桥根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模型。
二、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型
三、仿真和其他方法。
1、计算机仿真:实质上是统计估计方法,等效于抽样试验。包括离散系统仿真和连续系统仿真。
2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。
数学建模的步骤:
一、模型准备:了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
二、模型假设:根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设。
三、模型构成:根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它漏竖数学结构。
四、模型求解:可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法进行求解。
五、模型分析:对模型解答进行数学上的分析。
④ 数学建模方法与分析的内容简介
《数学建模方法与分析》(原书第2版)提出了一种通用的数学建模方法(即“五步方法”),帮助读者迅速掌握数学建模的真谛。作者以引人入胜的方式描述了数学模型的3个主要领域:最优化、动态系统和随机过程。《数学锋郑建模方法与分析》(原书第2版)以实用的方法链基辩解决各式各样的现实问题,包括空间飞船的对接、传染病的增长率和野生生物的管理等。根据需要详细介绍了解决问题所需要的数学知识。《数学建模方法与分析》(原书第2版)系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中,阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且进行分析得到结论之后如何进行模型的灵敏性和棚缺稳健性的分析,将数学建模方法与计算机使用密切结合,不仅通过对每个问题的讨论给予很好的示范,而且配备了大量的习题训练。
⑤ 常用数学建模方法_数学建模方法的流程图
数学建模常用方法以及常见题型
核心提示:
数学建模方法一、机理分析法从基本物理定律以及系统的结构数据来推导出模型 1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。 2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。3. 逻辑方法--是数学理论研的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。4. 常微分方程--解决两个变量之间的变化规律,关键是建立" 瞬时变化率" 的表达式。 5. 偏微分方程--解决因变量与两个以上自
数学建模方法
一、机理分析法从基本物理定律以及系统的结构数据来推导出模型
1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。
2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。3. 逻辑方法--是数学理论研的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
4. 常微分方程--解决两个变量之间的变化规律,关键是建立" 瞬时变化率" 的表达式。
5. 偏微分方程--解决因变量与两个以上自变量之间的变化规律。
二、数据分析法从大量的观测数据利用统计方法建立数学模型
1. 回归分析法--用于对函数f (x )的一组观测值(xi,fi )I=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
2. 时序分首亏老析法--处理的是动态的相关数据,又称为过程统计方法。
3. 回归分析法--用于对函数f (x )的一组观测值(xi,fi )I=1,2,…,n,确定函数的表达式,于处理的是静态的独立数据,故称为数理统计方法。
4. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。
三、仿真和其他方法
1. 计算机仿真(模拟)--实质上是统计估计方法,空弊等效于抽样试验。 ①离散系统仿真--有一组状态变量。
②连续系统仿真--有解析达式或系统结构图。
2. 因子试验法--在系统上作局部者升试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
3. 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。
数学建模题型
赛题题型结构形式有三个基本组成部分:
一、实际问题背景
1. 涉及面宽--有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。
2. 一般都有一个比较确切的现实问题。
二、若干假设条件有如下几种情况:
1. 只有过程、规则等定性假设,无具定量数据;
2. 给出若干实测或统计数据;
3. 给出若干参数或图形;
4. 蕴涵着某些机动、可发挥的补充假设条件,或参赛者可以根据自己收集或模拟产生数据。
三、要求回答的问题往往有几个问题(一般不是唯一答案):
1. 比较确定性的答案(基本答案);
2. 更细致或更高层次的讨论结果(往往是讨论最优方案的提法和结果)。
⑥ 数学建模主要有哪些分析方法
2常用的建模方法(I)初等数学法.主要用于一些静态、线性、确定性的模型.例如,席位分配问题,学生成绩的比较,一些简单的传染病静态模型.(2)数据分析法.从大量的观测数据中,利用统计方法建立数学模型,常见的有:回归分析法,时序分析法.(3)仿真和其他方法.主要有计算机模拟(是一种统计估计方法,等效于抽样试验,可以离散系统模拟和连续系统模拟),因子试验法(主要是在系统上做局部试验,根据试验结果进行不断分析修改,求得所需模型结构),人工现实法(基于对系统的了解和所要达到的目标,人为地组成一个系统).(4)层次分析法.主要用于有关经济计划和管理、能源决策和分配、行为科学、军事科学、军事指挥、运输、农业、教育、人才、医疗、环境等领域,以便进行决策、评价、分析、预测等.该方法关键的一步是建立层次结构模型.
