导航:首页 > 研究方法 > 锡的光电直读分析方法

锡的光电直读分析方法

发布时间:2023-05-23 17:56:53

A. 常见检测金属元素的主要方法

金属材料在国内算是非常吃香的,因为它可以灵活运用于各个领域,涉及的范围也越来越广,人们的日常生活也慢慢离不开这类材料做出来的生活用品,发展空间巨大。

相信大家都知道什么是金属材料,它一般是指工业应用中的合金。我们自然界中大约有70多种纯金属,其中常见的有铁、铜、铝、锡、镍、金、银、铅、锌等等。
合金也是金属材料的一种,但是它常指的是两种或两种以上的金属或金属与非金属结合而成,且具有金属特性的材料。
金属材料检测大家族
金属材料检测涉及对黑色金属、有色金属、机械设备及零部件等的、还有化学成分分析、、以及精密尺寸测量、无损检验、耐腐蚀试验和环境模拟测试等等。
何为无损检测?
无损检测(NDT)是指在不损坏试件的前提下,以物理或化学方法为手段,借助先进的技术和设备器材,对试件的内部和表面的结构、性质、状态进行检查和测试的方法。
射线检测(RT)、超声波检测(UT)、磁粉检测(MT)和渗透检测(PT)是开发较早,应用最为广泛的探测缺陷的方法,称为大常规无损检测方法噢。

B. 矿物成分分析方法

矿物化学成分的分析方法有常规化学分析,电子探针分析,原子吸收光谱、激光光谱、X射线荧光光谱,等离子光谱和极谱分析,中子活化分析及等离子质谱分析等。

在选择成分分析方法时,应注意检测下限和精密度。

检测下限(又称相对灵敏度)指分析方法在某一确定条件下能够可靠地检测出样品中元素的最低含量。显然,检测下限与不同的分析方法或同一分析方法使用不同的分析程序有关。

精密度(又称再现性或重现性)指某一样品在相同条件下多次观测,各数据彼此接近的程度。通常用两次分析值(C1和C2)的相对误差来衡量分析数值的精密度。即

相对误差RE=

×100%

常量元素(含量大于或等于0.1%)分析中,根据要求达到分析相对误差的大小,对分析数据的精密度作如下划分:

定量分析:RE<±5%近似定量分析:RE<±(5~20)%

半定量分析:RE=(20~50)%

定性分析:RE>±100%

定量分析要求主要是对常量组分测定而言的,微量组分测定要达到小于±5%的相对误差则比较困难。

1.化学分析法

化学分析方法是以化学反应定律为基础,对样品的化学组成进行定性和定量的系统分析。由于化学分析通常是在溶液中进行化学反应的分析方法,故又称“湿法分析”。它包括重量法、容量法和比色法。前两者是经典的分析方法,检测下限较高,只适用于常量组分的测定;比色法由于应用了分离、富集技术及高灵敏显色剂,可用于部分微量元素的测定。

化学分析法的特点是精度高,但周期长,样品用量较大,不适宜大量样品快速分析。

2.电子探针分析法

电子探针X射线显微分析仪,简称电子探针(EMPA)。它是通过聚焦得很细的高能量电子束(1μm左右)轰击样品表面,用X射线分光谱仪测量其产生的特征X射线的波长与强度,或用半导体探测器的能量色散方法,对样品上被测的微小区域所含的元素进行定性和定量分析。样品无论是颗粒,还是薄片、光片,都可以进行非破坏性的分析。

电子探针的主体由电子光学系统、光学显微镜、X射线分光谱仪和图像显示系统4大部分组成。此外,还配有真空系统、自动记录系统及样品台等(图24-3)。其中测定样品成分的可分为X射线波谱仪和X射线能谱仪,过去电子探针只采用前者,因为它分辨率高,精度高,但速度慢。现代新型电子探针一般两者皆用。能谱分析方法可做多元素的快速定性和定量分析,但精度较前者差。

