速率法是指在多个时间点连续监测产物的生成量或者消耗量。一般用于酶类试剂检测。
终点法是指反应后的吸光度值减去反应前的,一般用于免疫类试剂检测。
❷ 生化分析仪的测量方法
全自动生化分析仪目前在测量血液常规项目时,是以比色法为主,主要原理是运用光谱技术中不同原子吸光不同而测量的,那么对于ISE模块的功能实现,主要有两种方法,一是比色法,二是间接法。比色法因其测量精度,准确度等与所要求的相差太大,此法在医学的早期实验室检查中使用,已经是属于淘汰的用法。间接法,其方法原理与目前市场上存在的其它仪器所用直接法相似,但ACA的脆弱性所致,为防仪器内部被堵塞,对样品的要求极为严格,需经常规分离再经稀释后方可测量,而一般的生化ISE模块对样品的稀释倍数又大都在30倍左右,在如此大的稀释倍数下,对管路确是有益,但从数据统计处理角度来看,这样的测量,将会把误差同比例放大,那么这样测到的结果,准确度和精确度不能达到要求。
另外,ACA所采用的间接法与目前其它仪器所采用的直接法的差异,在此引用一本检验行业的权威之作《临床生化检验》一书对此的描述:间接电位法:样品与标准液要用指定离子强度与pH的稀释液作定量稀释,再行测定,此时样品和标准液的pH和离子强度趋向一致,所测离子活度等于离子浓度,间接法所测结果与火焰法相似。在高脂血症或高蛋白血症的血清样品中,由于单位体积血清中水量明显减少,若用定量样品作稀释后,再用间接法测定,会得到假性低血钠(或钾),但直接法能真实地反映血清中离子的活度,据报告:直接法比间接法约高2~4%。
通过对ACA的了解,也发现ACA对使用者的解放度不够,想人类自从走上电子电器时代,辅助电子产品的宗旨之一就是解放人的时间,而ACA仪器,因庞大而复杂的系统,在检测操作前有预热、校正、模块检测、纯水检测、系统试剂检测等诸多繁杂工作要准备,此为常态流程,但若仪器再出故障,工作量势必会大幅增加。尽管为全自动工作仪器,但却不利于检验科室工作的顺利进行,以大型三甲医院为例,每天的病患标本多则上百,若仅在ACA上花费如些之多的时间,工作的开展将使效率大大降低。
从费用方面讲,进口设备因为技术垄断,在国内的市场上尚无有力竞争对手的情况下,有一定的定价权,更有市场垄断之疑,售价少则十多万,多则几十万,而对于带ISE模块的ACA仪器则又在同等基础上贵出约5到8万,且大多只能检测三项指标K、Na、Cl,而同等产品,将不同项目分离单测,国内品牌售价则要低较多,如国内品牌迈瑞。在试剂消耗上,因ACA大都是整套配套试剂,所以用于电解质的测定上,相应的成本就会上升,对于中小型医院,因各种原因,只能对常见疾病做治疗,可能真正所需只是电解质的检验报告,如此,为测定少数项目而使用ACA,对医院来讲,设备的利用率不高,造成一定的资源浪费。
全自动生化分析仪测量电解质所用间接法与直接法的结果差异,我想可以用误差产生的概念来说明。首先说明几个概念,第一,真值:客观存在的真实值;第二,误差:测量结果与被测量真值之差。间接法与直接法测量结果都有误差,但却有本质的不同。误差产生的原因有两种,叫系统误差和偶然误差。对于间接法和直接法,因测量,计算,得出结果等步骤都是由仪器完成,偶然误差可以近似认为一致,但系统误差却不容忽视。间接法因测量方法所限,故其系统误差要大于直接法,正如早期临床检验中所用的火焰法,因本身方法之限,所造成的系统误差较大,系统误差是不可避免的,所以最终结果在特殊血清中会有假性低血钠(或钾)出现。
❸ 全自动生化分析仪中应用到的测定方法是什么
临床生化检验测定方法总的
来说可分为二大类:终点法和动力学法,其中动力学法又可分为零级动力学法和一级动力学
法。
终点法:指经过一段时间的反应,整个反应达到平衡,所有的被测定物已转变为产物,反应液的
吸光度不再增加(或降低),吸光度的增加(或降低)程度与被测定物的浓度成正比。
零级动力学法:指反应速度与反应物(底物)浓度无关。因此,在整个反应过程中,反应物可以匀速地
生成某个产物,导致被测定溶液在某一波长下吸光度均匀地减小或增加,减小或增加的速度
(△A/min)与被测物(催化剂)的活性或浓度成正比。零级动力学法即通常所说的动力学
法,也被称为连续监测法;主要用于酶活性的测定。
一级动力学法:一级动力学法是指在被测物参与反应的条件下,在一定的反应时间内,反应速度与反应
物浓度的一次方成正比,由于反应物在不断的消耗,因此整个反应速度在不断的减小,表现
为吸光度的增加(或降低)速度越来越小,由于这类反应达到平衡的时间很长,必需在特定
