‘壹’ 不能超前超纲,数学学而思还教什么
如何学好初中数学兼谈解题方法和技巧
在小学的学习中,同学们经历了数学的启蒙学习,初步体会到了数学的学习方法和学习乐趣。现在到了初中,数学的学习无论是深度还是广度上都和小学的学习有很大的不同,不仅如此,初中数学的学习的好坏对于高中数学学习的好坏有着至关重要的影响,因此学好初中数学非常的重要,同时初中的数学学习有其独特的学习方法。
我记得我自己在学习初中数学的时候,刚开始的时候由于方法不得当,学习成绩不是很理想,但是我不断的总结自己学习的缺点,努力改善学习方法和解题思路,最后终于如愿以偿的取得了自己理想的成绩,同时在初中的各种数学竞赛中连创佳绩,更重要的是,我在学习数学的过程中,体会到了学习的乐趣,寓学于乐,十分轻松!
现在我把我在学习初中数学的方法和大家分享,期望对于我们学员学习数学有所帮助。
一、注重数学基础知识的学习和积累:努力做到课前仔细预习,课上认真听讲,课后及时复习。
一直以来,很多同学很不在乎学习数学的基础知识,认为基础知识在解题时用不上,尤其是数学的概念,定义和定理在考试的时候也不会直接考到,学了也不会有用。其实这种想法是一个非常致命的错误,咱们有很多的同学,学习能力很强,也很聪明,就是在学习中忽视了基础知识的学习,没有抓住学习的重点,最后非常遗憾的没有学好数学。其实,在中考中,大概有80%的题目都是直接或者间接的和基础知识有关系,而只有20%才是我们所谓的难题,但是即使这些难题也都是由很多基础的题目综合而来的,所以要想学好数学,首先应该也是必须要学好数学的基础知识。
那么怎样学习基础知识呢,我的方法是课前预习,课中听讲,课后复习,只要这三个方面坚持不懈的结合起来,我相信最后一定能提高咱们学员的数学成绩。
二、培养和锻炼数学的解题方法和技巧:多做有针对性同时难度适当的同步练习,循序渐进,周而复始。
很多同学在学习数学的过程中非常的努力,也知道要做大量的习题,有的甚至还自觉规定每天的做题数量,但是最后数学成绩提高的也不是很明显。这是为什么呢?我想很大程度上是由于咱们同学所作的习题没有针对性,对于做题,我的观点是不仅要做题,还要做好题,在这里我想说渗棚的是我们学而思的练习都是经过各个老师精挑细选的习题,又经过无数学员的检验,可以说是非常有针对性,当然啦现在书店中很多习题资料也很不错,希望大家能仔细挑选。同时,不仅要做针对性练习,更重要的是要对做过的习题不断的总结和反思,总结自己为什么做错了,错在哪里啦,那么正确的思路又是什么呢等等,只要经过这样的反复思考,我相信咱们学员的学习成绩一定会有一个很大的提高。
总之,以上两点是学习数学和学好数学很重要的思路和方法,有点同学觉得怎么这么少,方法就是这样简单,不可能吧,其实我们任何复杂的学习过程只要掌握正确的学习方法,都会变得很简单,因为简单就是美,所以真诚的希望蚂稿同学们能够在学习数学的过程中学习快乐,成绩理想!
初二学生怎样才能学好初中数学
2009-04-22 15:11 来源:网络转载 作者:佚名 [打印] [评论]
数学是一门基础学科,对于广大中学生来说,数学水平的高低,直接影响到物理、化学等学科的学习成绩,数学的重要地位由此可见。
怎样才可以学好数学呢?
第一点,深刻理解概念。
概念是数学的基石,学习概念(包括定理、性质)不仅要知其然,还要知其所以然,许多同学只注重记概念,而忽视了对其背景的理解,这样是学不好数学的,对于每个定义、定理,我们必须在牢记其内闷喊孝容的基础上知道它是怎样得来的,又是运用到何处的,只有这样,才能更好地运用它来解决问题。
深刻理解概念,还需要多做一些练习,什么是“多做多练习”,怎样“多做练习”呢?