图24-3 电子探针结构示意图

电子探针可测量元素的范围为4Be—92U。灵敏度按统计观点估计达十万分之三,实际上,其相对灵敏度接近万分之一至万分之五。一般分析区内某元素的含量达10-14就可感知。测定直径一般最小为1μm,最大为500μm。它不仅能定点作定性或定量分析,还可以作线扫描和面扫描来研究元素的含量和存在形式。线扫描是电子束沿直线方向扫描,测定几种元素在该直线方向上相对浓度的变化(称浓度分布曲线)。面扫描是电子束在样品表面扫描,即可在荧屏上直接观察并拍摄到该元素的种类、分布和含量(照片中白色亮点的稠密程度表示元素的浓度)。目前,电子探针已卓有成效地应用于矿物的成分分析、鉴定和研究等各个方面。

值得注意的是,电子探针一个点的分析值只能代表该微区的成分,并不是整个矿物颗粒的成分,更不能用来代表某工作区该矿物的总体成分。因为在矿物中元素的分布是不均一的,不能“以点代面”。对微米级不均匀的矿物,只有采用适当的多点测量,以重现率高的点为依据讨论矿物成分的特征和变化,才能得到较可靠的认识。此外,电子探针对查明混入元素在矿物中存在形式的能力是有限的。它能分析已构成足够大小的矿物相的机械混入物,而对以类质同象混入物形式存在的元素,电子探针是无能为力的。要解决这个问题,必须用综合的手段。应当指出,根据在电子探针面扫描图像上,将分布均匀的混入元素视为类质同象混入物的依据是不够充分的,因为混入元素的均匀分布,并不都是因为呈类质同象形式所引起,还可以由固溶体分解而高度离散所致。而现代电子探针的分辨率(约7.0μm),还不能区分它们,需要用高分辨的透射电镜(分辨率达0.5~1nm,相当于2~3个单位晶胞)、红外光谱分析、X射线结构分析等方法相互配合,才能解决混入元素在矿物中存在的形式问题。

电子探针分析法对发现和鉴定新矿物种属起了重要的作用。这是由于电子探针在微区测试方面具有特效,因而对于难以分选的细小矿物进行鉴定和分析提供了有利条件。如对一些细微的铂族元素矿物、细小硫化物、硒化物、碲化物的鉴定都很有成效。

电子探针也有它的局限性。例如,它不能直接测定水(H2O,OH)的含量;对Fe只能测定总含量,不能分别测出Fe2+和Fe3+含量等。

电子探针分析的样品必须是导电体。若试样为不导电物质,则需将样品置于真空喷涂装置上涂上一薄层导电物质(碳膜或金膜),但这样往往会产生难于避免的分析误差,同时也影响正确寻找预定的分析位置。样品表面必需尽量平坦和光滑,未经磨光的样品最多只能取得定性分析资料,因为样品表面不平,会导致电子激发样品产生的X射线被样品凸起部分所阻挡,所得X射线强度会减低,影响分析的精度。

3.光谱类分析法

光谱类分析法是应用各种光谱仪检测样品中元素含量的方法。此类分析方法很多,目前我国以使用发射光谱分析(ES)、原子吸收光谱分析(AA)、X射线荧光光谱分析(XRF)和电感耦合等离子发射光谱(ICP)、原子荧光光谱(AF)、极谱(POL)等较为普遍。它们的特点是灵敏、快速、检测下限低、样品用量少。适于检测样品中的微量元素,对含量大于3%者精度不够高。

光谱分析的基本原理概括起来是:利用某种试剂或能量(热、电、粒子能等)对样品施加作用使之发生反应,如产生颜色、发光、产生电位或电流或发射粒子等,再用光电池、敏感膜、闪烁计数器等敏感元件接收这些反应讯号,经电路放大、运算,显示成肉眼可见的讯号。感光板、表头、数字显示器、荧光屏或打印机等都是显示输出装置。光谱分析的流程见图24-4。

图24-4 光谱分析流程图

4.X射线光电子能谱分析法

X射线光电子能谱仪由激发源、能量分析器和电子检测器(探测器)三部分组成。其工作原理是:当具有一定能量hv的入射光子与样品中的原子相互作用时,单个光子把全部能量交给原子中某壳层上一个受束缚的电子,这个电子因此获得能量hv。如果hv大于该电子的结合能Eb,该电子就将脱离原来的能级。若还有多余能量可以使电子克服功函数ϕ,电子将从原子中发射出去,成为自由电子。由入射光子与原子作用产生光电子的过程称光电效应。只有固体表面产生的光电子能逸出并被探测到。所以光电子能谱所获得的是固体表面的信息(0.5~5nm)。

