导航:首页 > 研究方法 > 聚类分析方法的优劣势

聚类分析方法的优劣势

发布时间:2023-05-18 03:22:21

⑴ 聚类分析有什么

1、与多元分析的其他方法相比,聚类分析是很粗糙的,理论尚不完善,但由于它成功地应用于心理、经济、社会、管理、医学、地质、生态、地震、气象、考古、企业决策等,因此成了多元分析的重要方法,统计包中都有丰富的软件,对数据进行聚类处理。

2、聚类分析除了独立的统计功能外,还有一个辅助功能,就是和其他统计方法配合,对数据进行预处理。

例如,当总体不清楚时,可对原始数据进行聚类,根据聚类后相似的数据,各自建立回归分析,分析的效果会更好。同时如果聚类不是根据个案,而是对变量先进行聚类,聚类的结果,可以在每一类推出一个最有代表性的变量,从而减少了进入回归方程的变量数。

3、聚类分析是研究按一定特征,对研究对象进行分类的多闹拆元统计方法,它并不关心特征及变量间的因果关系。分类的结果,应使类别间个体差异大,而同类的个体差异相对要小。

(1)聚类分析方法的优劣势扩展阅读:

聚类效果的检验:

一、聚类分析后得到的每个类别是否可以进行有效的命名,每个类别的特征情况是否符合现实意义,如果研究者可以结合专业知识对每个聚类类别进行命名,即说明聚类效果良好,如果聚类类别无法进行命名,则需要考虑重新进行聚类分析。

二、使用判别分析方圆衫法进行判断,将SPSS生成的聚类类别变量作为因变量(Y),而将聚类变量作为自变量(X)进行判别分析,判别分析具体分析聚类变量与类别之间投影关系情况,如果研究人员对聚类分析效果非常在乎,可以使用判别分析进行分析。

三、聚类分析方法的详细过程说明,描述清楚聚类分析的科学使用过程,科学的聚类分析方法使用即是良好结果的前提保障。

是、聚类分析后每个类别样本数量是否均匀,如果聚类结果显示为三个类别,有一个类别样本量非常少,比如低于30,此时很可能说明橘弯腔聚类效果较差。针对聚类效果的判断,研究者主要是结合专业知识判断,即聚类类别是否可以进行有效命名。

⑵ 主成分分析,聚类分析,因子分析的基本思想以及他们各自的优缺点。

主成分分析与因子分析的区别

1. 目的不同: 因子分析把诸多变量看成由对每一个变量都有作用的一些公共因子和仅对某一个变量有作用的特殊因子线性组合而成,因此就是要从数据中控查出对变量起解释作用的公共因子和特殊因子以及其组合系数;主成分分析只是从空间生成的角度寻找能解释诸多变量变异的绝大部分的几组彼此不相关的新变量(主成分)。

2. 线性表示方向不同: 因子分析是把变量表示成各公因子的线性组合;而主成分分析中则是把主成分表示成各变量的线性组合。

3. 假设条件不同:主成分分析中不需要有假设;因子分析的假设包括:各个公共因子之间不相关,特殊因子之间不相关,公共因子和特殊因子之间不相关。

4. 提取主因子的方法不同:因子分析抽取主因子不仅有主成分法,还有极大似然法,主轴因子法,基于这些方法得到的结果也不同;主成分只能用主成分法抽取。

5. 主成分与因子的变化:当给定的协方差矩阵或者相关矩阵的特征值唯一时,主成分一般是固定的;而因子分析中因子不是固定的,可以旋转得到不同的因子。

6. 因子数量与主成分的数量:在因子分析中,因子个数需要分析者指定(SPSS根据一定的条件自动设定,只要是特征值大于1的因子主可进入分析),指定的因子数量不同而结果也不同;在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分(只是主成分所解释的信息量不等)。

7. 功能:和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势;而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这种情况也可以使用因子得分做到,所以这种区分不是绝对的。

1 、聚类分析

基本原理:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。

常用聚类方法:系统聚类法,K-均值法,模糊聚类法,有序样品的聚类,分解法,加入法。

注意事项:1. 系统聚类法可对变量或者记录进行分类,K-均值法只能对记录进行分类;

