导航:首页 > 研究方法 > 中心边缘路径是分析方法吗

中心边缘路径是分析方法吗

发布时间:2023-05-17 20:49:38

❶ 说服的两种路径

人们被说服时存在两种宏敏基本路径:

1. 中心路径:对观点加以权衡,对相关事实或数据进行考虑,对问题做系统地思考后作出决定。

2. 边缘路径:依据那些简单的、通常不太相关的线索,不做过多思考,而对观点做出蔽孝枝正确、错误或者有吸引力的反应。

“很少有哪种说服是纯粹由中心路径或边缘路径引起的。”慎雹

律师和政治家通常能很好的将论据和边缘线索结合起来。比如辛普森案的律师Johnny Cochrane. 他在辩论中,便加入了边缘线索。他反复告诉陪审团,“如果手套戴不下,你们就必须宣告无罪”。这一陈述的的威力,并不在于论据合乎逻辑——毕竟,很可能戴一副紧手套去谋杀。Cochrane讲话的节奏为他的陈述戴上了一道正确的光环。

有比如,那些押韵的格言比不押韵的格言,尽管意思相同,对人们产生的影响更大。

“人们在评价一个论点的性质时,会受到措辞的高度影响。”

边缘路径对说服的影响可能非常微妙,但却非常有效。

❷ 社会学中的路径分析是什么意思

路经分析是常用的数据挖据方法之一, 是一种找寻频繁访问路径的方法,它通过对Web服务器的日志文件中客户访问站点访问次数的分析,挖掘出频繁访问路径。
路径分析的主要目的是检验一个假想的因果模型的准确和可靠程度,测量变量间因果关系的强弱,回答下述问题:①模型中两变量xj与xi间是否存在相关关系;②若存在相关关系,则进一步研究两者间是否有因果关系;③若xj影响xi,那么xj是直接影响xi,还是通过中介变量间接影响或两种情况都有;④直接影响与间接影响两者大小如何
路径分析的主要步骤是:①选择变量和建立因果关系模型。这是路径分析的前提。研究人员多用路径图形象地将变量的层次,变量间因果关系的路径、类型、结构等,表述为所建立的因果模型。
路径分析是多元回归分析的延伸,与后者不同的是:①路径分析间的因果关系是多层次的,因果变量之间加入了中介变量,使路径分析模型较一般回归模型对于现实因果关系的描述更丰富有力。②路径分析不是运用一个而是一组回归方程,在分析时更应注意保证各方程式所含意义的一致性。

❸ 软件测试中路径分析法是什么

熟悉测试理论的人都知道,路径覆盖是白盒测试中一种很重要的方法,广泛应用于单元测试。那么基于路径覆盖的分析方法是不是只能应用于单元测试呢,能不能将其推而广之呢。一般而言,在单元测试中,路径就是指函数代码的某个分支,而实际上如果我们将软件系统的某个流程也看成路径的话,我们将可以尝试着用路径分析的方法来设计测试用例。采用路径分析的方法设计测试用例有两点好处:一是降低了测试用例设计的难度,只要搞清了各种流程,就可以设计出高质量的测试用例来,而不用太多测试方面的经验;二是在测试时间较紧的情况下,可以有的放矢的选择测试用例,而不用完全根据经验来取舍。下面就具体的介绍一下如何用路径分析的方法编写测试用例。

首先是将系统运行过程中所涉及到的各种流程图表化,可以先从最基本的流程入手,将流程抽象成为不同功能的顺序执行。在最基本流程的基础上再去考虑次要或者异常的流程,这样将各种流程逐渐细化,这样既可以逐渐加深对流程的理解,还可以将各个看似孤立的流程关联起来。完成所有流程的图表化后就完成了所有路径的设定。

