导航:首页 > 研究方法 > rmf分析方法

rmf分析方法

发布时间:2023-05-24 10:29:28

1. RFM模型怎么分析

RFM的含义如下:

1、R(Recency):客户最近一次交易时间的间隔。R值越大,表示客户交易发生的日期越久,反之则表示客户交易发生的日期越帆郑近。

2、F(Frequency):客户在最近一段时间内交易的次数。F值越大,表示客户交易越频繁,反之则表示客户交易不够活跃。

3、M(Monetary):客户在最近一段时间内交易的金额。M值越大,表示客户价值越高,反之则表示客户价值越低。

4、RFM分析就是根据客户活跃程度和交易金额的贡献,进行客户价值细分的一种方法。

2. RFM分析方法的优点是什么如何运用

最大的优点,应该是数据的可获得性。

目前在互联毁中网中,基本对于数据的收集做的还是比较完备了,采集了用户的各种行为数据等,可以更好的进行用户打标签、分层的操作。但是在传统行业中,没有太多的行为数据,其实能用的数据比较有限。但是,无论公司的数据做的有多不完备,也一定是有成交数据的。只要有成交数据,就能进行RFM的分析,这是最大的优势。而且,基于成交数据做的RFM模型,还是比较有效的。

其次,模型的分层可解释性强。其他很多算法模型、机器学习模型,往往通过聚类进行用户的分层,对于业务来讲,不是很好解释。但RFM模型分成的8个用户类别,是非常好理解的。

模型的缺点

RFM模型其实是滞后性的分析模型,只有当用户发生了购买行为后,才能进行RFM的分析。而且模型的前提假设就是用户的前后行为是无差别的。

另外,使用该模纤启山型需要注意的是,不同行业的应用,是有差别的。最典型的是就是快消品和耐消品的差别。对于耐消品而言,RFM分析并不是一个很行之有效的模型。旁昌

3. 用户价值分层——基于RFM模型的研究分析

• R(Recency):消费间隔,最近一次距离上次消费的时间间隔
• F(Frequency):消费频次,一段时间(1个月/1年...)内的消费总次数
• M(Monetary):消费金额,一段时间(1个月/1年...)内的消费总金额

      RFM模型是用户价值研究中的经典模型,基于近度(Recency),频度(Frequency)和额度(Monetory)这3个指标对用户进行聚类,找出具有潜在价值的用户, 从而辅助商业决策,提高营销效率。RFM作为一种数据驱动的客户细分技术,可帮助营销人员做出更明智的战略性决策,使营销人员能够快速识别用户并将其细分为同类群体,并针对性制定个性化的营销策略,提高用户的参与度和留存率。
      RFM建模所需要的数据源是相对简单的,只用到了购买记录中的时间和金额这两个字段。我们基于交易数据中用户的最后一次的购买时间,购买的次数以和频率,以及平均/总消费额对每个用户计算了三个维度的标准分。然后我们对于三个维度赋予了不同的权重,再基于加权后的分值应用K-Means进行聚类,根据每种人群三个维度与平均值之间的高低关系,确定哪些是需要保持用户,哪些是需要挽留的用户,哪些是需要发展的用户等。在将这些客户圈出之后,便可以对不同客户群使用不同针对性地营销策略(引导,唤醒等),提高复购率与转化率。值得注意的是,三个维度的权重制定并没有统一的标准,比较通用的方法是用层次分析法(AHP),实际场景结合行业以及具体公司的特点进行因地制宜、因人而异的优化。

RFM因素:
• R值越高,顾客的有效期越近,对商家活动的响应越积极
• F值越高,顾客的消费频次越高,对商家的忠诚度就越高
• M值越高,顾客的消费能力越高,对商家贡献度就越高
• 想要提高复购率和留存率,需要时刻警惕R值

RFM分析:
• 谁是您最有价值的客户?
• 导致客户流失率增多的是哪些客户?
• 谁有潜力成为有价值的客户?
• 你的哪些客户可以保留?
• 您哪些客户最有可能对参与度活动做出响应?
• 谁是你不需要关注的无价值客户?
• 针对哪些客户制定哪种发展、保留、挽回策略?