第二点,多看一些例题。
细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:1.不能只看皮毛,不看内涵。
我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。
2.要把想和看结合起来。
我们看例题,在读了题目以后,可以自己先大概想一下如何做,再对照解答,看自己的思路有哪点比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,总结经验。
3.各难度层次的例题都照顾到。
看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显着的好处:例题有现成的解答,思路清晰,只需我们循着它的思路走,就会得出结论,所以我们可以看一些技巧性较强、难度较大,自己很难解决,而又不超出所学内容的例题,例如中等难度的竞赛试题。
这样可以丰富知识,拓宽思路,这对提高综合运用知识的能力很有帮助。
学好数学,看例题是很重要的一个环节,切不可忽视。
第三点,多做练习。
要想学好数学,必须多做练习,但有的同学多做练习能学好,有的同学做了很多练习仍旧学不好,究其因,是“多做练习”是否得法的问题,我们所说的“多做练习”,不是搞“题海战术”。后者只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广,等等,还要真正掌握方法,切实做到以下三点,才能使“多做练习”真正发挥它的作用。
1.必须熟悉各种基本题型并掌握其解法。
课本上的每一道练习题,都是针对一个知识点出的,是最基本的题目,必须熟练掌握;课外的习题,也有许多基本题型,其运用方法较多,针对性也强,应该能够迅速做出。
许多综合题只是若干个基本题的有机结合,基本题掌握了,不愁解不了它们。
2.在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。
数学是思维的世界,有着众多思维的技巧,所以每道题在命题、解题过程中,都会反映出一定的思维方法,如果我们有意识地注重这些思维方法,时间长了头脑中便形成了对每一类题型的“通用”解法,即正确的思维定势,这时在解这一类的题目时就易如反掌了;同时,掌握了更多的思维方法,为做综合题奠定了一定的基础。
3.多做综合题。
综合题,由于用到的知识点较多,颇受命题人青睐。
做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。
“多做练习”要长期坚持,每天都要做几道,时间长了才会有明显的效果和较大的收获。
最后一点,我要说一说如何对待考试的问题。
学数学并非为了单纯的考试,但考试成绩基本上还是可以反映出一个人数学水平的高低、数学素质的好坏的,要想在考试中取得好的成绩,以下几个方面的素质是必不可少的。
首先,功夫用在平时,考前不搞突击,考试中需要掌握的内容应该在平时就掌握好,考试前一天晚上不搞疲劳战,一定要休息好,这样,在考场上才能有充沛的精力,考试时还要放下包袱,驱除压力,把注意力集中在试卷上,认真分析,严密推理。
其次,应试需要技巧,试卷发下来后,应先大致看一下题量,大概分配一下时间,做题时若一道题用时太多还未找到思路,可暂时放过去,将会做的做完,回头再仔细考虑,一道题目做完之后不要急于做下一道,要再看一遍,因为这时脑中思路还比较清晰,检查起来比较容易,对于有若干问的解答题,在解答后面的问题时可以利用前面问题的结论,即使前面的问题没有解答出来,只要说清这个条件的出处(当然是题目要求证明的),也是可以运用的,另外,对于试题必须考虑周全,特别是填空题,有的要注明取值范围,有的答案不只一个,一定要细心,不要漏掉。
最后,考试时要冷静,有的同学一遇到不会的题目,脑袋立刻热了起来,结果,心里一着急,自己本来会的也做不出来了,这种心理状态是考不出好成绩的,我们在考试时不妨用一用自我安慰的心理:我不会的题目别人也不会,(俗称精神胜利法)或许可以使心情平静,从而发挥出自己的最好水平,当然,安慰归安慰,对于那些一下子做不出的题目,还是要努力思考,尽量能做出多少就做多少,一定的步骤也是有分的。
初二数学学习方法
一、该记的记,该背的背,不要以为理解了就行
