① 医用多元统计分析方法实际中用处大吗
xxjxjxxjjxjzjjxjx
② 多元统计分析方法的作用是什么
多元统计分析方法的作用使实际工作者利用多元统计分析方法解决实际问题更简单方便。
如果每个个体有多个观测数据,或者从数学上说,如果个体的观测数据能表为P维欧几里得空间的点,那么这样的数据叫做多元数据,而分析多元数据的统计方法就叫做多元统计分析,它是数理统计学中的一个重要的分支学科。
典型相关分析
它是寻求两组变量各自的线性函数中相关系数达到最大值的一对,这称为第一对典型变量,还可以求第二对,第三对,等等,这些成对的变量,彼此是不相关的。各对的相关系数称为典型相关系数。通过这些典型变量所代表的实际含意,可以找到这两组变量间的一些内在联系。典型相关分析虽然30年代已经出现,但至今未能广泛应用。
③ 多元统计分析在处理数据什么方面有用
多元统计分析是针对复杂多变量 构建多元模型的,其中包括很多多元统计模型,比如多元回归、因子分析、logistic回归、对应分析等很多多元分析方法,以用来解决在实际当中的可能存在的不同的数据模型
④ 2 应用多元统计分析主要包括哪些分析方法
控制图,用来对过程状态进行监控,并可度量、诊断和改进过程状态。
直方图,是以一组无间隔的直条图表现频数分布特征的统计图,能够直观地显示出数据的分布情况。
排列图,又叫帕累托图,它是将各个项目产生的影响从最主要到最次要的顺序进行排列的一种工具。可用其区分影响产品质量的主要、次要、一般问题,找出影响产品质量的主要因素,识别进行质量改进的机会。
散布图,以点的分布反映变量之间相关情况,是用来发现和显示两组数据之间相关关系的类型和程度,或确认其预期关系的一种示图工具。
过程能力指数(Cpk),分析工序能力满足质量标准、工艺规范的程度。
频数分析,形成观测量中变量不同水平的分布情况表。
描述统计量分析,如平均值、最大值、最小值、范围、方差等,了解过程的一些总体特征。
相关分析,研究变量之间关系的密切程度,并且假设变量都是随机变动的,不分主次,处于同等地位。
回归分析,分析变量之间的相互关系。
当然,在质量管理中,还有很多常用的统计分析方法,在此不一一列举。
(盈飞无限)
⑤ 常用的多元分析方法
多元分析方法包括3类:
多元方差分析、多元回归分析和协方差分析,称为线性模型方法,用以研究确定的自变量与因变量之间的关系;判别函数分析和聚类分析,用以研究对事物的分类;主成分分析、典型相关和因素分析,研究如何用较少的综合因素代替为数较多的原始变量。
多元方差是把总变异按照其来源分为多个部分,从而检验各个因素对因变量的影响以及各因素间交互作用的统计方法。
判别函数是判定个体所属类别的统计方法。其基本原理是:根据两个或多个已知类别的样本观测资料确定一个或几个线性判别函数和判别指标,然后用该判别函数依据判别指标来判定另一个个体属于哪一类。
(5)多元统计分析方法与应用扩展阅读
多元分析方法的历史:
首先涉足多元分析方法是F.高尔顿,他于1889年把双变量的正态分布方法运用于传统的统计学,创立了相关系数和线性回归。
其后的几十年中,斯皮尔曼提出因素分析法,费希尔提出方差分析和判别分析,威尔克斯发展了多元方差分析,霍特林确定了主成分分析和典型相关。到20世纪前半叶,多元分析理论大多已经确立。
60年代以后,随着计算机科学的发展,多元分析方法在心理学以及其他许多学科的研究中得到了越来越广泛的应用。
⑥ 多元统计分析的简介