      通过RFM模型,可以帮助营销人员实现客户细分;衡量客户价值和客户利润创收能力;识别优质客户;指定个性化的沟通和营销服务;为更多的营销决策提供有力支持。

数据导入:使用python的pandas.read_csv导入样本数据。
缺失值校验:因数据为生产真实的交易数据,质量相对较高,缺失值较低。

极值校验:第一份样本数据获取的用户订单实付金额,其中会存在优惠或补差支付,同时因就餐人数不一致,产生的的订单消费也会存在较大的差异,造成极致波动、标准差值较大,因此需对金额进行处理,以人均消费额替代订单支付金额,可去掉10元以下、万元以上的交易订单。

获取RFM值:使用 groupby获取RFM值

获取RFM评分值液培:数据离散,pandas.cut

实验数据RFM分值占比

说明:F、M分布不均匀,极值差异大,经数据探查知晓该商户开通了企业团餐业务,企业会给员工发放补贴,导致员工呈现较高的消费频次,该类用户的消费行为绝大程度依赖于企业,在实际的RFM模型可踢出此类订单,降低此类人群的分值,其次数据中的M值为客户实付金额,该商户支持预定、会餐、大小桌,同一单的消费群体不同,或可使用人均消费总额作为M值。
RFM数据合并,建立R、F、M数据框:pandas+numpy

计算RFM综合分值:权重法
权重值主要赋值方法可分为主观赋权法、客观赋权法,如下:
主观赋权法:主要由专家经验得到权数,然后对指标进行综合评价。是一种结合性方法,易操作,存在一定主观性。常用方法:层次分析法AHP、权值因子判断表法、德尔菲法、模糊分析法、二项系数法、环比评分法、最小平方法、序关系分乱埋没析法等。
客观赋权法:依据历史数据研究指标之间的相关关系或指标与评估结果的影响关系来综合评价。这是定量研究,无须考虑决策者主观意愿和业务经验,计算方法较为复杂。常用方法:主成分分析、因子分析、熵值法、变异系数法、哗纳均方差法、回归分析法等。
因样本数据分布不均匀,故手动赋权重值,去除部分极值。

结论:以近90天的消费活跃来看,用户消费频次集中在1-6次,呈现出极佳的复购率。可以针对消费一次的人群进行特征分析。比如针对人群的流动性,若流动人群占比较大,可进一步推广特色菜吸引客户,若周边人群占比较高,可基于复购人群的特征进行分析,同时平台可提供该类人群近期消费偏好,供商家参考,制定针对性方案。

      了解RFM定义后,将3个指标作为坐标系的XYZ坐标轴,从空间上切割成8类,作为用户的价值分层,如下图:

用户价值分层说明:

上面我们已经计算得到各个用户的RFM分值,接下来要依据分值进行分类。
定义RFM 的分值等级

使用pyecharts绘制玫瑰图:

结论:商家顾客表现出来的忠诚度较高,但新客获取能力较低。但是单纯看分层占比,并没有实际意义,可以基于价值分层与其他特征关联分析进行精准投放。如下图(网络参考图,本期实验并未涉及其他特征)所示:

      用户画像是基于用户信息与行为衍生出来的特征属性,用户的准入信息是用户的主观特征,是一种既定的事实,通过对用户行为的采集、研究,刻画出单个用户的特征。其意义在于基于某一事物对群里特征进行分类,有效的体现事物的合适人群;同时针对群里特征的偏爱、习惯研究,可以刻画出用户的需求,实现精准化营销。

      用户画像的基础成分来源于用户的准入信息(会员注册时的登记信息),更多的特征数据来源于用户的各类行为,而RFM模型便是基于用户消费行为提炼出来的价值指标。通过对各个价值分层的群体特征研究,可以有效提升获客能力以及针对各类人群实现精准化营销。