找出了所有的路径,下面的工作就是给每条路径设定优先级,这样在测试时就可以先测优先级高的,再测优先级低的,在时间紧迫的情况下甚至可以考虑忽略一些低优先级的路径。优先级根据两个原则来选取:一是路径使用的频率,使用越频繁的优先级越高;二是路径的重要程度,如果失败对系统影响越大的优先级越高。将根据两个原则所分别得到的优先级相加就得到了整个路径的优先级。根据优先级的排序就可以更有针对性的进行测试。

为每条路径设定好优先级后,接下来的工作就是为每条路径选取测试数据,构造测试用例。一条路径可以对应多个测试用例,在选取测试数据时,可以充分利用边界值选取等方法,通过表格将各种测试数据的输入输出对应起来,这样就完成了测试用例的设计。

❹ 路径分析的最优路径分析方法

1.道路预处理
进行道路数据录入时,往往在道路的交叉接合处出现重叠或相离的情况,不宜计算机处理。因此,需要对原始数据进行预处理,使道路接合符合处理要求。进行预处理时,取每条线段的首末节点坐标为圆心,以给定的阈值为半径作圆域,判断其他线段是否与圆域相交,如果相交,则相交的各个线对象共用一个节点号。
2.道路自动断链
对道路进行预处理之后即可获得比较理想的数据,在此基础上再进行道路的自动断链。步骤如下:
(1)取出所有线段记录数n,从第一条线段开始;
(2)找出所有与之相交的线段并求出交点数m;
(3)将m个交点和该线段节点在判断无重合后进行排序;
(4)根据交点数量,该线段被分成m+1段;
(5)第一段在原始位置不变,后m段从记录尾开始递增;
(6)重复(2)~(5),循环至n。
3.节点匹配
拓扑关系需使用统一的节点。节点匹配方法是按记录顺序将所有线段的始末点加上相应节点号,坐标相同的节点共用一个节点号,与前面所有线段首末点都不相同的节点按自然顺序递增1。
4.迪杰克斯特拉(Dijkstra)算法
经典的图论与计算机算法的有效结合,使得新的最短路径算法不断涌现。目前提出的最短路径算法中,使用最多、计算速度比较快,又比较适合于计算两点之间的最短路径问题的数学模型就是经典的Dijkstra算法。
该算法是典型的单源最短路径算法,由Dijkstra EW于1959年提出,适用于所有弧的权均为非负的情况,主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。该算法的基本思想是:认为两节点间最佳路径要么是直接相连,要么是通过其他已找到的与起始点的最佳路径的节点中转点。定出起始点P0后,定能找出一个与之直接相连且路径长度最短的节点,设为P1,P0到P1就是它们间的最佳路径。
Dijkstra算法的基本流程如下:首先将网络中所有节点分成两组,一组包含了已经确定属于最短路径中点的集合,记为S(该集合在初始状态只有一个源节点,以后每求得一条最短路径,就将其加入到集合S中,直到全部顶点都加入到S中,算法就结束了);另一组是尚未确定最短路径的节点的集合,记为V,按照最短路径长度递增的次序依次把第二组的顶点加入到第一组中,在加入的过程中总保持从源点到S中各顶点的最短路径长度不大于从源点到V中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点距离就是从源点到此顶点的最短路径长度,V中的顶点距离是从源点到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

❺ 说服的两种主要路径

首先,当有人试图说服我们某种观点时,我们是如何反应的?是经过深入的思考再决定,还是不假思索就认可了呢?佩蒂和卡西奥普从理论上假定“被说服”有两种主要路径:

中心路径说服:指经过仔细的思量、考察,最终决定是否接受观点。

边缘路径说服:指的是没有经过多少考虑,草率地根据简单线索做出反应。

多数时候这两种说服是结合起来使用的,比如手机品牌打广告,既会吹捧其配置、运行速度等,也选用受大众欢迎的明星代言。对配置和参数的介绍,就是一种中心路径的说服,让人了解到这种手机的性能优越,从而吸引关注性能的观众。而明星及感叹性的广告词,是一种边缘说服,使人感觉到用这个手机会很酷很美很强势,从而吸引人们购买。

了解了两种说服路径,我们来从说服这个动作的三个场景依次进行分析,首先是宣传者。

想象一下,你的门铃响了,一个穿着皱巴巴的衣服和裤子,胡子拉碴的中年男子,提个小罐子,试图说服你向一个没听过的慈善机构捐几块钱。他讲话时目光飘忽不定,尽管他的话听上去很有道理,但你会被说服并捐钱的概率有多大?