光电过程存在如下的能量关系:

hv=Eb+Ek+Er

式中:Er为原子的反冲能;Eb为电子结合能;Ek为发射光电子的动能。Er与X射线源及受激原子的原子序数有关(随原子序数的增大而减小),一般都很小,从而可以忽略不计。Ek可实际测得,hv为X射线的能量,是已知的。因此从上式可算出电子在原子中各能级的结合能(结合能是指一束缚电子从所在能级转移到不受原子核吸引并处于最低能态时所需克服的能量)。光电子能谱就是通过对结合能的计算并研究其变化规律来了解被测样品的元素成分的。

X射线光电子能谱仪可用于测定固、液、气体样品除H以外的全部元素,样品用量少(10-8g),灵敏度高达10-18g,相对精度为1%,特别适于做痕量元素的分析,而且一次实验可以完成全部或大部分元素的测定,还可选择不同的X射线源,求得不同电子轨道上的电子结合能,研究化合物的化学键和电荷分布等,还可测定同一种元素的不同种价态的含量。

5.电感耦合等离子质谱分析法

电感耦合等离子体质谱(Inctively Coupled Plasma Mass Spectrometry,简称ICP-MS)技术是1980年代发展起来的、将等离子体的高温(8000K)电离特性与四极杆质谱计的灵敏快速扫描优点相结合而形成的一种新型的元素和同位素分析技术。

ICP-MS的工作原理及其分析特性:在 ICP-MS 中,等离子体作为质谱的高温离子源(7000K),样品在通道中进行蒸发、解离、原子化、电离等过程。离子通过样品锥接口和离子传输系统进入高真空的四极快速扫描质谱仪,通过高速顺序扫描分离测定所有离子,扫描元素质量数范围从6到260,并通过高速双通道分离后的离子进行检测,直接测定的浓度范围从10-12到10-6。因此,与传统无机分析技术相比,ICP-MS技术提供了最低的检出限、最宽的可测浓度范围,具有干扰最少、分析精密度高、分析速度快、可进行多元素同时测定以及可提供精确的同位素信息等分析特性。

ICP-MS的谱线简单,检测模式灵活多样,主要应用有:①通过谱线的质荷之比进行定性分析;②通过谱线全扫描测定所有元素的大致浓度范围,即半定量分析,不需要标准溶液,多数元素测定误差小于20%;③用标准溶液校正而进行定量分析,这是在日常分析工作中应用最为广泛的功能;④利用ICP-MS测定同位素比值。

在矿物研究方面的应用有:矿物稀土、稀散以及痕量、超痕量元素分析;铂族元素分析;溴、碘等非金属元素的分析;同位素比值分析;激光剥蚀固体微区分析等。

6.穆斯堡尔谱

穆斯堡尔谱为一种核γ射线共振吸收谱。产生这种效应的约有40多种元素、70多种同位素。目前得到广泛应用的是57Fe和119Sn。

图24-5 某透闪石石棉的穆斯堡尔图谱

由于地壳中铁的分布相当广泛,很多矿物都含铁,因此铁的穆斯堡尔谱已成为矿物学研究中一个重要课题。应用这种方法可以测定晶体结构中铁的氧化态、配位以及在不同位置上的分布等。图24-5 为某一透闪石石棉的穆斯堡尔谱,图中显示了 Fe2+离子在两种八面体配位位置M1和M2中的分配情况,AA′双峰表示M1位的Fe2+,CC′双峰表示M2位的Fe2+

穆斯堡尔谱技术可鉴定铁、锡矿物种类;确定矿物中铁、锡的氧化态(如 Fe3+,Fe2+含量及比值)、电子组态(如低自旋、高自旋)、配位状态及化学键;确定铁、锡离子的有序度、类质同象置换及含铁、锡矿物的同质多象变体;进而探讨不同温压下矿物的相转变过程。

穆斯堡尔技术目前还不太成熟,通常要求低温工作条件,可测的元素种类不多,谱线解释理论也不够完善,但却是矿物学研究中一个很有远景的新技术。

C. 光电直读光谱常识

1.光电直读光谱仪的工作原理及维护注意事项
光电直读光谱仪各模块维护注意点:

一、激发系统

能够影响样品激发结果的因素可总结为4条:

(1)激发能量

能量提供的方式不同如直流电弧、火花的激发效果是不同的,火花中的激发脉冲宽度、脉冲高度、脉冲频率不同对于不同元素的激发效果亦不同,因此在不同型号的仪器中,需根据所测样品的实际情况,慎重选择激发能量参数。

(2激发环境

一般主要可分为实验室湿度环境和氩气气氛两方面ئ不同型号仪器的氩气气路设计可能会有不同,不过氩气本身的纯度和气路是否漏气应当是对激发环境检查和维护的重点。

(3)样品

样品的材质、取样、前处理等各方面,均对激发效果影响重大,在使用和维护时,需特别注意我们的激发对象的状态是否符合要求。

(4)激发台内部情况

不同型号的仪器的激发台内部结构不同,但总体来讲,激发台内部是否清洁、电距是否稳定,激发搜祥核台发光弧焰相对于光学系统的高度等,均会影响我们的数据结果。

总之,对于不同型号,不同厂家的仪器来说,此4条因素的实现形式可能略有不同,但是总体上维护和维修激发系统的方向在此。

二、光学系统

(1)光路结构稳定

机械变形小,校正到位,可通过恒温和狭缝扫描来控制。

(2)光路中对于紫外、真空紫外区光谱线在光室中的传输过程中损耗小,可通过气循环或抽真空的方式进行维护。那么,对真空泵等器件的维护成为重点,此外,透光镜片的定期擦拭也成了保证光信号传输效率稳定的重要操作。对于不同型号的仪器来说同,光学系统的稳定和光信号传输效率都是很重要的影响因素,因此需根据各仪器的实际情况进行仪器的维护和检查安排。

三、测量系统

(1)采集器件保持稳定合适的工作状态

采集器件为光电转换元件,目前的光电直读光谱仪主要采用的是两大类采集器,一种是光电倍增管,另外一种是CCD/CID检测器,固体成像系统,任何一种采集器件,都存在着一个和照射光强、工作供电以及输出电信号强度三个方面有关的函数,针对不同的光强,不同的供电,采集器的光电转换效率,以及它的灵敏度、稳定性都会有很大的影响。所以如需自己调节这些参数ئ需谨慎咨询仪器生产商的意见后或严格按照仪器说明书进行调整

(2)信号转换的电路板及芯片不能长期处于潮湿、积灰过多的条件下,大部分电路板、芯片遇到灰尘过多或湿度过大的情况都会产生漏电现象,这就会在整个测量系统中产生暗电流,当暗电流大到一定程度ئ有可能造成测量系统电路中的器件损毁的情况。所以务必要保护好仪器的测量系统。有些型号的仪器测量系统置于分光室内部ئ一般情况下不需考虑。但世掘如出现真空泵油倒吸等情况ئ需立即和仪器生产商的技术支持联系。
2.红外光谱常识
红外光谱原理概述

红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面宴谨的分析测定中都有十分广泛的应用。

红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。

由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。

分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库。

人们只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份。

当代红外光谱技术的发展已使红外光谱的意义远远超越了对样品进行简单的常规测试并从而推断化合物的组成的阶段。红外光谱仪与其它多种测试手段联用衍生出许多新的分子光谱领域,例如,色谱技术与红外光谱仪联合为深化认识复杂的混合物体系中各种组份的化学结构创造了机会;把红外光谱仪与显微镜方法结合起来,形成红外成像技术,用于研究非均相体系的形态结构,由于红外光谱能利用其特征谱带有效地区分不同化合物,这使得该方法具有其它方法难以匹敌的化学反差。
3.直读光谱仪的原理是什么
首先我们先看下直读光谱仪基本原理:金属试样与电极之间进行电弧。由于被测分析试样激发后产生的光通过聚光透镜由入口狭缝进入,导向凹面衍射光栅上,只读取在凹面光栅上分光的光中所需的光谱线,使用仪器上的光电倍增管或CCD将光转化成电流。由此产生的光谱进行光电测定,进行需测元素的定量方法。

由此看出, 直读光谱仪被测样在规定条件内可一次性快速检测出欲知的所有元素百分比含量,而且通过可靠可控的物理方法(光电转换)实行快速、精准之亮点!适用于较宽的波长范围;光电倍增管对信号放大能力强,对强弱不同谱线可用不同的放大倍率,相差可达10000倍,因此它可用同一分析条件对样品中多种含量 范围差别很大的元素同时进行分析;线性范围宽,更可做高含量分析,所以检测范围宽广。