      市场和运营往往绞尽脑汁做活动、上新品、蹭热点、做营销,拓渠道,不断开发客户、做回访维系客户感情,除了少数运气好的之外,但大多效果寥寥,这是为何?
      经验丰富的营销人员都知道“了解客户”和“客户细分”的重要性。营销人员不仅要着眼于创造更多的访问量和点击量以提高客户获取,还必须遵循从提高点击率(CTR)转变为提高保留,忠诚度并建立客户关系的新范式。与其将整个客户群作为一个整体进行分析,不如将其划分为同类群体,了解每个群体的特征,并使他们参与相关的活动,而不是仅根据客户年龄或地理位置进行客户细分。而RFM分析是市场营销人员分析客户行为的最流行、最简单、最有效的客户细分方法之一。
针对RFM分层用户制定相应的营销策略:
      • 重要价值客户是您的最佳客户,他们是那些最新购买,最常购买,并且花费最多的消费者。提供VIP服务和个性化服务,奖励这些客户,他们可以成为新产品的早期采用者,并有助于提升您的品牌。
      • 重要发展客户:近期客户,消费金额高,但平均频率不太高,忠诚度不高。提供会员或忠诚度计划或推荐相关产品以实现向上销售并帮助他们成为您的忠实拥护者和高价值客户。
      • 重要保持客户:经常购买、花费巨大,但最近没有购买的客户。向他们发送个性化的重新激活活动以重新连接,并提供续订和有用的产品以鼓励再次购买。
      • 重要挽回客户:曾经光顾,消费金额大,购买频率低,但最近没有光顾的顾客。设计召回策略,通过相关的促销活动或续订带回他们,并进行调查以找出问题所在,避免将其输给竞争对手。
      •一般价值客户:最近购买,消费频次高但消费金额低的客户,需要努力提高其客单价,提供产品优惠以吸引他们。
      • 一般发展客户:最近购买,但消费金额和频次都不高的客户。可提供免费试用以提高客户兴趣,提高其对品牌的满意度。
      • 一般保持客户:很久未购买,消费频次虽高但金额不高的客户。可以提供积分制,各种优惠和打折服务,改变宣传方向和策略与他们重新联系,而采用公平对待方式是最佳。
      • 一般挽留客户:RFM值都很低的客户。针对这类客户可以对其减少营销和服务预算或直接放弃。

      此外,目前的RFM分析中,一般给与M值更高的权重,如果一般挽留客户与一般发展客户占据多数,说明公司的用户结构不是很合理,需要尽快采取措施进行优化。

4. rfm是定量分析法吗

是的。RFM(Recency、Frequency、Monetary)是一种颂庆圆定量分析方法,用于分析客户的价值和行为。这种方法将客户按照最近购买时间(Recency)、购买频率(Frequency)和消费金额(Monetary)等指标进行分类,以此来衡量客户的价值和忠诚度,并制定相应的营销策略,提高客户的满意度和忠诚度。RFM分析法可以帮助差历企业针对不同类型的客野塌户,采取不同的营销策略,从而提高市场竞争力和盈利能力。因此,RFM分析法在企业营销中得到了广泛的应用。

5. 什么是RFM原则

RFM分析法是根据客户购买间隔、购买频率橘备和购买者伍禅金额来计算客户价值的一种方法。

分析选定的顾客以及首尘时间段,统计顾客的购买时间购买次数并计算出购买频率。统计好次数后进行合计,计算出客户购买的总额

6. RFM模型分析与客户细分

RFM模型分析与客户细分
根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有三个绝敬神奇的要素,这三个要素构成了数据分析最好的指标:最近一次消费(Recency)、消费频率(Frequency)、消费金额(Monetary)。
RFM模型:R(Recency)表示客户最近一次购买的时间有多远,F(Frequency)表示客户在最近一段时间内购买的次数,M (Monetary)表示客户在最近一段时间内购买的金额。一般原始数据为3个字段:客户ID、购买时间(日期格式)、购买金额,用数据挖掘软件处理,加权(考虑权重)得到RFM得分,进而可以进行客户细分,客户等级分类,Customer Level Value得分排序等,实现数据库营销!