好,现在我们回到几分钟前,门铃响了,你打开门,看见门口站着一位穿西装衬衫的老年人世世,衬衣熨烫平整,面容和善。他的目光正视着你,语气诚恳温和,请你向那个慈善组织捐几块钱。他说的话与前一人没有太大区别,但你是否更有可能愿意掏出钱包呢?

尽管这两个人口中说出的信息是一样的,但来源不同时,对人们产生的效果就会不一样。有实验表明,着名诗人和批评家可以左右人们对一首诗的评价,权威医学杂志可以改变人们对某种药物的看法。因为他们是领域内的专家,更值得相信。

但也正如前面所说,信息的效果是受多种因素影响的,包括信息的来源、信息本身、信息的接受者等。本书作者与研究伙伴也做过一个实验,让六年级学生听一段强调学习数学的重要性的演讲。实验者告诉一部分学生,演讲者是工程师,告诉另一部分学生,他是个洗碗工。结果很显然,“工程师”的演讲对学生的影响更大。后来实验者继续让不同演讲者上台讲同样的内容,有白人工程师和黑人工程师。结果你一定也能预见,在对黑人偏见很深的孩子中,白人工程师演讲的效果更大。显然,听众的态度也会影响信息传达的效果。

综上,有哪些可以增加宣传效果的方法呢?

很搜拿肢明显,提高可信性是一个关键因素。那么如何提高可信性呢?

第一,如果一个宣传者的立场明显与其私人利益相矛盾,他的可信性就增加了。比如,你想买通勤的轻薄本电脑,于是向售卖某品牌电脑的店主询问哪一款电脑最轻最好用,店主说:“说真的,我们店的牌子电脑都不太轻,你可以去别的店看一看XXX牌子。”显然,他说的话的可信度就增加了。

第二,如果一个宣传者看起来敏物没有试图影响你的意见,他的可信度会增加。如果一位股票经纪人向你推荐股票,你可能会犹豫。但当你无意中听到他跟别人聊天说某股票价格可能会上涨时,你反而更可能购买该股票。

第三,如果我们喜欢并认同某个宣传者,那么至少是在不太重要的观点和行为上,他们比普通人更易影响我们。这就好像我们很清楚明星只是为了获利而代言产品,他们对于产品质量夸下海口的可信性很低,但是我们仍然愿意接受他们的宣传。

❻ 什么是信息处理的核心路径和边缘路径

心理学家理乍得佩蒂(Richard E. Petty)在人内传播领域提出“详尽分析可能性模型”(elaboration likelihood model),用以解释人类认知模式。
每个人都会以两种不同搜念段的方式处理信息,一种以详尽的方式,用严谨的思考来处理信息,即“核心路世誉径”;另一种以比较简单粗略的方式处理信息,即“边缘路径”。
他认为,人对事物进行详尽分析的可能性与当事人的动机和能力相关。当个人与信息涉及的问题关系密切、有较强烈的认知需求、或较强的责任感,并且具备相应认知能力之际,人们会沿“核心路径”对该信息进行详尽处理,反之则沿“边缘路径”高拍进行一般处理。
另外,与“核心路径”相比,“边缘路径”导致的态度持续时间不长,而且容易改变。