2. K-均值法要求分析人员事先知道样品分为多少类;

3. 对变量的多元正态性,方差齐性等要求较高。

应用领域:细分市场,消费行为划分,设计抽样方案等

2、判别分析

基本原理:从已知的各种分类情况中总结规律(训练出判别函数),当新样品进入时,判断其与判别函数之间的相似程度(概率最大,距离最近,离差最小等判别准则)。

常用判别方法:最大似然法,距离判别法,Fisher判别法,Bayes判别法,逐步判别法等。

注意事项:1. 判别分析的基本条件:分组类型在两组以上,解释变量必须是可测的;

2. 每个解释变量不能是其它解释变量的线性组合(比如出现多重共线性情况时,判别权重会出现问题);

3. 各解释变量之间服从多元正态分布(不符合时,可使用Logistic回归替代),且各组解释变量的协方差矩阵相等(各组协方方差矩阵有显着差异时,判别函数不相同)。

相对而言,即使判别函数违反上述适用条件,也很稳健,对结果影响不大。

应用领域:对客户进行信用预测,寻找潜在客户(是否为消费者,公司是否成功,学生是否被录用等等),临床上用于鉴别诊断。

3、 主成分分析/ 因子分析

主成分分析基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。

因子分析基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子。(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)

求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知)。

(实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计)

求解因子载荷的方法:主成分法,主轴因子法,极大似然法,最小二乘法,a因子提取法。

注意事项:1. 由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法;

2. 对于度量单位或是取值范围在同量级的数据,可直接求协方差阵;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分;

3.主成分分析不要求数据来源于正态分布;

4. 在选取初始变量进入分析时应该特别注意原始变量是否存在多重共线性的问题(最小特征根接近于零,说明存在多重共线性问题)。

5. 因子分析中各个公共因子之间不相关,特殊因子之间不相关,公共因子和特殊因子之间不相关。

应用领域:解决共线性问题,评价问卷的结构效度,寻找变量间潜在的结构,内在结构证实。

4、对应分析/最优尺度分析

基本原理:利用降维的思想以达到简化数据结构的目的,同时对数据表中的行与列进行处理,寻求以低维图形表示数据表中行与列之间的关系。

对应分析:用于展示变量(两个/多个分类)间的关系(变量的分类数较多时较佳);

最优尺度分析:可同时分析多个变量间的关系,变量的类型可以是无序多分类,有序多分类或连续性变量,并 对多选题的分析提供了支持。

5、典型相关分析

基本原理:借用主成分分析降维的思想,分别对两组变量提取主成分,且使从两组变量提取的主成分之间的相关程度达到最大,而从同一组内部提取的各主成分之间互不相关。

⑶ 模糊聚类分析方法与聚类分析法有哪些优点

模糊聚类(FCM)是聚类分析方法中的一种,是模糊数学融入K-means,对其进行改进。一般的划分算法,如K-means,是把数据划分到不相交的类中的。即每个数据通过计算最终都将属于一个且唯一一个聚类。然而客观世界中大量存在着界限并不分明的聚类问题。模糊聚类扩展了传统聚类的思想。FCM考虑一个靠近两个类边界的对象,它离其中的一个稍微近一些,如果对每一个对象和每一个类赋予一个权值,指明该对象属于该簇的程度(被称为隶属度),通过使用隶属,使得可以把每一个数据分配给所有的聚类,不同于传统的聚类方法,模糊聚类的结果使得每个数据最终可能属于多个聚类,每个数据对每个聚类分配一个隶属度。聚类的结果可以表示为一个模糊矩阵。实际上,就颤渗笑是为提高聚类的分类效果的一种改进方法。
另外,聚类分析的优势是通过树立的角度对数据做智能划分,免去人工划分的痛苦。同时,一个对象由若干种不同茄含性质的属性构成,通过聚类进行分类,为人喊塌们做决策提供参考。

⑷ 聚类分析法(CA)