相对于传统分析法而言,直读光谱仪测试方法的优点是快速、准确、高效。该方法可以直接固体进样,不用进行化学消解,可以减少消解过程以及定容过程所带来的人为误差; 智能软件可实行“傻瓜式”的人性化操作,仪器校准、曲线标定、标准化、数据统计、材质分类等功能强大
4.直读光谱仪的介绍
直读光谱仪,英文名为OES(Optical Emission Spectrometer),即原子发射光谱仪1。二战后,由于欧洲重建,市场对钢铁检测有巨大的需求,1947年贝尔德公司最先采用光电倍增管和真空泵技术,并以此来检测钢铁中的非金属元素。六十年代光电直读光谱仪,随着计算机技术的发展开始迅速发展,1964年ARL公司展示一套数字计算和控制读出系统。由于计算机技术的发展,电子技术的发展,电子计算机的小型化及微处理机的出现和普及,成本降低等原因、于上世纪的七十年代光谱仪器几乎100%地采用计算机控制,这不仅提高了分析精度和速度,而且对分析结果的数据处理和分析过程实现自动化控制。1随着20世纪80年代计算机技术和软件技术的发展,直读光谱仪发展迅速。
5.光谱仪原理
根据色散元件的原理,光谱仪可分为棱镜光谱仪、衍射光栅光谱仪和干涉光谱仪。光学多通道分析仪(oma)是近几十年来发展起来的一种新型的具有光子探测器(ccd)和计算机控制的光谱分析仪。它集信息采集、处理和存储功能于一体。

oma不再使用感光乳胶,避免和消除了暗室处理和后期一系列繁琐的处理,测量工作从根本上改变了传统的光谱技术,大大改善了工作条件,提高了工作效率。

利用oma进行光谱分析,测量准确、快速、方便、灵敏、响应时间快、光谱分辨率高。测量结果可从显示屏上读出或由打印机和绘图仪立即输出。它已广泛应用于几乎所有的光谱测量、分析和研究工作,特别是在微弱和瞬态信号的检测中。

(3)锡的光电直读分析方法扩展阅读

一台典型的光谱仪主要由一个光学平台和一个检测系统组成。包括以下几个主要部分:

1、入射狭缝: 在入射光的照射下形成光谱仪成像系统的物点。

2、准直元件: 使狭缝发出的光线变为平行光。该准直元件可以是一独立的透镜、反射镜、或直接集成在色散元件上,如凹面光栅光谱仪中的凹面光栅。

3、色散元件: 通常采用光栅,使光信号在空间上按波长分散成为多条光束。

D. ICP-AES与光电直读光谱分析仪的区别是什么啊各自的优缺点是什么,请虫友们帮帮忙吧!!!!

老问题了。。。。。。
两种仪器原理相同,但是发射光谱原理;
不同点:
一、ICP必须是液体通过蠕动泵进样,即所有的样品都需要酸消解后才能分析;光电直读光谱分析的样品是块状金属,要仿弯孝求表面光洁并且具有一定的致密程度(例如中间合金就无法分析)
二、ICP分析范围包括:金属、非金属、固态、液态,单基本都需要前处理;光电直读只能分析块状金属
三、ICP与光电直读的分析时间大约都在1分钟之内,但ICP样品需要较长的前处理时间,所以ICP大多数时间主要用来成分分析,同时可以作为仲裁结果;直读光谱的前处理比较简单,所以分析速度快,可以作为生产的质量中间控制环节,单结果不能作为仲裁
四、标样,ICP可通过标准溶液配置标样,灵活性较强;光电直读因为是分析块状金属,所以标样也必须是块状的,所以标样相对来说灵活性差,基本上都需要购买,除非你单位有超强的实力可以自行制作

有不闹搏清楚的地方再补充吧,希望能帮到备稿你

E. 光电直读光谱仪适用分析哪些微量元素

直读光谱仪可以定性或者定量的分析金属基体中的非金属元素例如C,S,P,甚至N,也可以准确分析金属元素例如钛(Ti),钒(V),铬(Cr),锰(Mn),铁(Fe),钴(Co),镍(Ni),铜(Cu),兆仔锌(橡大Zn)族如汪,硒(Se),锆(Zr),铌(Nb),钼(Mo),钯(Pd),银(Ag)锡(Sn),锑(Sb),铪(Hf),钽(Ta),钨(W),铼(Re),铅(Pb),铋(Bi)等。