multivariate statistical analysis
研究客观事物中多个变量(或多个因素)之间相互依赖的统计规律性。它的重要基础之一是多元正态分析。又称多元分析 。 如果每个个体有多个观测数据,或者从数学上说, 如果个体的观测数据能表为 P维欧几里得空间的点,那么这样的数据叫做多元数据,而分析多元数据的统计方法就叫做多元统计分析 。 它是数理统计学中的一个重要的分支学科。20世纪30年代,R.A.费希尔,H.霍特林,许宝碌以及S.N.罗伊等人作出了一系列奠基性的工作,使多元统计分析在理论上得到迅速发展。50年代中期,随着电子计算机的发展和普及 ,多元统计分析在地质 、气象、生物、医学、图像处理、经济分析等许多领域得到了广泛的应用 ,同时也促进了理论的发展。各种统计软件包如SAS,SPSS等,使实际工作者利用多元统计分析方法解决实际问题更简单方便。重要的多元统计分析方法有:多重回归分析(简称回归分析)、判别分析、聚类分析、主成分分析、对应分析、因子分析、典型相关分析、多元方差分析等。
早在19世纪就出现了处理二维正态总体(见正态分布)的一些方法,但系统地处理多维概率分布总体的统计分析问题,则开始于20世纪。人们常把1928年维夏特分布的导出作为多元分析成为一个独立学科的标志。20世纪30年代,R.A.费希尔、H.霍特林、许宝禄以及S.N.罗伊等人作出了一系列奠基性的工作,使多元统计分析在理论上得到了迅速的进展。40年代,多元分析在心理、教育、生物等方面获得了一些应用。由于应用时常需要大量的计算,加上第二次世界大战的影响,使其发展停滞了相当长的时间。50年代中期,随着电子计算机的发展和普及,它在地质、气象、标准化、生物、图像处理、经济分析等许多领域得到了广泛的应用,也促进了理论的发展。
多元分析发展的初期,主要讨论如何把一元正态总体的统计理论和方法推广到多元正态总体。多元正态总体的分布由两组参数,即均值向量μ(见数学期望)和协方差矩阵(简称协差阵)∑ (见矩)所决定,记为Np(μ,∑)(p为分布的维数,故又称p维正态分布或p 维正态总体)。设X1,X2,…,Xn为来自正态总体Np(μ,∑)的样本,则μ和∑的无偏估计(见点估计)分别是
和
分别称之为样本均值向量和样本协差阵,它们是在各种多元分析问题中常用的统计量。样本相关阵R 也是一个重要的统计量,它的元素为
其中υij为样本协差阵S的元素。S的分布是维夏特分布,它是一元统计中的Ⅹ2分布的推广。
另一典型问题是:假定两个多维正态分布协差阵相同,检验其均值向量是否相同。设样本X1,X2,…,Xn抽自正态总体Np(μ1,∑),而Y1,Y2,…,Ym抽自Np(μ2,∑),要检验假设H 0:μ1=μ2(见假设检验)。在一元统计中使用t统计量(见统计量)作检验;在多元分析中则用T2统计量,
,其中,
,
·
,T2的分布称为T2分布。这是H.霍特林在1936年提出来的。
在上述问题中的多元与一元相应的统计量是类似的,但并非都是如此。例如,要检验k个正态总体的均值是否相等,在一元统计中是导致F统计量,但在多元分析中可导出许多统计量,最着名的有威尔克斯Λ统计量和最大相对特征根统计量。研究这些统计量的精确分布和优良性是近几十年来多元统计分析的重要理论课题。
多元统计分析有狭义与广义之分,当假定总体分布是多元正态分布时,称为狭义的,否则称为广义的。近年来,狭义多元分析的许多内容已被推广到更广的分布之中,特别是推广到一种称为椭球等高分布族之中。