3.2.3.1 技术原理

聚类分析又称群分析(CA),它是研究(对样品或指标)分类问题的一种多元统计方法。首先认为所研究的样品或指标(变量)之间存在着程度不同的相似性(亲疏关系),根据一批样品的多个观测指标具体找出一些能够度量样品或指标之间相似程度的统计量,以这些统计量为划分类型的依据,把一些相似程度较大的样品(或指标)聚合为一类,把另一些彼此之间相似程度较大的样品(或指标)聚合为另一类,根据分类对象不同,可分为对样品分类的Q型聚类分析和对指标分类的R型聚类分析两种类型。聚类分析可用SPSS软件直接实现,在水质时空变异、水化学类型分区中得到广泛的应用。聚类分析的功能是建立一种分类方法,它将一批样品或变量,按照它们在性质上的亲疏、相似程度进行分类,聚类分析的内容十分丰富,按其聚类的方法可分为以下几种:系统聚类法、调优法、最优分割法、模糊聚类法等。

聚类分析根据分类对象的不同又分为R型和Q型两大类,R型是对变量(指标)进行分类,Q型是对样品进行分类。为了对样品(或变量)进行分类,就必须研究它们之间的关系,描述样品间亲疏相似程度的统计量很多,目前用得最多的是距离和相似系数。距离方法主要有:闵科夫斯基(Minkowski)距离、绝对值距离、欧氏距离等。

样品间的亲疏程度除了用距离描述外,也可用相似系数来表示,相似系数的构造主要有以下两种方法:对于定量变量,我们通常采用的相似系数有xi和xj之间的夹角余弦和相关系数。

3.2.3.2 方法流程

目前使用最多的聚类方法是系统聚类法,其基本思想是:先将n个样品各自看成一类,共有n个类,然后计算类与类间的距离,选择距离最小的两类合并成一个新类,使总类数减少为n-1,接着再计算这n-1类两两间的距离,从中找出距离最近的两类合并,总类数又减少一个,剩下n-2个类,照此下去,每合并一次,减少一类,直至所有样品都合并成一类为止。在并类的过程当中,可以根据聚类的先后以及并类时两类间的距离,画出能直观反映各样品间相近和疏远程度的聚类图(也称谱系图),根据这张聚类图有可能找到最合适的分类方案。系统聚类法的聚类原则决定于样品间的距离(或相似系数)及类间距离的定义,类间距离的不同定义就产生了不同的系统聚类分析方法,类间距离的定义方法主要有最短距离法、最长距离法、中间距离法、重心法、类平均法。在合理地选定(或定义)样品间的距离以后,再适当定义类间的距离,就确定了一种聚类规则,之后按照系统聚类法的一般步骤加以聚类(图3.4)。

图3.4 聚类分析技术流程图

3.2.3.3 适用范围

聚类分析能够将变量及样本按照相应的规则进行分类,在大样本多参数数据降维方面具有相对的优势,尤其是对于在时间、空间上具有复杂变化的数据,聚类分析能够根据变量和样本的相关性和相似性,将数据有效地划分为不同的类别,并通过树状图反映出样品随距离或变量间相似性变化的情况,为查清变量和样品之间关系提供了依据,也为查明污染来源奠定了基础。

⑸ 聚类分析的结果和意义

问题一:聚类分析的意义是什么 科技名词定义中文名称:聚类分析 英文名称:cluster *** ysis 定义1:按照某种距离算法对数据点分类。 应用学科:地理学(一级学科);数量地理学(二级学科) 定义2:把观测或变量按一定规则分成组或类的数学分析方法。 应用学科:生态学(一级学科);数学生态学(二级学工)
聚类分析指将物理或抽象对象的 *** 分组成为由类似的对象组成的多个类的分析过程。它是一种重要的人类行为。聚类分析的目标就是在相似的基础上收集数据来分类。聚类源于很多领域,包括数学,计算机科学,统计学,生物学和经济学。在不同的应用领域,很多聚类技术都得到了发展,这些技术方法被用作描述数据,衡量不同数据源间的相似性,以及把数据源分类到不同的簇中。