时间段内进行监测,该段时间内吸光度的增加(或)降低与被测定物的浓度成正比,见下图。
一级动力学法又被称为初速率法、固定时间法、二点动力学法等。
❹ 全自动生化分析仪检测方法
全自动生化分析仪检测方法:
1、终点法(endessay)完全被转化成产物,不再进行反应达到终点,取反应终点的吸光度来计算被测物质的浓度。生化检验中除酶和BUN、CRE外几乎都用终点法来进行检测。
2、一点终点法:取反应达终点时的一个点的吸光度来计算结果。
3、二点终点法:取反应尚未开始时读取一个点的吸光度,待反应达终点时再取第二点的吸光度。用第二点吸光度减去第一点吸光度的差值来计算结果。主要用于扣除试剂和样品空白。保证结果的准确性。一般双试剂用。
4、固定时间法(两点法):是取尚在反应中的两点间的差值来计算结果。此两点既不是反应起始点也不是终点。主要用于检测一些非特异性的项目,如肌酐。
5、连续监测法(动力学法、速率法):是在测定酶的活性或酶代谢产物时,连续取反应曲线中呈线性变化吸光度值(△;A/min)来计算结果。因在反应线性时间内各点间的吸光度差值为零故又称谓零级反应。
(4)评定自动生化分析仪速率的方法扩展阅读:
全自动生化分析仪的原理:
自动化分析仪就是将原始手工操作过程中的取样、混匀、温浴(37℃)检测、结果计算、判断、显示和打印结果及清洗等步骤全部或者部分自动运行。
如今,生化检验基本上都实现了自动化分析,还有专为大型或超大型临床实验室和商业实验室设计的全自动生化分析系统,可根据实验室的检测量任意配置。
无论是当今运行速度最快(9600Test/h)的模块式全自生化分析仪,还是原始手工操作用于比色的光电比色计,其原理都是运用了光谱技术中吸收光谱法。是生化仪最基本核心。
❺ 生化分析仪的几种基本分析方法
生化分析仪已经成为医院检验科必备的检测设备,按照生化分析仪的结构原理,生化分析仪可以分为管道连续流动式、分立式、离心式和干片式等几种,目前临床最常用的是分立式生化分析仪,其常用检测方法包括终点法、固定时间法和连续监测法。
1、终点法
2、固定时间法
3、连续监测法
通常情况下,全自动的生化分析仪是几种检测方法并存,如康宇医疗全自动生化分析仪检测方法就包括终点法、动力学法、免疫比浊发、固定时间发、双试剂法等,仪器检测范围宽泛,是基层医院首选的医疗设备。
❻ 全自动生化分析仪测试速度恒速是怎样测算出来的,最大理论速度是怎样测算的,
理论速度是指1个小时3600秒除以机器的周期
打个比方,现在市激毕面上800速的仪器周期为4.5秒 那么理论速度就应该是3600/4.5=800
先加样本明迹芹和先州轿加试剂没有区别
但是对于有些试剂1 跟试剂2都是一个针加的低速仪器,所做的项目单试剂跟双试剂的多少会影响速度
还有就是实际速度是以你机器的软件出来第一个结果之后算1个小时内能出来多少个,不是你点开始之后测量
还有国内的有些仪器标1000速1200速 其实生化速度只有800速,另外的是加离子模块后的速度
国内能生产800速的仪器厂家也不多,知名点的就是迈瑞,迪瑞,科华,东软,英诺华等等
❼ 生化分析仪检测方法中的终点法、两点法、双波长法有什么区别
我们在购买生化仪的时候,生化分析仪的参数上的检测方法可能存在多个,包括终点法、固定时间法(两点法)、连续察野监测法(速率法)、双波长法等等,这些检测方法有什么不同,各有什么作用呢?
终点法:被测物质在反映过程中完全被转变为产物,到达反映终点,根据终点吸光度的大小求出被测物浓度,称终点法。此方法参数设置简单,反映时间一般比较长,精密度好。
固定时间法(两点法):指在【时间-吸光度曲线】上选择两个测光点,次两点既不是初始吸光度点,也不是终点吸光度点,用这两个值吸光度差值计算。
连续监测法(速率法):是在测定酶活性或用酶法测定代谢产物时,连续选取【时间-光度曲线】(各两点吸光度差值相等)的吸光度值,并以此线性期的耽误吸光度变化值计算结果。
双波长法:采用一个主波长一个次波长的检测方法:1、消除噪音干扰;2、减少杂散光影响;3、减少样品本身光吸收的干扰,检测结果更准确。次波长大于主波长100nm,主次波长处有尽可能相同的光吸收值。
这些测试方法各有优势,从多个方面取长补短,是生化分析仪的检测数据的准确性加以完善,更能反映人体的健康状况拿没纳和一些潜在疾病的风险。
康宇医疗生化分析仪目前分为全自动和半自动的多个型号消没,全自动的生化分析仪其中也包含了多种检测方法,使检测结果更加准确,适用于各类综合医院、妇幼保健院、儿童医院、乡镇卫生院、诊所的医疗