❼ 路径分析是什么

问题一:路径分析的步骤 路径分析的主要步骤是:①选择变量和建立因果关系模型。这是路径分析的前提。研究人员多用路径图形象地将变量的层次,变量间因果关系的路径、类型、结构等,表述为所建立的因果模型。下图是5个变量因果关系的路径。图中带箭头的直线“→”连接的是具有因果关系的两个变量,箭头的方向与因果的方向相同;当两变量只有相关关系而无因果关系时,用弧线双向箭头表示。图中变量分为:a.外生变量。因果模型中只扮演因,从不扮演果的变量,是不受模型中其他变量影响的独立变量,如x1与 x2。b.内生变量。模型中既可为因又可为果的变量,其变化受模型中其他变量的影响,如x3、x4与x5。c.残差变量。来自因果模型之外的影响因变量的所有变量的总称,如e3、e4、e5。若变量间的关系是线性可加的,则图中的因果模型可用3个标准化多元线性回归方程表示:pij 称为由xj到xi的路径系数,它表示xj与xi间因果关系的强弱,即当其他变量均保持不变时,变量xj对变量xi的直接作用力的大小。pie称为残差路径系数,它表示所有自变量所不能解释的因变量的变异部分,其大小对于因果模型的确定有重要作用。②检验假设。首伏路径分析要以下列假定为前提:a.变量间的因果关系是单向的,不具有反馈性,又称递归模型;b.变量间具有线性可加关系;c.变量具有等距以上测量尺度;d.所有误差均为随机的,外生变量无测量误差;e.所有内生变量的误差变量间及与内生变量有因果关系的所有自变量间无相关。当某些假定,如递归性或变量的测量尺度不满足时,要做适当的处理才能应用路径分析。③估计参数。首先计算路径系数与残差路径系数,然后计算两变量间相关系数rji。此外,要计算两变量间总因果作用力,包括变量xj对xi的直接作用力、xj经中间变量而对xi的间接作用力两部分。例如,上图的因果模型中,x1对x5的总作用力由直接作用力p51和间接作用力构成。这两部分作用力的大小可由两变量间的相关系数rij的分解得到。最后还要计算决定系数,它表示所有作用于xi的自变量所能解释xi变异量的比例。公式是: ④评估因果模型。评估的主要指标是:a. ,若太小,则要考虑是否需要增加新的自变量,以保证模型精度。b,一个理想的因果模应当很小,当它很大时,则有必要重新估计此因果者棚携路径也可由公计算。c.进行F检验。 式中Q为残差平方和,U为回归平方和,N为样本数,K为变量数,检验不显着时要修改模型。 路径分析是多元回归分析的延伸,与后者不同的是:①路径分析间的因果关系是多层次的,因果变量之间加入了中介变量,使路径分析模型较一般回归模型对于现实因果关系的描述更丰富有力。②路径分析不是运用一个而是一组回归方程,在分析时更应注意保证各方程式所含意义的一致性。