问题二:数据挖掘,聚类分析算法研究的目的和意义是什么! 15分 图像分割
基本原理:根据图像的组成结构和应用需求将图像划分为若干个互不相交的子区域的过程。这些子区域四某种意义下具有共同属性的像素的连通 *** 。常用方法有:
1) 以区域为对象进行分割,以相似性原则作为分割的依据,即可根据图像的灰度、色彩、变换关系等方面的特征相似来划分图像的子区域,并将各像素划归到相应氏芦弯物体或区域的像素聚类方法,即区域法;
2) 以物体边界为对象进行分割,通过直接确定区域间的边界来实现分割;
3) 先检测边缘像素,再将边缘像素连接起来构成边界形成分割。
具体的阈值分割:
阈值分割方法分为歼闷以下3类:
1) 全局阈值:T=T[p(x,y)〕,即仅根据f(x,y)来选取阈值,阈值仅与各个图像像素的本身性质有关。
2) 局部阈值:T=T[f(x,y),p(x,y)],阈值与图像像素的本身性质和局部区域性质相关。
3) 动态阈值:T=T[x,y,f(x,y),p(x,y)],阈值与像素坐标,图像像素的本身性质和局部区域性质相关。
全局阈值对整幅图像仅设置一个分割阈值,通常在图像不太复杂、灰度分布较集中的情况下采用;局部阈值则将图像划分为若干个子图像,并对每个子图像设定局部阈值;动态阈值是根据空间信息和灰度信息确定。局部阈值分割法虽然能改善分割效果,但存在几哗唤个缺点:
1) 每幅子图像的尺寸不能太小,否则统计出的结果无意义。
2) 每幅图像的分割是任意的,如果有一幅子图像正好落在目标区域或背景区域,而根据统计结果对其进行分割,也许会产生更差的结果。
3) 局部阈值法对每一幅子图像都要进行统计,速度慢,难以适应实时性的要求。
全局阈值分割方法在图像处理中应用比较多,它在整幅图像内采用固定的阈值分割图像。考虑到全局阈值分割方法应用的广泛性,本文所着重讨论的就是全局阈值分割方法中的直方图双峰法和基于遗传算法的最大类间方差法。在本节中,将重点讨论灰度直方图双峰法,最大类间方差法以及基于遗传算法的最大类间方差法留待下章做继续深入地讨论。
参详《数字图像处理》工具:MATLAB或VC++

问题三:聚类分析方法有什么好处 5分 聚类分析:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。
常用聚类方法:系统聚类法,K-均值法,模糊聚类法,有序样品的聚类,分解法,加入法。
注意事项:
1. 系统聚类法可对变量或者记录进行分类,K-均值法只能对记录进行分类;
2. K-均值法要求分析人员事先知道样品分为多少类;
3. 对变量的多元正态性,方差齐性等要求较高。
应用领域:细分市场,消费行为划分,设计抽样方案等
优点:聚类分析模型的优点就是直观,结论形式简明。
缺点:在样本量较大时,要获得聚类结论有一定困难。由于相似系数是根据被试的反映来建立反映珐试间内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。

问题四:聚类分析的结果分成几类,但是这几类有什么关系呢,这几类有什么含义。 5分 这个要看你是面对什么问题了,如:用聚类做财务舞弊,则会有以下几类:正常财务报表、虚增利润舞弊财务报表、关联交易财务舞弊报表等

问题五:SPSS新手求问聚类分析 聚类分析主要作用是把一些数据分成未知的几类这样理解对吗? 系统聚类的 建议买本spss的教程,可以更加系统的学习。要是写论文的话, 可以帮忙数据 he 分析。

问题六:主成分分析法和聚类分析法的区别

问题七:如何评价spss系统聚类分析结果? 用方差分析来判定聚类结果好坏,类与类之间是否差异性显着,呵呵~~

问题八:聚类分析主要解决什么类型的实际问题 主要解决实现不知道类别标签的样本集的分类问题.聚类其实也是实现分类的功能.聚类和分类的区别:分类是用知道类别标签的样本集去训练一个分类器,然后用该分类器对其他未知类别的样本进行归类,由于训练分类器用到了知道类别的样本,所以属于有导师学习;聚类是完全不知道各个样本的类别,按照一定的聚类度量准则直接进行聚类,所以属于无导师的学习.
聚类可以用在图像处理,模式识别,客户信息分析,金融分析,医学等很多领域.用模糊聚类进行图像分割就是一个非常典型的应