这里再次借用@数据挖掘与数据分析的RFM客户RFM分类图。
本次分析用的的软件工具:IBM SPSS Statistics 19,IBM SPSS Modeler14.1,Tableau7.0,EXCEL和PPT
因为RFM分析仅是项目的一个小部分分析,但也面临海量数据的处理能力,这一点对计算机的内存和硬盘容量都有要求。
先说说对海量数据挖掘和数据处理的一点体会:(仅指个人电脑操作平台而言)
一般我们拿到的数据都是压缩格式的文本文件,需要解压缩,都在G字节以上存储单位,一般最好在外置电源移动硬盘存储;如果客户不告知,你大概是不知道有多少记录和字段的;
Modeler挖掘软件默认安装一般都需要与C盘进行数据交换,并枯至少需要100G空间预留,否则读取数据过程中将造成空间不足
海量数据处理要有耐心,等待30分钟以上运行出结果是常有的现象,特别是在进行抽样、合并数据、数据重构、神经网络建模过程中,要有韧性,否则差一分钟中断就悲剧了,呵呵;
数据挖掘的准备阶段和数据预处理时间占整个项目的70%,我这里说如果是超大数据集可能时间要占到90%以上。一方面是处理费时,一方面可能就只能这台电脑处理,不能几台电脑同时操作;
多带来并蔽慎不同,这是我一直强调的体验。所以海量数据需要用到抽样技术,用来查看数据和预操作,记住:有时候即使样本数据正常,也可能全部数据有问题。建议数据分隔符采用“|”存储;
如何强调一个数据挖掘项目和挖掘工程师对行业的理解和业务的洞察都不为过,好的数据挖掘一定是市场导向的,当然也需要IT人员与市场人员有好的沟通机制;
数据挖掘会面临数据字典和语义层含义理解,在MetaData元数据管理和理解上下功夫会事半功倍,否则等数据重构完成发现问题又要推倒重来,悲剧;
每次海量大数据挖掘工作时都是我上微博最多的时侯,它真的没我算的快,只好上微博等它,哈哈!
传统RFM分析转换为电信业务RFM分析主要思考:

这里的RFM模型和进而细分客户仅是数据挖掘项目的一个小部分,假定我们拿到一个月的客户充值行为数据集(实际上有六个月的数据),我们们先用IBM Modeler软件构建一个分析流:

数据结构完全满足RFM分析要求,一个月的数据就有3千万条交易记录!

我们先用挖掘工具的RFM模型的RFM汇总节点和RFM分析节点产生R(Recency)、F(Frequency)、M (Monetary);

接着我们采用RFM分析节点就完成了RFM模型基础数据重构和整理;

现在我们得到了RFM模型的Recency_Score、Frequency_Score、Monetary_Score和RFM_Score;这里对RFM得分进行了五等分切割,采用100、10、1加权得到RFM得分表明了125个RFM魔方块。
传统的RFM模型到此也就完成了,但125个细分市场太多啦无法针对性营销也需要识别客户特征和行为,有必要进一步细分客户群;
另外:RFM模型其实仅仅是一种数据处理方法,采用数据重构技术同样可以完成,只是这里固化了RFM模块更简单直接,但我们可以采用RFM构建数据的方式不为RFM也可用该模块进行数据重构。
我们可以将得到的数据导入到Tableau软件进行描述性分析:(数据挖掘软件在描述性和制表输出方面非常弱智,哈哈)

我们也可以进行不同块的对比分析:均值分析、块类别分析等等

这时候我们就可以看出Tableau可视化工具的方便性

接下来,我们继续采用挖掘工具对R、F、M三个字段进行聚类分析,聚类分析主要采用:Kohonen、K-means和Two-step算法:

这时候我们要考虑是直接用R(Recency)、F(Frequency)、M (Monetary)三个变量还是要进行变换,因为R、F、M三个字段的测量尺度不同最好对三个变量进行标准化,例如:Z得分(实际情况可以选择线性插值法,比较法,对标法等标准化)!另外一个考虑:就是R、F、M三个指标的权重该如何考虑,在现实营销中这三个指标重要性显然不同!
有资料研究表明:对RFM各变量的指标权重问题,Hughes,Arthur认为RFM在衡量一个问题上的权重是一致的,因而并没有给予不同的划分。而Stone,Bob通过对信用卡的实证分析,认为各个指标的权重并不相同,应该给予频度最高,近度次之,值度最低的权重;
这里我们采用加权方法:WR=2 WF=3 WM=5的简单加权法(实际情况需要专家或营销人员测定);具体选择哪种聚类方法和聚类数需要反复测试和评估,同时也要比较三种方法哪种方式更理想!
下图是采用快速聚类的结果:

以及kohonen神经算法的聚类结果:

接下来我们要识别聚类结果的意义和类分析:这里我们可以采用C5.0规则来识别不同聚类的特征:

其中Two-step两阶段聚类特征图:

采用评估分析节点对C5.0规则的模型识别能力进行判断:

结果还不错,我们可以分别选择三种聚类方法,或者选择一种更易解释的聚类结果,这里选择Kohonen的聚类结果将聚类字段写入数据集后,为方便我们将数据导入SPSS软件进行均值分析和输出到Excel软件!