⑦ 数学建模中综合评价的方法有哪些
综合评价有许多不同的方法:
1、综合指数法:
综合指数法是先综合,后对比平均,其最大优点在于不仅可以反映复杂经济现象总体的变动方向和程度,而且可以确切地、定量地说明现象变动所产生的实际经济效果。但它要求原始资料齐全。平均指数法是先对比,后综合平均,虽不能直接说明现象变动的绝对效果,但较综合指数法灵活,便于实际工作中的运用。
2、TOPSIS法:
其基本原理,是通过检测评价对象与最优解、最劣解的距离来进行排序,若评价对象最靠近最优解同时又最远离最劣解,则为最好;否则不为最优。其中最优解的各指标值都达到各评价指标的最优值。最劣解的各指标值都达到各评价指标的最差值。
3、层次分析法:
运用层次分析法有很多优点,其中最重要的一点就是简单明了。层次分析法不仅适用于存在不确定性和主观信息的情况,还允许以合乎逻辑的方式运用经验、洞察力和直觉。也许层次分析法最大的优点是提出了层次本身,它使得买方能够认真地考虑和衡量指标的相对重要性。
另外还有RSR法、模糊综合评价法、灰色系统法等,这些方法各具特色,各有利弊。
(7)数学建模分析方法豆瓣扩展阅读:
综合评价的一般步骤
1、根据评价目的选择恰当的评价指标,这些指标具有很好的代表性、区别性强,而且往往可以测量,筛选评价指标主要依据专业知识,即根据有关的专业理论和实践,来分析各评价指标对结果的影响,挑选那些代表性、确定性好,有一定区别能力又互相独立的指标组成评价指标体系。
2、根据评价目的,确定诸评价指标在对某事物评价中的相对重要性,或各指标的权重;
3、合理确定各单个指标的评价等级及其界限;
4、根据评价目的,数据特征,选择适当的综合评价方法,并根据已掌握的历史资料,建立综合评价模型;
5、确定多指标综合评价的等级数量界限,在对同类事物综合评价的应用实践中,对选用的评价模型进行考察,并不断修改补充,使之具有一定的科学性、实用性与先进性,然后推广应用。
⑧ 建模的五种基本方法
量纲分析法
量纲分析是20世纪初提出的在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。
在国际单位制中,有七个基本量:质量、长度、时间、电流、温度、光强度和物质的量,它们的量纲分别为M、L、T、I、H、J和N,称为基本量纲。
量纲分析法常常用于定性地研究某些关系和性质,利用量纲齐次原则寻求物理量之间的关系,在数学建模过程中常常进行无量纲化,无量纲化是根据量纲分析思想,恰当地选择特征尺度将有量纲量化为无量纲量,从而达到减少参数、简化模型的效果。
差分法
差分法的数学思想是通过taylor级数展开等方法把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的方程组,将微分问题转化为代数问题,是建立离散动态系统数学模型的有效方法。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有以下几种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
差分法的解题步骤为:建立微分方程;构造差分格式;求解差分方程;精度分析和检验。
变分法
变分法是处理函数的函数的数学领域,即泛函问题,和处理数的函数的普通微积分相对。这样的泛函可以通过未知函数的积分和它的导数来构造,最终寻求的是极值函数。现实中很多现象可以表达为泛函极小问题,即变分问题。变分问题的求解方法通常有两种:古典变分法和最优控制论。受基础知识的制约,数学建模竞赛大专组的建模方法使用变分法较少。
图论法
数学建模中的图论方法是一种独特的方法,图论建模是指对一些抽象事物进行抽象、化简,并用图来描述事物特征及内在联系的过程。图论是研究由线连成的点集的理论。一个图中的结点表示对象,两点之间的连线表示两对象之间具有某种特定关系(先后关系、胜负关系、传递关系和连接关系等)。事实上,任何一个包含了某种二元关系的系统都可以用图形来模拟。因此,图论是研究自然科学、工程技术、经济问题、管理及其他社会问题的一个重要现代数学工具,更是成为了数学建模的一个必备工具。
⑨ 数学建模的思路是什么
说就是把实际问题用数学语言抽象概括,从数学角度来反映或近似地反映实际问题,得出的关于实际问题的数学描述。其形式是多样的,可以是方程(组)、不等式、函数、几何图形等等。
在数学建模中常用思想和方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法。
模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。