⑹ 聚类分析优缺点

优缺点如下:

1、优点

k-平均算法是解决聚类问题的一种经典算法,算法简单、快速。

对处理大数据集,该算法是相对可伸缩的改悔和高效率的,因为它的复杂度大约是O(nkt) O(nkt)O(nkt),其中n是所有对象的数目,k是簇的数目,t是迭代的次数。通常k<<n。这个算法经常以局部最优结束。

算法尝试找出使平方误差函数值最小的k个划分。当簇是密集的、球状或团状的,而簇与簇之间区别明显时,它的聚类效果很好。

2、缺点

对K值敏感。也就是说,K的选择会较大程度上影响分类效果。在聚类之前,我们需要预先设定K的大小,但是我们很难确定分成几类是最佳的,比如上面的数据集中,显然分为2类,即K = 2最好,但是当数据量很大时,我们预先无法判断。

对离群点和噪声点敏感。如果在上述数据集中添加一个噪音点,这个噪音点独立成一个类。很显然,如果K=2,其余点是一类,噪音点自成一类,原本可以区分出来的点被噪音点影响,成为了一类了。如果K=3,噪音点也是自成一类,剩下的数据分成两类。这说明噪音点会极大的影响其他点的分类。

聚类分析特点

聚类分析的实质:是建立一种分类方法,它能够将一批样本数据按照他们在性质上的亲密程度在没有先验知识敏歼颂的情况下自动进行分类。这里所说的类就是一个具有相似性的个体的集合,不同类之间具有明显的区别。

层次聚类分析是根据观察值或变量之间的亲疏程度,将最相似的对象结合在 一起,以逐次聚合的方式(Agglomerative Clustering),它将观察值分类,直到最后所有样本都聚成一类。

层次聚类分析有两种形式,一种是对样本(个案)进行分类,称为Q型聚类;另一种是对研究对象的观察变桥郑量进行分类,称为R型聚类。

⑺ 二阶聚类分析缺点有哪些

二阶聚类分析缺点有哪些,二贺兄阶聚类,自动程度高,可同时分析分类与连续变量,但容易受到分类变量的影响。

K均值聚类、分层聚类、二阶聚类这三种SPSS的聚类方法各具优点与缺点。

K均值聚类尘此简单快速,但无法分析分类变量、容易派拍迅受异常值影响;系统聚类,可对个案与变量聚类,可对连续与分类变量聚类,但依靠谱系图分析,当数据量大时,分析速度慢