有的同学认为,数学不像英语、史地,要背单词、背年代、背地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。试想一下,小学的加、减、乘、除运算要不是背熟了“乘法九九表”,你能顺利地进行运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做9*9时用九个9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同样,是运用大家熟记的法则做出来的。同时,数学中还有大量的规定需要记忆,比如规定 (a≠0) 等等。因此,我觉得数学更像游戏,它有许多游戏规则(即数学中的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。因此,数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。比如大家熟悉的“整式乘法三个公式”,我看在座的有的背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,如果背不出这三个公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。
对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。
二、几个重要的数学思想
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度*时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
2、“数形结合”的思想
大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支枣-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。
3、“对应”的思想
“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在计算或化简中,将对应公式的左边,对应 a , y对应b ,再利用公式的右边直接得出原式的结果 即。这就是运用“对应”的思想和方法来解题。初二、初三我们还将看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。“对应”的思想在今后的学习中将会发挥越来越大的作用。
三、自学能力的培养是深化学习的必由之路
在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。
我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。我去佛山一中开家长会时,一中校长的一番话使我感触良多。他说:我是教物理的,学生物理学得好,不是我教出来的,而是他们自己悟出来的。当然,校长是谦虚的,但他说明了一个道理,学生不能被动地学习,而应主动地学习。一个班里几十个学生,同一个老师教,差异那么大,这就是学习主动性问题了。
自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。在老师讲新课前,能不能运用自己所学过的已掌握的旧知识去预习新课,结合新课中的新规定去分析、理解新的学习内容。由于数学知识的无矛盾性,你所学过的数学知识永远都是有用的,都是正确的,数学的进一步学习只是加深拓广而已。因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。有些同学为什么听老师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是因为没有预习,没有带着问题学,没有将“要我学”真正变为“我要学”,力求把知识变为自己的。学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。
四、自信才能自强
在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。你都没有动手去做,又怎么知道自己不会做呢?即使是老师,拿到一道难题,也不能立即答复你。也同样要先分析、研究,找到正确的思路后才向你讲授。不敢去做稍为复杂一点的题(不一定是难题,有些题只不过是叙述多一点),是缺乏自信心的表现。在数学解题中,自信心是相当重要的。要相信自己,只要不超出自己的知识范畴,不管哪道题,总是能够用自己所学过的知识把它解出来。要敢于去做题,要善于去做题。这就叫做“在战略上藐视敌人,在战术上重视敌人”。