按多元分析所处理的实际问题的性质分类,重要的有如下几种。 简称回归分析。其特点是同时处理多个因变量。回归系数和常数的计算公式与通常的情况相仿,只是由于因变量不止一个,原来的每个回归系数在此都成为一个向量。因此,关于回归系数的检验要用T2统计量;对回归方程的显着性检验要用Λ统计量。
回归分析在地质勘探的应用中发展了一种特殊的形式,称为趋势面分析,它以各种元素的含量作为因变量,把它们对地理坐标进行回归(选用一次、二次或高次的多项式),回归方程称为趋势面,反映了含量的趋势。残差分析是趋势面分析的重点,找出正的残差异常大的点,在这些点附近,元素的含量特别高,这就有可能形成可采的矿位。这一方法在其他领域也有应用。 由 k个不同总体的样本来构造判别函数,利用它来决定新的未知类别的样品属于哪一类,这是判别分析所处理的问题。它在医疗诊断、天气预报、图像识别等方面有广泛的应用。例如,为了判断某人是否有心脏病,从健康的人和有心脏病的人这两个总体中分别抽取样本,对每人各测两个指标X1和X2,点绘如图 。可用直线A将平面分成g1和g2两部分,落在g1的绝大部分为健康者,落在g2的绝大部分为心脏病人,利用A的垂线方向l=(l1,l2)来建立判别函数
y=l1X1+l2X2,可以求得一常数с,使 y<с 等价于(X1,X2)落在g1,y>с等价于(X1,X2)落在g2。由此得判别规则:若,l1X1+l2X2<c
判,即此人为健康者;若,l1X1+l2X2>C
判,
即此人为心脏病人;若,l1X1+l2X2=c则为待判。此例的判别函数是线性函数,它简单方便,在实际问题中经常使用。但有时也用非线性判别函数,特别是二次判别函数。建立判别函数和判别规则有不少准则和方法,常用的有贝叶斯准则、费希尔准则、距离判别、回归方法和非参数方法等。
无论用哪一种准则或方法所建立的判别函数和判别规则,都可能产生错判,错判所占的比率用错判概率来度量。当总体间区别明显时,错判概率较小;否则错判概率较大。判别函数的选择直接影响到错判概率,故错判概率可用来比较不同方法的优劣。
变量(如上例中的X1和X2)选择的好坏是使用判别分析的最重要的问题,常用逐步判别的方法来筛选出一些确有判别作用的变量。利用序贯分析的思想又产生了序贯判别分析。例如医生在诊断时,先确定是否有病,然后确定是哪个系统有病,再确定是什么性质的病等等。 又称数值分类。聚类分析和判别分析的区别在于,判别分析是已知有多少类和样本来自哪一类,需要判别新抽取的样本是来自哪一类;而聚类分析则既不知有几类,也不知样本中每一个来自哪一类。例如,为了制定服装标准,对 N个成年人,测量每人的身高(x1)、胸围(x2)、肩宽(x3)、上体长(x4)、手臂长(x5)、前胸(x6)、后背(x7)、腰围(x8)、臀围(x9)、下体长(x10)等部位,要将这N个人进行分类,每一类代表一个号型;为了使用和裁剪的方便,还要对这些变量(x1,x2,…,x10)进行分类。聚类分析就是解决上述两种分类问题。
设已知N个观测值X1,X2,…,Xn,每个观测值是一个p维向量(如上例中人的身高、胸围等)。聚类分析的思想是将每个观测值Xi看成p维空间的一个点,在p维空间中引入“距离”的概念,则可按各点间距离的远近将各点(观测值)归类。若要对 p个变量(即指标)进行分类,常定义一种“相似系数”来衡量变量之间的亲密程度,按各变量之间相似系数的大小可将变量进行分类。根据实际问题的需要和变量的类型,对距离和相似系数有不同的定义方法。