⑻ 如何判断聚类分析结构的优劣

需要搜集用户的哪些特征?聚类分析变量选择的原则是:在哪些变量组合的前提,使得类别内部的差异尽可能的小,即同质性高,类别间的差异尽可能的大,即同质性低,并且变量之间不能存在高度相关。常用的用户特征变量有:①
人口学变量:如年龄、性别、婚姻、教育程度、职业、收入等。通过人口学变量进行分类,了解每类人口的需求有何差异。②
用户目标:如用户为什么使用这个产品?为什么选择线上购买?了解不同使用目的的用户的各自特征,从而查看各类目标用户的需求。③
用户使用场景:用户在什么时候,什么情况下使用这个产品?了解用户在各类场景下的偏好/行为差异。④
用户行为数据:如使用频率,使用时长,客单价等。划分用户活跃等级,用户价值等级等。⑤
态度倾向量表:如消费偏好,价值观等,看不同价值观、不同生活方式的群体在消费取向或行为上的差异。需要多少样本量?没有限制,通常情况下与实际应用有关,如果非要加一个理论的限制,通常认为,样本的个数要大于聚类个数的平方。①如果需要聚类的数据量较少(lt;100),那么三种方法(层次聚类法,K-均值聚类法,两步聚类法)都可以考虑使用。优先考虑层次聚类法,因为层次聚类法产生的树状图更加直观形象,易于解释,并且,层次聚类法提供方法、距离计算方式、标准化方式的丰富程度也是其他两种方法所无法比拟的。②如果需要聚类的数据量较大(;1000),应该考虑选择快速聚类别法或者两步聚类法进行。③如果数据量在100~1000之间,理论上现在的计算条件是可能满足任何聚类方法的要求的,但是结果的展示会比较困难,例如不可能再去直接观察树状图了。应用定量方法还是定性方法?聚类分析是一种定量分析方法,但对聚类分析结果的解释还需要结合定性资料讨论。1.聚类分析的定义与用途聚类分析(Cluster Analysis)是一种探索性的数据分析方法,根据指标/变量的数据结构特征,对数据进行分类,使得类别内部的差异尽可能的小,即同质性高,类别间的差异尽可能的大,即同质性低。2.聚类分析的方法①层次聚类法(Hierarchical),也叫系统聚类法。既可处理分类变量,也可处理连续变量,但不能同时处理两种变量类型,不需要指定类别数。聚类结果间存在着嵌套,或者说层次的关系。②K-均值聚类法(K-Means Cluster),也叫快速聚类法。针对连续变量,也可处理有序分类变量,运算很快,但需要指定类别数。K-均值聚类法不会自动对数据进行标准化处理,需要先自己手动进行标准化分析。③两步聚类法(Two-Step Cluster):可以同时处理分类变量和连续变量,能自动识别最佳的类别数,结果比较稳定。如果只对连续变量进行聚类,描述记录之间的距离性时可以使用欧氏(Euclidean)距离,也可以使用对数似然值(Log-likelihood),如果使用前者,则该方法和传统的聚类方法并无太大区别;但是若进行聚类的还有离散变量,那么就只能使用对数似然值来表述记录间的差异性。当聚类指标为有序类别变量时,Two-Step Cluster出来的分类结果没有K-means cluster的明晰,这是因为K-means算法假定聚类指标变量为连续变量。3.聚类分析的步骤①确定研究目的:研究问题关注点有哪些、是否有先验分类数…②问卷编制:态度语句李克特项目、有序类别…③确定分析变量:问卷变量的类型,连续or分类,有序类别or无序类别、是否纳入后台数据,变量间相关性低…④聚类分析:聚类分析方法选择、数据标准化方法、聚类类别数确定…⑤结果检验:类别间差异分析、是否符合常理…⑥聚类结果解释:类别的命名、类别间的差异、结合定性资料解释…

⑼ 果蝇聚类分析优缺点

优点:1、直观、容易了解。
2、资料的有效利用。
3、容易棚册检验与更新。
4、可以适用于各种研究范围。缺点拍核:1、每一横向分类的小格中,住户彼此之间的差异性被忽略。
2、因各小格样本数的不同,得到的出行率用于预测时,会失去其一致的精确性。
3、同一类变量类别等级的确定是凭个人主观,失之客观
4、当本方法用于预测时,每一小格规划年的资料链贺宏预测将是一项繁杂工作。

阅读全文

与聚类分析方法的优劣势相关的资料

热点内容
缝纫机皮带安装方法 浏览:961
正确的站姿腿部锻炼方法 浏览:470
养生鸡蛋的食用方法 浏览:430
小鸡搬砖新方法视频 浏览:220
线稿设计图起稿方法研究 浏览:466
v20手机卡顿解决方法 浏览:790
湖南国珍松花钙奶粉食用方法 浏览:6
土星环的质量计算方法 浏览:603
宝宝简单收惊方法 浏览:396
政府预算的编制方法有哪些 浏览:899
哈尔滨高三核酸检测方法 浏览:51
一次性口腔通气道使用方法视频 浏览:157
单杠背阔肌的锻炼方法 浏览:38
木糖醇的功效及食用方法 浏览:933
读懂课文的方法有哪些 浏览:529
4d的改善方法报告怎么写 浏览:464
预制楼板安装灌注的施工方法 浏览:953
高分复习方法视频 浏览:640
猪皮冻用什么方法熬最好 浏览:670
小孩抑郁症的治疗方法 浏览:223