F. 氧化矿中锡用原子吸收的原理

原子吸收光谱法 测定 矿石 锡 引言:光度分析中原子吸收光谱法又称原子吸收分光光度法,简称原子吸收法。是基于蒸汽相中待测元素的基态原子对其共振辐射的吸收强度来测定试样中该元素含量的一种仪器分析方法。它是测定痕量和超痕量元素的有效方法。具有灵敏度高、干扰较少、选择性好、操作简便、快速、结果准确、可靠、应用范围广、仪器比较简单、价格较低廉等优点,而且可以使整个操作自动化,将试样溶液中的待测元素原子化,同时还要有一定光强稳定的光源,并能给出同种原子特征的光辐射,使之通过一定的待测之原子区域,从而测其吸光度,然后根据吸光度对标准溶液浓度的关系曲线:计算出试样中待测元素的含量,这种方法称为原子吸收光谱法。因此近年来发展迅速,是应用广泛的一种仪器分析新技术。它能测定几乎所有金属元素和一些类金属元素,此法已普遍应用于冶金、化工、地质、农业、医药卫生及生物等各部门,尤其在环境监测、食品卫生和生物机体中微量金属元素的测定中,应用日益广泛。 1. 概述:云锡集团公司所属矿山的锡矿以锡石为主,随着锡矿资源的不断开发,矿床贫化率不断加大,对新矿源的寻找及开发有着巨大的需求,对原矿的分析方法也提出了更多的要求。虽然在锡分析中有“碘量法”这种广泛而经典的分析方法,但对原矿,特别是低品位的原矿来说,碘量法有着一定的局限性,为此,本文拟对原子吸收分光光度法测锡作一些初步的讨论。目前原子吸收法已广泛应用于各个领域,对工业、农业、医药生、教学科研等发展起着积极的作用。随着原子吸收技术的发展,推动了原子吸收仪器的不断更新和发展,而其它科学技术进步,为原子吸收仪器的不断更新和发展提供了技术和物质基础。近年来,使用连续光源和中阶梯光栅,结合使用光导摄象管、二极管阵列多元素分析检测器,设计出李庆了微机控制的原子吸收分光光度计,为解决多元素同时测定开辟了新的前景。微机控制的原子吸收光谱系统简化了仪器结构,提高了仪器的自尘扰棚动化程度,改善了测定准确度,使原子吸收光谱法的面貌发生了重大的变化。联用技术(色谱-原子吸收联用、流动注射-原子吸收联用)日益受到人们的重视。色谱-原子吸收联用,不仅在解决元素的化学形态分析方面,而且在测定有机化合物的复杂混合物方面,都有着重要的用途,是一个很有前途的发展方向。锡的原子吸收分析方法有过许多研究和报告。1961年B.M.Gatahous等提出了用空气—乙炔富燃焰在锡的286.3nm共振线获得5ug/ml的测锡特征浓度。后来有人用长路吸收管在286.3nm处用氧—氢火焰测定过氧化氢中的锡,得到0.025ug/ml的特征浓度。1968年又报到了 用氧化亚氮-----乙炔火焰测定锡,得到特征浓度为1.6ug/ml。近年来又采用发生氢化物使锡分离测定的方法,提高了分析方法的选择性和灵敏度。国内原子吸收光谱法测定锡已广泛应用于各种物料分析举例于表1—1。序号 方法 分析物料 方法说明1 空气—乙炔火焰 矿石 过氧化钠或碘化铵分解2 空气—乙炔火焰 锡精矿 过氧化钠熔融分解,2%盐酸分解3 氧屏蔽空气—乙炔火焰 矿石 过氧化钠分解4 氩—氢火焰 矿石 过氧化钠熔矿,盐酸—柠檬派则酸—抗坏血酸介质,氨基硫脲,辛可宁,亚硝基红盐作掩蔽剂5 氩—氢火焰 矿石 过氧化钠分解,苯萃取,氢氧化钠溶液反萃2.原子吸收光谱法的基本原理2.1原子吸收光谱概述:当有辐射通过自由原子蒸气,且入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子就要从辐射场中吸收能量,产生共振吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。