输出结果后将数据导入Excel,将R、F、M三个字段分类与该字段的均值进行比较,利用Excel软件的条件格式给出与均值比较的趋势!结合RFM模型魔方块的分类识别客户类型:通过RFM分析将客户群体划分成重要保持客户、重要发展客户、重要挽留客户、一般重要客户、一般客户、无价值客户等六个级别;(有可能某个级别不存在);
另外一个考虑是针对R、F、M三个指标的标准化得分按聚类结果进行加权计算,然后进行综合得分排名,识别各个类别的客户价值水平;

至此如果我们通过对RFM模型分析和进行的客户细分满意的话,可能分析就此结束!如果我们还有客户背景资料信息库,可以将聚类结果和RFM得分作为自变量进行其他数据挖掘建模工作!

7. 数据分析方法3—RFM分析模型

        对于一个新上线产品的前期运营,我们一般的做法都是做活动、上新品、蹭热点、做营销、不断地去拓展新的客户。但是这种做法收效却不容乐观,真正获取的用户没有几个,最终都便宜了羊毛党。其实客户在不同阶段的需求是不一样的,有的客户图便宜,有的客户看新品,有的客户重服务。所以我们想要运营好一个产品,就需要对客户精细化运营。

     精细化运营最经典的用户分群工具就是RFM模型,RFM模型是衡量用户价值和用户创新能力的经典工具,主要是由用滑世户最近一次购买时间、消费频次、消费金额组成。

        RFM模型是衡量客户价值和客户潜在价值的重要工具和手段,RFM是Rencency(最近一次消费),Frequency(消费频率),Monetary(消费金额)组合而成,此模型对于运营、销售、财务、市场来说都比较重要。

R值(Recency): 最近一次消费

        表示用户最近一次消费距离现在的时间,消费时间越近的客户价值越大,1年前消费过的用户肯定没有1月前消费过的用户价值大,是衡量用户价值的一个指标。

        基于R值的大小,可以看出上表中的客户2是最有价值的,客户3是最没有价值的,但是如果就此说明信搏肢客户2是最有价值,而客户3是没有价值的是不成立的,对于客户价值我们不能仅看R值,还需要考虑F值和M值。这里我们只举出4个客户为例,但在真实的客户场景中,我们可以把客户按照周、月、季、年等维度的占比详细来观察出R的趋势变化。

F值(Frequency): 消费频率

        消费频率是指用户在统计周期内购买商品的次数,经常购买的用户也就是熟客,其价值比偶尔来一次的客户价值大

        基于F值的大小,可以看出客户4的价值最大,客户1的价值最小,但是如果考虑R值和M值就不能这样认为。其实客户对于产品的复购的核心因素是类目。有的类目产品复购率高(食品类)主要是食品属于易耗品,消耗周期短,购买的频率高,相对容易产生重复性购买。而有的类目产品复购率低(家电类),消耗周期长,购买频次低。建议在对F值进行统计时对于不同的类目要有相应的统计周期。

M值(Monetary): 消费金额

消费金额是指用户在统计周期内消费的总金额,体现了消费者对于企业的价值。

        基于M值的大小,可以看出客户4的价值最高,客户1的价值最低,M值同上面的R值、F值类似,单一的值并不能说明客户的好坏,三者结银脊合才能更好地精细化用户,对购买产品的用户合理的分隔,采用不同的机制去运营。

RFM模型的主观细分

        根据RFM模型值得大小对客户进行细分,如下表所示,将客户分为了8部分去运营,对于不同的细分人群采取不同的运营策略,在实际的应用场景中,店铺可以根据自己店铺的实际情况来细分人群,购买人群多的就分多个人群,购买人群少的就少分几个人群,具体的情况根据店铺来定。