问题二:如何进行路径分析 您好,我目前想做一个路径分析,但不知道程序应该怎么写,也找不到相关资料。想跟您请教一下,
用Lisrel或是Sas怎么做呢?
我的外生变量很多(超过25个),包括一些个人背和圆景的、家庭和同伴特征的,请问是否能通过主成分来缩减指标呢?
如果两个内生变量之间是相关的关系,那么在写方程时是否也要把相关关系写上呢?
庄主@2007-03-13:
为了便于其他读者的理解,我先交待一下路径分析 (path *** ysis) 的简单背景。
路径分析可以用作多种目的:一是将因变量之间有关系的的若干个回归模型整合在一个模型里,以助分析和表达的完整和简洁;二是在该整合模型中的各自变量对各因变量的“总影响”(total effects) 分解为“直接影响“(direct effects) 和“间接影响”(indirect effects),如果发现间接影响较大,那就有理论价值了(当然,如下所示,很难发现大的间接影响);三是通过直接影响和间接影响的比较来验证一个自变量是否为“中介变量”(mediating variable),即其直接影响不显着而间接影响显着(上面已说过,不容易发现间接影响、如果同时又要其直接影响不显着,那就更难了)。
如此看来,路径分析是个好东西(不好意思,赶了一回时髦)。其从1960年代兴起,1970-80年代已十分流行。我在Indiana念博士时,学院里的老师常用路径分析做研究。后来学了SEM(结构方程模型),才知道路径分析有“含测量误差”和“不含测量误差”两种。前者只研究自变量和因变量之间因果关系,即SEM中的structural model(结构模型)那部分(见图一),而后者则加上了各变量的CFA(验证性因子分析),也即SEM中的measurement model(测量模型)那部分(图二)。
如何写路径分析的指令(转载) 如何写路径分析的指令(转载)
好了,现在直接回答你的问题。问题1从字面上看,只涉及结构模型那部分,所以比较简单、容易。这种路径分析,不仅可以用LISREL、SAS或其它SEM软件,其实也可以用SPSS等通用统计软件,其结果是一样的。先说在SPSS中如何做。图一是我日前在“Confirmatory regression vs. hierarchical regression 一文中举的例子相仿(当时只用了三个公式,没有此图)。如前文中所说,因为该模型中有两个因变量(或内生变量,endogenous variables),所以需要建立两个回归模型,分别为公式一和二,其中变量名和系数名有些改动,系数分别记为b和g,是为了与LISREL用法一致,b表示一个内生变量(如W)对另一个内生变量(如Y)的影响、g表示一个外生变量(如X)对一个内生变量(如W或Y)的影响:
Y = b0 + g1X + b2W (公式一)
W = g0 +g2X (公式二)
在SPSS中,就按上述两个公式分别做一个回归分析。如果你习惯用SPSS指令的话,其syntax分别为:
Regression Dependent=Y/Enter X, W.
Regression Dependent=W/Enter X.
然后将两个回归分析所得到的回归系数填入图一,此时要用standardized Beta(即 B1、B2、G1分别为公式一和三中b1、b2、g1的标准化值),......>>

问题三:路径分析的介绍 路径分析是常用的数据挖据方法之一, 是一种找寻频繁访问路径的方法,它通过对Web服务器的日志文件中客户访问站点访问次数的分析,挖掘出频繁访问路径。LBS不仅需要能确定目标的地理位置,还需要能实现对地理环境的有效分析。网络分析是地理环境分析中的一个重要技术,包括最短路径分析、网络流分析等内容。在网络分析中,最短路径分析是最基本的,也是最关键的技术,一直是计算机科学、运筹学、交通工程学、地理信息学等学科的一个研究热点。如今,最短路径分析算法已经非常成熟,如以Dijkstra算法为代表的宽度搜索方法、动态规划方法等。

问题四:软件测试中路径分析法是什么 熟悉测试理论的人都知道,路径覆盖是白盒测试中一种很重要的方法,广泛应用于单元测试。那么基于路径覆盖的分析方法是不是只能应用于单元测试呢,能不能将其推而广之呢。一般而言,在单元测试中,路径就是指函数代码的某个分支,而实际上如果我们将软件系统的某个流程也看成路径的话,我们将可以尝试着用路径分析的方法来设计测试用例。采用路径分析的方法设计测试用例有两点好处:一是降低了测试用例设计的难度,只要搞清了各种流程,就可以设计出高质量的测试用例来,而不用太多测试方面的经验;二是在测试时间较紧的情况下,可以有的放矢的选择测试用例,而不用完全根据经验来取舍。下面就具体的介绍一下如何用路径分析的方法编写测试用例。
首先是将系统运行过程中所涉及到的各种流程图表化,可以先从最基本的流程入手,将流程抽象成为不同功能的顺序执行。在最基本流程的基础上再去考虑次要或者异常的流程,这样将各种流程逐渐细化,这样既可以逐渐加深对流程的理解,还可以将各个看似孤立的流程关联起来。完成所有流程的图表化后就完成了所有路径的设定。
找出了所有的路径,下面的工作就是给每条路径设定优先级,这样在测试时就可以先测优先级高的,再测优先级低的,在时间紧迫的情况下甚至可以考虑忽略一些低优先级的路径。优先级根据两个原则来选取:一是路径使用的频率,使用越频繁的优先级越高;二是路径的重要程度,如果失败对系统影响越大的优先级越高。将根据两个原则所分别得到的优先级相加就得到了整个路径的优先级。根据优先级的排序就可以更有针对性的进行测试。