2.2原子吸收光谱的产生条件:①辐射能:hν=Eu-E0②存在有效的吸光质点,即基态原子。基于样品中的基态原子对该元素的特征谱线的吸收程度来测定待测元素的含量。一般情况下原子都是处于基态的。当特征辐射通过原子蒸气时,基态原子从辐射中吸收能量,最外层电子由基态跃迁到激发态。原子对光的吸收程度取决于光程内基态原子的浓度。在一般情况下,可以近似的认为所有的原子都是处于基态。因此,根据光线被吸收后的减弱程度就可以判断样品中待测元素的含量。这就是原子吸收光谱法定量分析的理论基础。2.3原子吸收光谱的特点 :原子吸收光谱法是依椐处于气态的被测元素基态原子对该元素的原子共振辐射有强烈的吸收作用而建立的。该法具有检出限低准确度高,选择性好,分析速度快等优点。吸光度(A)与样品中该元素的浓度(C)成正比。即 A=KC 式中,K为常数。据此,通过测量标准溶液及未知溶液的吸光度,又巳知标准溶液浓度,可作标准曲线,求得未知液中待测元素浓度。2.4原子吸收光谱法结果的计算:它采用的是标准曲线法,标准加入法,内标法等。其中标准曲线法和标准加入法应用较多。标准曲线法是用于共存组分不干扰的试样。标准加入法又称增量法或直线外推法,是一种常用来消除基体干扰的测定方法,它是用于数量不多的试样分析。在本论文中,具体使用标准曲线法。其法是配制不同浓度的标准溶液系列,由低浓度到高浓度依次分析,将获得的吸光度对浓度作标准曲线。在相同条件下,测定待测样品的吸光度,在标准曲线上查出对应的浓度值。本法应注意以下几点:①所配制的标准溶液的浓度,应在吸光度与浓度呈直线关系的范围内。②标准溶液与样品溶液都应进行相同的预处理。③应该扣除空白值。④在整个分析过程中操作条件应保持不变。3.原子吸收光谱法测锡的条件选择原子吸收法测锡,是基于锡的基态原子对光源辐射出的锡的特征共振线吸收程度进行测量的方法。原子荧光分析则是通过测锡的蒸气在辐射能激发下所产生的荧光发射强度,以测定锡含量。锡的最灵敏吸收线波长为224.6nm,次灵敏吸收线波长为286.3,284.0,270.6nm等。火焰原子吸收光谱法测定矿石中锡含量则是在原子吸收光谱仪上,吸入锡一TOPO-MIBK至氧化亚氮一乙炔火焰中,于波长 286. 3 nm处进行测量。原子吸收光谱法测定锡最佳条件选择:(1)吸收波长的选择:通常选择该种元素的共振线作为分析线。(2)空心阴极灯工作条件的选择:空心阴极灯预热时间应在15分钟以上,辐射的锐线光才能稳定。灯工作电流为最大工作电流的(5~10mA)40%~60%。(3)火焰原子化操作条件的选择:为保持高的原子化效率,试液喷雾时的提升量约为4~6毫升每分,雾化率达10%,根据被测元素的性质来选择合适的火焰。为提高测定灵敏度,可适当调节燃烧器火焰的高度及它与入射光轴的角度。(4)光谱通带的选择:光谱通带通常为0.1~5mm。(5)光电倍灯管负高压的选择:工作电压约为最大工作电压的1/3~2/3,保持有较好的稳定性和高的信噪比。.原子吸收光谱法的干扰及消除干扰;原子吸收法中的干扰效应,按其性质与产生原因,大致可分为光谱干扰,电离干扰,化学干扰,物理干扰,化学干扰。4.1光谱干扰:(1)在测定波长附近有单色器不能分离的待测元素的邻近线 ——减小狭缝宽度(2)灯内有单色器不能分离的非待测元素的辐射 ——高纯元素灯(3) 待测元素分析线可能与共存元素吸收线十分接近——另选分析线或化学分离。4.2电离干扰:待测元素在高温原子化过程中因电离作用而引起基态原子数减少的干扰(主要存在于火焰原子化中)电离作用大小与: ①待测元素电离电位大小有关——一般:电离电位< 6 ev , 易发生电离 ②火焰温度有关——火焰温度越高,越易发生电离。