RFM模型的量化细分

        上面的模型细分主要是根据RFM值的大小进行模糊的细分,而如果想要更细地对人群进行划分,就需要对RFM进行量化处理,一般采用的方式有

1、根据经验定义权重

RFM值=a*R值+b*F值+c*M值

对于其中的权重a,b,c则需要经验丰富的业务人员来判断

2、归一化处理

将RFM的值进行归一化处理,公式为

RFM值=R1值+F1值+M1值

上面的R1,F1,M1都是归一化处理过后的值

3、AHP层次分析得出权重值

RFM值=a1*R值+a2*F值+a3*M值

a1,a2,a3的值是AHP层次分析得出的权向量值

具体参考链接

最终按照得出值的大小进行人群细分,得出不同的人群

8. 如何使用SPSS Modeler进行RFM分析

在软件下方的“源”面板中选择“可变文件”节点,把数据读入到节点中。

在软件下方的“源”面板中选择“排序”节点,根据顾客ID进行排序,排序的目的是为加快计算速度。

在软件下方的“源”面板中选择“RFM汇总”节点,进行RFM汇总,此处注意,如果要查看汇总结果,要选择一个表节点查看,否则无法运行。

在软件下方的“源”面板中选择“RFM分析”节点,运行进行RFM分析,分析的结果是每个顾客的RFM得分。

在软件下方的“源”面板中选择“排序”、“样本”节点对顾客的得分进行排序并选择出前n名的顾客ID,筛选的出的顾客为重点顾客,可以作为促销目标用户。

9. 【分析方法or思维】RFM模型——用户价值分析

  RFM模型是衡量客户价值和客户创利能力的重要工具和手段,模型主要是利用客户的最近一次消费(Recency)、总体消费频率(Fequency)以及消费空春全额(Monetary)3项指标来描述该客户的价值状况。 RFM代表近度,频率和额度,这些指标表征了客户的一些消费行为和习惯。频率和额度会影响客户的生命周期价值,新近度会影响保留率,而保留模辩率是忠诚度的衡量标准。

   RFM是一种客户细分技术,用以帮助营销人员快速识别用户类型及群体分类,并帮助营销人员根据客户细分类型斗码耐的共性、个性提供一定的营销策略。因而,RFM的最终成果是客户的分类及分类分析。

10. rfm分析法是什么

RFM分析方法:
1、定义:最近1次消费时间间隔(Recency)、消费频率(Frequency)、消费金额(Monetary),通过这3个指标对用户分类的方法称为RFM分析方法2、这3个指标针对的业务不同,定义也不同,要根据业务来灵活定义。各指标特征如下:对于最近1次消闹迅费时间间隔(R),上一次消费离得越近,也就是R的值越小,用户价值越高。对于消费频率(F),购买频率越高,也就是F的值越大,用户价值越高。对于消费金额(M),消费金额越高,也就是M的值越大,用户价值越高。用RFM分析方法把液埋此用户分为8类,对不同价值的用户使用不同的运营决策液升,把公司有限的资源发挥到最大的效果,这就是我们常常听到的精细化运营。例如第1类是重要价值用户,这类用户最近一次消费时间较近,消费频率也高,消费金额也高,要提供VIP服务。

阅读全文

与rmf分析方法相关的资料

热点内容
电力管枕图片施工方法 浏览:974
最简单的眉毛分解方法 浏览:940
做葡萄酒的方法视频 浏览:899
学校武当武术教学方法 浏览:351
有哪些可以治疗囊肿的方法 浏览:862
黄栀子卤肉上色方法视频 浏览:673
三头龙训练方法视频 浏览:865
金日饮水机的安装方法 浏览:66
内衣的穿着正确方法 浏览:740
mc6航模教练器的连接方法 浏览:918
752紫外光度计使用方法 浏览:27
如何管理顾客浪费方法 浏览:839
消毒伤口正确方法如下 浏览:99
丁香理化鉴别方法 浏览:926
洋甘菊单方精油的使用方法 浏览:588
简单红包灯笼制作方法 浏览:824
菠萝蜜最简单种植方法 浏览:964
空调保温粘棉方法图片 浏览:874
高考物理数学常用方法 浏览:156
微鲸电视挂墙安装方法视频 浏览:566