具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做,其它的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。当然,做题先从哪儿下手是一件棘手的事,不一定找得准。但是,做题一定要抓住其特殊性则绝对没错。选择一个或几个条件作为解题的突破口,看由这个条件能得出什么,得出的越多越好,然后从中选择与其它条件有关的、或与结论有关的、或与题目中的隐含条件有关的,进行推理或演算。一般难题都有多种解法,条条大路通北京。要相信利用这道题的条件,加上自己学过的那些知识,一定能推出正确的结论。
数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。当然,题目做得多也有若干好处:一是“熟能生巧”,加快速度,节省时间,这一点在考试时间有限时显得很重要;一是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。
解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。
初二数学成绩下滑的原因
2009-04-23 16:17 来源:楚天都市报 作者:佚名 [打印] [评论]
初二是一个两极分化加剧的年级,成绩跟不上的同学往往畏惧数学,容易丢失自信心,成绩继续下滑。昨日,江岸区数学科带头人、解放中学数学高级教师蔡明智,做客武胜路新华书店,讲解化解这一难题的方法。近400位学生和家长到现场听课。
初一没学好,还可跟上去经过一年的初中学习,有的同学能很快适应初中教学,通过努力,进步很大;有的同学不大适应,自信心下降,与其他同学拉大了差距。
蔡明智说,有的同学简单地认为,初一年级数学没学好,就学不好初二数学,其实不然。即使以前没学好,但如果学好新知识,依然能运用这些知识完成相关习题。
他说,在学习初二数学的同时,把以前的知识好好补一补,成绩一样可以赶上去。
寻找分化原因,不可乱投医事实上,数学成绩“分化”有一个渐进的过程,每个学段都有不同的分化点,只是在初二特别明显。比如到初一下学期已经有了平面几何(相交线与平行线、三角形两章)、解析几何(平面直角坐标系的初步知识)的内容,对于部分逻辑思维能力和空间想象能力较弱的同学,学习这部分就会感到吃力,但此时的成绩可能不会有明显的退步,因为积累的问题还不算多。
‘贰’ 学而思各教材区别:秘籍、培优、内培优、大白本是什么
所谓大白本,我们会看到这一套书是1-6年级的数学练习册。只不过封面是白色的,大家称作为大白本。不过书内的内容是比较难的,据说相当于S或者S+班的难度。相当于奥数的内容,比我们常见的举一反三难度会高出很多。这个我们也可以理解,如果难度不大,也凸显不出来水平,普通的难易程度市面上一大堆。
《学而思秘籍》:学而思这个系列,把计算能力分解得非常细,简算方法、题型都总结得很经典。
学而思培优:使成绩提升册做的培养方法。
内培优:内部制度的培优方案。
可以理正链解学而思和猿辅导这些教培机构推出的这些书,毕竟他们多年的课研和实战教学经验中,就有他们的课程设计,直接将课内教培的内容出版书也是可以理解的,也是比较正常的知识输出。
因为老蒋没有买过这本书,所以也不好评价难度。但是我从他们的介绍可举姿孙以看到,应该是比较难的。达到奥数、培优的级别,题目都是从杯赛的原题真题出来的。
‘叁’ 该不该让孩子上学而思
学而思从创立初始走到今天,很多学员和我们共同走过了这几年的历程。在学而思迅速发展的今天,我们走访了在孩子学而思学习了三年的家长,看看他们对于学而思发展的观点,也听听他们给我们的建议。 1、孩子在学而思学习的时间以及提高的程度如何? 三年前,一个偶然的机会经孩子同学的介绍进入学而思寒假班,当时的心情就是为了让孩子利用暑假的时间好好预习下学期的知识,我女儿在班里排名在中等偏上,不是最优秀的。我们平时洞消都忙于生意上的事情,没有太多的时间照顾她。 之前我们请过家教,但是一对一的辅导,对我的孩子不是很适合,没有学习氛围,学习的兴趣也不高,孩子补了很长时间也没有效果,于是就放弃了。 自从进了学而思之后,孩子的成绩首先有所提高,学习也主动很多,同时孩子说学而思的学习氛围很好,同学们来自不同的重点学校,有很多的优点可以学习,同时她和班级里的很多同学互通学校考试信息。同学们之间你追我赶的,这就是我孩子的学习进步的很大一个原因。老师也很惊讶她的进步。我们很感谢学而思对孩子的培养。 