按距离或相似系数分类,有下列方法。①凝聚法:它是先将每个观察值{Xi}看成一类,逐步归并,直至全部观测值并成一类为止,然后将上述并类过程画成一聚类图(或称谱系图),利用这个图可方便地得到分类。②分解法:它是先将全部观测值看成一类,然后逐步将它们分解为2类、3类、…、N类,它是凝聚法的逆过程。③动态聚类法:它是将观测值先粗糙地分类,然后按适当的目标函数和规定的程序逐步调整,直至不能再调为止。
若观察值X1,X2,…,Xn之间的次序在分类时不允许打乱,则称为有序分类。例如在地质学中将地层进行分类,只能将互相邻接的地层分成一类,不能打乱上下的次序。用于这一类问题中的重要方法是费希尔于1958年提出的最优分割法。
聚类分析也能用于预报洪水、暴雨、地震等灾害性问题,其效果比其他统计方法好。但它在理论上还很薄弱,因为它不象其他方法那样有确切的数学模型。 又称主分量分析,是将多个变量通过线性变换以选出较少个数重要变量的一种方法。设原来有p个变量x1,x2,…,xp,为了简化问题,选一个新变量z,
,
要求z尽可能多地反映p个变量的信息,以此来选择l1,l2,…,lp,当l1,l2,…,lp选定后,称z为x1,x2,…,xp的主成分(或主分量)。有时仅一个主成分不足以代表原来的p个变量,可用q(<p)个互不相关的呈上述形式的主成分来尽可能多地反映原p个变量的信息。用来决定诸系数的原则是,在
的约束下,选择l1,l2,…,lp使z的方差达到最大。
在根据样本进行主成分分析时又可分为R型分析与Q型分析。前者是用样本协差阵(或相关阵)的特征向量作为线性函数的系数来求主成分;后者是由样品之间的内积组成的内积阵来进行类似的处理,其目的是寻找出有代表性的“典型”样品,这种方法在地质结构的分析中常使用。 它是由样本的资料将一组变量
y2,……yp)
分解为一些公共因子f与特殊因子s的线性组合,即有常数矩阵A使у=Af+s。公共因子f 的客观内容有时是明确的,如在心理研究中,根据学生的测验成绩(指标)来分析他的反应快慢、理解深浅(公共因子);有时则是不明确的。为了寻求易于解释的公共因子,往往对因子轴进行旋转,旋转的方法有正交旋转,斜旋转,极大变差旋转等。
从样本协差阵或相关阵求公共因子的方法有广义最小二乘法、最大似然法与不加权的最小二乘法等。通常在应用中,最方便的是直接利用主成分分析所得的头几个主成分,它们往往是对各个指标影响都比较大的公共因子。 它是寻求两组变量各自的线性函数中相关系数达到最大值的一对,这称为第一对典型变量,还可以求第二对,第三对,等等,这些成对的变量,彼此是不相关的。各对的相关系数称为典型相关系数。通过这些典型变量所代表的实际含意,可以找到这两组变量间的一些内在联系。典型相关分析虽然30年代已经出现,但至今未能广泛应用。
上述的各种方法可以看成广义多元分析的内容,在有些方法中,如加上正态性的假定,就可以讨论一些更深入的问题,例如线性模型中有关线性假设检验的问题,在正态的假定下,就有比较系统的结果。 多元分析也可按指标是离散的还是连续的来区分,离散值的多元分析实质上与列联表分析有很大部分是类似的,甚至是一样的。
非数量指标数量化的理论和方法也是广义多元分析的一个重要的研究课题。
⑦ 多元统计分析方法中的典型相关分析有什么实际应用
可以通过一种产品推测另外一种产品的销售量。如果相关密切,用途大了。如:想知道一个地区的猪只多少,只要去饲料门市了解销售量即可!
⑧ 急求《应用多元统计分析方法》的中文版!!!