消除方法: ⑴ 加入大量消电离剂,如 NaCl 等; ⑵控制原子化温度。4.3物理干扰:由于溶质或溶剂的性质(粘度、表面张力、蒸汽压等)发生变化使喷雾效率及原子化程度变化的效应(使结果偏低)抑制方法: ①标准加入法(基体组成一致); ②加入表面活性剂(0.5% HNO3 + 0.5% triton 100)。4.4化学干扰:定义:待测元素不能从它的化合物中全部离解出来或与共存组分生成难离解的化合物氧化物、氮化物、氢氧化物、碳化物等。4.4.1各类影响:(1)酸类和盐类的影响:5%的盐酸以及10%的硝酸,高氯酸对锡224.6nm谱线没有影响,而硫酸硝酸对锡的测定有干扰,使锡的吸收值降低:对锡的286.3nm谱线,20%的盐酸高氯酸以及10%的硝酸和5%的氟硼酸无干扰,若用氢化物发生原子吸收测定矿石中微量锡时情况就不同。酸度对锡的测定有影响有严格控制。因吸收值随酸度的增大而下降,一般控制酸度在≤0.1mol/l为宜。在氢火焰中硫酸盐和磷酸盐显着降低锡的吸收,而在乙炔火焰中使锡的吸收值略增加。硝酸盐在氢火焰和乙炔火焰中都降低锡的吸收值。(2)有机溶剂的影响:有机溶剂在原子吸收光谱法测定锡中有熄灭效应,酮和丁酮使锡的吸收值下降,丁酮和丙酮降低的更严重,醇类也是如此。当便用醇类为萃取剂时发现烃链上开为正丁醇时,锡的吸收值剧烈下降。(3)元素的干扰:许多阳离子对锡的测定有影响,如:100ug的铅.铜.锌和镍单独或组合存在时,在空气乙炔火焰中的干扰<3%,500ug的钠在空气氢火焰中降低锡的吸收值15%,而在空气乙炔火焰中又无正干扰。大多数的碱金属和过渡金属都增大锡的吸收值,各种碱金属都增大锡的吸收值,各种碱金属产生严重的偏低效应,其中铁的影响最大,它的化合物中又以三氯化铁的干扰最为严重。金属元素的离子化干扰和溶解物的气化干扰以及锡本身在空气氢火焰或者空气乙炔火焰中有20%的锡原子呈离子状态,导致锡有更高的电离电位,就有可能产生锡的化学离子化,这些都会引起锡原子的吸收波动从而产生正的或者负的偏差。4.4.2各类干扰的消除:﹙1﹚.酸类的影响一般是通过试验进行选择,在不影响锡的测定结果下,采用一定的酸度范围加以严格控制。特别是采用氢化物原子吸收法测定,控制酸度更为重要。﹙2﹚其他元素的干扰采用下列方法消除:a.在达到测定锡的灵敏度前提下,控制称样量,使其共存元素不干扰测定。b.在被测元素的标准溶液中加入同样的干扰元素,此法主要用于消除基体的干扰。c.分离后测定,用氟化铵—碘化铵升华法,然后用盐酸处理升华物再进行测定、萃取分

G. 检测钢铁中各化学成分的方法

主要成分铁可以用氧化还原滴定
其他微量成分可以用原子吸收光谱

阅读全文

与锡的光电直读分析方法相关的资料

热点内容
检测大分子蛋白质的方法 浏览:664
如何创建新的教学方法 浏览:893
痘印快速消除的方法 浏览:905
用白醋美白的正确方法 浏览:207
一楼楼顶漏水用什么方法解决 浏览:711
快速切红辣椒方法 浏览:702
格兰仕微电脑压力锅顶盖拆卸方法 浏览:446
猪脚卤水制作方法视频 浏览:979
养青斑鱼的方法和技巧 浏览:919
训练气质的方法 浏览:852
脊柱损伤治疗新方法和新药物 浏览:508
串钩主线与子线无结连接方法 浏览:83
取消电脑开机密码的方法 浏览:918
楼地面工程施工方法有哪些 浏览:74
铜线安全计算方法 浏览:448
家庭地瓜种植方法 浏览:787
简述继电器工作状态的检测方法 浏览:378
吉利远景皮带异响解决方法 浏览:714
销售品种多用什么方法计算成本 浏览:585
洋葱的种植技术和方法视频播放 浏览:740