2、请您谈谈学而思的优缺点以及对学而思的发展的一些意见 学而思的优点很多,首先是老师都很不错,都很尽职尽责。同时都很不辞辛苦败郑,下课了依然会不厌其烦的帮助孩子讲解难题。 其次,学而思的老师很会调动孩子学而思的积极性,经常拿出一些文具本子来奖励孩子。虽然这些本子,我们家长也可以给孩子买,但是意思不一样。我最高兴的就是孩子对我说:今天课堂上,老师又奖励了我一个本子。那是一种小小荣誉的象征,激励孩子不断进步。 再次,这里的课堂形成很好的学习风气和氛围,由家长让孩子学习转换成孩子自己乐于学习。 谈谈对学而思的发展的一些意见,我孩子已升为初一学生,比较后感触很深,尤其是英语课程的配置太单一,除了新概念英语别无选择,让我孩子学完PET课程的孩子目前在学而思找不到合适的英语培训班,重点中学英语试验班开班点也很少。 3、如果学而思进行扩张,您觉得我们应该注意哪些方面? 如果学而思扩张,我觉得首先师资要均匀,每个点都需要有优秀的教师。随着察颤颂学而思的不断大展壮大,希望学而思的老师依然保持高水平。 同时,不要盲目扩招,严格把关入学测试,让每个班里的孩子都可以均衡,不要有的孩子听明白了,有的还不懂,这样很耽误老师教学进程。 再次,选择教学点最好是选在交通方便的地方,这样家长送孩子上学也很方便。
‘肆’ 高思和学而思秘籍的区别
两者的区别在于分层不同,另外就是师资力量不同。
学而思分层相对高斯戚斗训练数学思维比较细,更便于同水平孩子在一起上课;高高并磨斯的也算比较细的了,其分层对于大多数人还是够用的。
但是学而思除高端体系的老师外,整体师资水平不如高斯。主要是原因是学而思今年上半年流失了不少老师,而且学而思扩张太快。
教学方式上来说,高思更系统细致一点,更加强调对基础知识的理解;学蔽乎而思超前更多。
‘伍’ 学而思秘籍是什么
学而思秘籍是一套学而思自己研发的练习册。学而思秘籍是一套学而思自己研发的练习册。学思秘籍的难度整体上还是比较大的,但是它的难度基本上没有特别的脱离学校的课标大纲,只是在出题方式上要比校内的练弯裤册习更难一些。
学而思秘籍内容简介
打破市面上做阅读题为主,纯游文末配同主题作文的死板套路,基于新课标读写能力分级,由阅读技巧入手,帮助孩子品味优秀文章妙处。逆向挖掘写作技巧,提升写作能力埋宏。
亮点介绍,阅读与写作双向结合,共同提高。由阅读技巧入手,再逆向拓展写作技巧,训练孩子们的读写能力。解题讲方法,学习有思维。阅读技巧中帮助孩子们梳理解题思路,训练解题思维;写作拓展帮助孩子们发现素材,熟练构思。
图文搭配,趣味学习。书中阿普这位老师带着孩子们学习知识与技巧,美图也可以激发你的学习兴趣哦。
‘陆’ 学而思周周学和学而思秘籍的区别
学而思周周学和学而思秘籍的区别如下:
难度不同:秘籍>周周学>校内。
版本不同:
秘籍:12级思维培养体系,将数学分为8大类,适用于所有版本。
周周学:紧跟课内进步,仅有12年级适用所有版本。
适用群体不同:秘籍更适合在数学方面较为突出的孩子,主要是训练数学思维。
《周周学》: 适合成绩在班级前80%的学生,内容方向是【考试做题方法】+【数学思维培养】。
这套书的难度仅次于大白盒,如果孩子平时成绩稳定且在95分之上,可以用这套书进行数学思维训练。
学而思秘籍从内容上分为7大主题,完美地覆盖了小学拦禅颂计算、整数、图形、应用、行程、组合、计数问简郑题,并给出高难度的综合问题,考察孩子学习情况。
‘柒’ 数学 学而思 思维训练 课内培优 计算秘籍 要都学吗
孩子的数学思维训练可从以下四个方面展开
1、转化型
这是解决问题遇到障碍,受阻时把问题由一种形式转换成另一腔贺册种形式,使问题变得更简单、更清楚,以利解决的思维形式。在教学中,通过该项训练,可以大幅度地提高学生解题能力。
2、系统型
这是把事物或问题作为一个系统从不同的层次或不同的角度去考虑的高级整体思维形式。在高年级除结合综合应用题以外还可编制许多智力训练题来培拍返养学生系统思维能力。
3、激化型
这是一种跳跃性、活泼性、转移性很强的思维形式。教师可通过速问速答来训练练伍宏学生。
4、类比型
这是一种对并列事物相似性的同实质进行识别的思维形式。这项训练可以培养学生思维的准确性。
‘捌’ 高斯导引和学而思的思维训练汇编哪个简单些
学而思。谨誉改
1、学而思秘籍是学而思自主研发出版的一套练习册,里面除了有大量的虚历练习题,还会有每一个课时的知识点总结。
2、整体上难度是比较适中的,每一次的练习中会有一两题拔高的题型。总之基本上还是贴近校内知识点的。
3、而高思的题型完全是以思维拓展奥数类的题型为主,难度上祥判肯定会比学而思秘籍要大很多。