1. 因子分析模型
因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。
因子分析的基本思想:
把每个研究变量分解为几个影响因素变量,将每个原始变量分解成两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子
因子分析模型描述如下:
(1)X = (x1,x2,…,xp)¢是可观测随机向量,均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现)。
(2)F = (F1,F2,…,Fm)¢ (m<p)是不可测的向量,其均值向量E(F)=0,协方差矩阵Cov(F) =I,即向量的各分量是相互独立的。
(3)e = (e1,e2,…,ep)¢与F相互独立,且E(e)=0, e的协方差阵∑是对角阵,即各分量e之间是相互独立的,则模型:
x1 = a11F1+ a12F2 +…+a1mFm + e1
x2 = a21F1+a22F2 +…+a2mFm + e2
………
xp = ap1F1+ ap2F2 +…+apmFm + ep
称为因子分析模型,由于该模型是针对变量进行的,各因子又是正交的,所以也称为R型正交因子模型。
其矩阵形式为: x =AF + e .
其中:
x=,A=,F=,e=
这里,
(1)m £ p;
(2)Cov(F,e)=0,即F和e是不相关的;
(3)D(F) = Im ,即F1,F2,…,Fm不相关且方差均为1;
D(e)=,即e1,e2,…,ep不相关,且方差不同。
我们把F称为X的公共因子或潜因子,矩阵A称为因子载荷矩阵,e 称为X的特殊因子。
A = (aij),aij为因子载荷。数学上可以证明,因子载荷aij就是第i变量与第j因子的相关系数,反映了第i变量在第j因子上的重要性。
2. 模型的统计意义
模型中F1,F2,…,Fm叫做主因子或公共因子,它们是在各个原观测变量的表达式中都共同出现的因子,是相互独立的不可观测的理论变量。公共因子的含义,必须结合具体问题的实际意义而定。e1,e2,…,ep叫做特殊因子,是向量x的分量xi(i=1,2,…,p)所特有的因子,各特殊因子之间以及特殊因子与所有公共因子之间都是相互独立的。模型中载荷矩阵A中的元素(aij)是为因子载荷。因子载荷aij是xi与Fj的协方差,也是xi与Fj的相关系数,它表示xi依赖Fj的程度。可将aij看作第i个变量在第j公共因子上的权,aij的绝对值越大(|aij|£1),表明xi与Fj的相依程度越大,或称公共因子Fj对于xi的载荷量越大。为了得到因子分析结果的经济解释,因子载荷矩阵A中有两个统计量十分重要,即变量共同度和公共因子的方差贡献。
因子载荷矩阵A中第i行元素之平方和记为hi2,称为变量xi的共同度。它是全部公共因子对xi的方差所做出的贡献,反映了全部公共因子对变量xi的影响。hi2大表明x的第i个分量xi对于F的每一分量F1,F2,…,Fm的共同依赖程度大。
将因子载荷矩阵A的第j列( j =1,2,…,m)的各元素的平方和记为gj2,称为公共因子Fj对x的方差贡献。gj2就表示第j个公共因子Fj对于x的每一分量xi(i= 1,2,…,p)所提供方差的总和,它是衡量公共因子相对重要性的指标。gj2越大,表明公共因子Fj对x的贡献越大,或者说对x的影响和作用就越大。如果将因子载荷矩阵A的所有gj2 ( j =1,2,…,m)都计算出来,使其按照大小排序,就可以依此提炼出最有影响力的公共因子。
3. 因子旋转
建立因子分析模型的目的不仅是找出主因子,更重要的是知道每个主因子的意义,以便对实际问题进行分析。如果求出主因子解后,各个主因子的典型代表变量不很突出,还需要进行因子旋转,通过适当的旋转得到比较满意的主因子。
旋转的方法有很多,正交旋转(orthogonal rotation)和斜交旋转(oblique rotation)是因子旋转的两类方法。最常用的方法是最大方差正交旋转法(Varimax)。进行因子旋转,就是要使因子载荷矩阵中因子载荷的平方值向0和1两个方向分化,使大的载荷更大,小的载荷更小。因子旋转过程中,如果因子对应轴相互正交,则称为正交旋转;如果因子对应轴相互间不是正交的,则称为斜交旋转。常用的斜交旋转方法有Promax法等。
4.因子得分
因子分析模型建立后,还有一个重要的作用是应用因子分析模型去评价每个样品在整个模型中的地位,即进行综合评价。例如地区经济发展的因子分析模型建立后,我们希望知道每个地区经济发展的情况,把区域经济划分归类,哪些地区发展较快,哪些中等发达,哪些较慢等。这时需要将公共因子用变量的线性组合来表示,也即由地区经济的各项指标值来估计它的因子得分。
设公共因子F由变量x表示的线性组合为:
Fj = uj1 xj1+ uj2 xj2+…+ujpxjp j=1,2,…,m
该式称为因子得分函数,由它来计算每个样品的公共因子得分。若取m=2,则将每个样品的p个变量代入上式即可算出每个样品的因子得分F1和F2,并将其在平面上做因子得分散点图,进而对样品进行分类或对原始数据进行更深入的研究。
但因子得分函数中方程的个数m小于变量的个数p,所以并不能精确计算出因子得分,只能对因子得分进行估计。估计因子得分的方法较多,常用的有回归估计法,Bartlett估计法,Thomson估计法。
(1)回归估计法
F = X b = X (X ¢X)-1A¢ = XR-1A¢ (这里R为相关阵,且R = X ¢X )。
(2)Bartlett估计法
Bartlett估计因子得分可由最小二乘法或极大似然法导出。
F = [(W-1/2A)¢ W-1/2A]-1(W-1/2A)¢ W-1/2X = (A¢W-1A)-1A¢W-1X
(3)Thomson估计法
在回归估计法中,实际上是忽略特殊因子的作用,取R = X ¢X,若考虑特殊因子的作用,此时R = X ¢X+W,于是有:
F = XR-1A¢ = X (X ¢X+W)-1A¢
这就是Thomson估计的因子得分,使用矩阵求逆算法(参考线性代数文献)可以将其转换为:
F = XR-1A¢ = X (I+A¢W-1A)-1W-1A¢
5. 因子分析的步骤
因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。
(i)因子分析常常有以下四个基本步骤:
(1)确认待分析的原变量是否适合作因子分析。
(2)构造因子变量。
(3)利用旋转方法使因子变量更具有可解释性。
(4)计算因子变量得分。
(ii)因子分析的计算过程:
(1)将原始数据标准化,以消除变量间在数量级和量纲上的不同。
(2)求标准化数据的相关矩阵;
(3)求相关矩阵的特征值和特征向量;
(4)计算方差贡献率与累积方差贡献率;
(5)确定因子:
设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标;
(6)因子旋转:
若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。
(7)用原指标的线性组合来求各因子得分:
采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。
(8)综合得分
以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。
F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm )
此处wi为旋转前或旋转后因子的方差贡献率。
(9)得分排序:利用综合得分可以得到得分名次。
在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题:
· 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子集合,从子集合所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。
· 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。
· 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。
如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子集合;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。
Rotated Component Matrix,就是经转轴后的因子负荷矩阵,
当你设置了因子转轴后,便会产生这结果。
转轴的是要得到清晰的负荷形式,以便研究者进行因子解释及命名。
SPSS的Factor Analysis对话框中,有个Rotation钮,点击便会弹出Rotation对话框,
其中有5种因子旋转方法可选择:
1.最大变异法(Varimax):使负荷量的变异数在因子内最大,亦即,使每个因子上具有最高载荷的变量数最少。
2.四次方最大值法(Quartimax):使负荷量的变异数在变项内最大,亦即,使每个变量中需要解释的因子数最少。
3.相等最大值法(Equamax):综合前两者,使负荷量的变异数在因素内与变项内同时最大。
4.直接斜交转轴法(Direct Oblimin):使因素负荷量的差积(cross-procts)最小化。
5.Promax 转轴法:将直交转轴(varimax)的结果再进行有相关的斜交转轴。因子负荷量取2,4,6次方以产生接近0但不为0的值,借以找出因子间的相关,但仍保有最简化因素的特性。
上述前三者属于“直交(正交)转轴法”(Orthogonal Rotations),在直交转轴法中,因子与因子之间没有相关,因子轴之间的夹角等于90 度。后两者属于“斜交转轴”(oblique rotations),表示因子与因子之间彼此有某种程度的相关,因素轴之间的夹角不是90度。
直交转轴法的优点是因子之间提供的讯息不会重叠,受访者在某一个因子的分數与在其他因子的分數,彼此独立互不相关;缺点是研究迫使因素之间不相关,但这种情况在实际的情境中往往并不常存在。至于使用何种转轴方式,须视乎研究题材、研究目的及相关理论,由研究者自行设定。
在根据结果解释因子时,除了要看因子负荷矩阵中,因子对哪些变量呈高负荷,对哪些变量呈低负荷,还须留意之前所用的转轴法代表的意义。
2,主成分分析(principal component analysis)
将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。又称主分量分析。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。主成分分析首先是由K.皮尔森对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。
(1)主成分分析的原理及基本思想。
原理:设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。
基本思想:主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现再F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。
(2)步骤
Fp=a1mZX1+a2mZX2+……+apmZXp
其中a1i, a2i, ……,api(i=1,……,m)为X的协方差阵∑的特征值多对应的特征向量,ZX1, ZX2, ……, ZXp是原始变量经过标准化处理的值,因为在实际应用中,往往存在指标的量纲不同,所以在计算之前须先消除量纲的影响,而将原始数据标准化,本文所采用的数据就存在量纲影响[注:本文指的数据标准化是指Z标准化]。
A=(aij)p×m=(a1,a2,…am,),Rai=λiai,R为相关系数矩阵,λi、ai是相应的特征值和单位特征向量,λ1≥λ2≥…≥λp≥0 。
进行主成分分析主要步骤如下:
1. 指标数据标准化(SPSS软件自动执行);
2. 指标之间的相关性判定;
3. 确定主成分个数m;
4. 主成分Fi表达式;
5. 主成分Fi命名;
选用以上两种方法时的注意事项如下:
1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。
2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。
3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。
4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。
5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。
总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(rece dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。
在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分)。
(1)了解如何通过SPSS因子分析得出主成分分析结果。首先,选择SPSS中Analyze-Data Rection-Factor…,在Extraction…对话框中选择主成分方法提取因子,选择好因子提取个数标准后点确定完成因子分析。打开输出结果窗口后找到Total Variance Explained表和Component Matrix表。将Component Matrix表中第一列数据分别除以Total Variance Explained表中第一特征根值的开方得到第一主成分表达式系数,用类似方法得到其它主成分表达式。打开数据窗口,点击菜单项的Analyze-Descriptive Statistics-Descriptives…,在打开的新窗口下方构选Save standardized values as variables,选定左边要分析的变量。点击Options,只构选Means,点确定后既得待分析变量的标准化新变量。
选择菜单项Transform-Compute…,在Target Variable中输入:Z1(主成分变量名,可以自己定义),在Numeric Expression中输入例如:0.412(刚才主成分表达式中的系数)*Z人口数(标准化过的新变量名)+0.212*Z第一产业产值+…,点确定即得到主成分得分。通过对主成分得分的排序即可进行各个个案的综合评价。很显然,这里的过程分为四个步骤:
Ⅰ.选主成分方法提取因子进行因子分析。
Ⅱ.计算主成分表达式系数。
Ⅲ.标准化数据。
Ⅳ.计算主成分得分。
我们的程序也将依该思路展开开发。
(2)对为何要将Component Matrix表数据除以特征根开方的解释
我们学过主成分分析和因子分析后不难发现,原来因子分析时的因子载荷矩阵就是主成分分析特征向量矩阵乘以对应特征根开方值的对角阵。而Component Matrix表输出的恰是因子载荷矩阵,所以求主成分特征向量自然是上面描述的逆运算。
成功启动程序后选定分析变量和主成分提取方法即可在数据窗口输出得分和在OUTPUT窗口输出主成分表达式。
3,聚类分析(Cluster Analysis)
聚类分析是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类的分析技术 。
在市场研究领域,聚类分析主要应用方面是帮助我们寻找目标消费群体,运用这项研究技术,我们可以划分出产品的细分市场,并且可以描述出各细分市场的人群特征,以便于客户可以有针对性的对目标消费群体施加影响,合理地开展工作。
4.判别分析(Discriminatory Analysis)
判别分析(Discriminatory Analysis)的任务是根据已掌握的1批分类明确的样品,建立较好的判别函数,使产生错判的事例最少,进而对给定的1个新样品,判断它来自哪个总体。根据资料的性质,分为定性资料的判别分析和定量资料的判别分析;采用不同的判别准则,又有费歇、贝叶斯、距离等判别方法。
费歇(FISHER)判别思想是投影,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。贝叶斯(BAYES)判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。所谓先验概率,就是用概率来描述人们事先对所研究的对象的认识的程度;所谓后验概率,就是根据具体资料、先验概率、特定的判别规则所计算出来的概率。它是对先验概率修正后的结果。
距离判别思想是根据各样品与各母体之间的距离远近作出判别。即根据资料建立关于各母体的距离判别函数式,将各样品数据逐一代入计算,得出各样品与各母体之间的距离值,判样品属于距离值最小的那个母体。
5.对应分析(Correspondence Analysis)
对应分析是一种用来研究变量与变量之间联系紧密程度的研究技术。
运用这种研究技术,我们可以获取有关消费者对产品品牌定位方面的图形,从而帮助您及时调整营销策略,以便使产品品牌在消费者中能树立起正确的形象。
这种研究技术还可以用于检验广告或市场推广活动的效果,我们可以通过对比广告播出前或市场推广活动前与广告播出后或市场推广活动后消费者对产品的不同认知图来看出广告或市场推广活动是否成功的向消费者传达了需要传达的信息。
⑨ SPSS多元统计分析方法及应用的内容简介
《SPSS多元统计分析方法及应用》在阐述了SPSS基本功能的基础上,着重对多元统计分析的各个方法,针对目前部分统计教材以及SPSS丛书存在的问题,以数据分析应用需求为主线,对假设检验、方差分析、非参数检验、回归分析、聚类分析、判别分析、主成分分析、因子分析、对应分析、时间序列分析、信度分析、联合分析、生存分析、神经网络分析和结构方程模型15类方法,按照实际数据分析步骤从基本原理到软件操作进行了深入浅出的论述。本书基于SPSS17.0版本,并在SPSS17.0软件操作后附以独立案例进行分析。本书以自然科学和社会科学各领域研究人员为主要对象,同时也可供相关专业本科生、研究生、专业统计分析人员以及管理决策者进行学习或参考。
⑩ 简述多元统计分析方法在spss中的操作步骤,在考试,跪谢
多元线性回归
1.打开数据,依次点击:analyse--regression,打开多元线性回归对话框。
2.将因变量和自变量放入格子的列表里,上面的是因变量,下面的是自变量。
3.设置回归方法,这里选择最简单的方法:enter,它指的是将所有的变量一次纳入到方程。其他方法都是逐步进入的方法。
4.等级资料,连续资料不需要设置虚拟变量。多分类变量需要设置虚拟变量。
虚拟变量ABCD四类,以a为参考,那么解释就是b相对于a有无影响,c相对于a有无影响,d相对于a有无影响。
5.选项里面至少选择95%CI。
点击ok。