为每条路径设定好优先级后,接下来的工作就是为每条路径选取测试数据,构造测试用例。一条路径可以对应多个测试用例,在选取测试数据时,可以充分利用边界值选取等方法,通过表格将各种测试数据的输入输出对应起来,这样就完成了测试用例的设计。

问题五:结构方程模型 和路径分析的区别,原理是否一样? 路径分析是结构方程模型的一部分,完整的结构方程模型包含两部分:1、测量模型,研究因子和指标的关系,也就是一般我们说的验证性因子分析;2、因果模型,也就是路径分析,研究的是因子之间的关系。另外提一下,狭义上的路径分析指的是把显变量直接当做潜变量的因果模型。
因此,结构方程模型和路径分析其实是概念与子概念的关系。他们所涉及的统计学原理自然是一样的,只不过如果是狭义上的路径分析,那么默认变量无测量误差,其计算的精确度及误差的控制是不如完整的结构方程模型的。

问题六:路径分析的最优路径分析模型 最优路径分析是地理网络分析中最常见的基本功能,也是LBS需要具备的功能。地理网络中的最优路径是指在地理网络中满足某些优化条件的一条路,包括距离最短或最长、通行时间最短、运输费用最低、行使最安全、容量最大等。

问题七:SPSS如何做路径分析 路径分析用amos,amos以前是spss的一个模块,现在分离出去了,要单独安装,现在出最新的spss21.0和amos21.0,先装spss,再装amos,装amos的时候还会提醒安装最新的.NET Framework,先装好就ok了。
SPSS AMOS 21.0是一款使用结构方程式,探索变量间的关系的软件 ,轻松地进行结构方程建模(SEM) 。快速创建模型以检验变量之间的相互影响及其原因,比普通最客服乘回归和探索性因子分析更进一步 。
Microsoft .NET Framework是用于Windows的新托管代码编程模型。它将强大的功能与新技术结合起来,用于构建具有视觉上引人注目的用户体验的应用程序,实现跨技术边界的无缝通信,并且能支持各种业务流程。

问题八:因果路径分析用什么软件 两款比较流行的软件是lisrel和Amos

问题九:如何做用户行为路径分析 用户行为一直是网站优化关注的重点,分析网站用户行为,对提高网站的转换率帮助很大,至少你知道用户需要什么,接下来你应该怎么去满足这些行为。目前几乎90%上的网站几乎都销售为主,无论是产品还是服务,都的为了销售。当然还有一些是需要用户参与网站的某些调查,但是一般专门为这些行为做的网站还是比较少, seo培训下面主要分析用户的购买行为。在做SEO的朋友当中,可能有50%不会卖东西,但是我相信100%的都会买,我们这里也是研究购买者的行为,所以每个人都很可以平等参与,从购买者的角度去分析。如果你对某一些方面的产品感兴趣。但是不知道拥有这种功能的产品名称甚至具体型号,这在营销专家来看,是属于“初级需求”,他们使用经济术语“需求” 来描述当一个购买者对某物质的需要,处于这一阶段的用户遇见了问题,但是不知道是否有相关产品或服务可以帮助他们解决;或者在很多方案中却不知道如何选择 (选择性需求);甚至是知道某一产品能解决自己的问题,正在需找某一喜好的品牌或适合自己的某一型号。这就是购买者行为。初级需求用户行为一个处于“初级需求”的用户,在他准备进入“选择性需求”之前,他可能正在努力寻找关于可以解决他目前问题的有效方法,这个时候他对产品并不敏感,而对信息特别喜好。

❽ 路径分析类型有哪些

路径分析是常用的数据挖掘方法之一,是一种找寻频繁访问路径的方法,它通过对Web服务器的日志文件中客户访问站点访问次数的分析,挖掘出频繁访问路径。那么路径分析类型有哪些呢?

1、 静态求最佳路径:由用户确定权值关系后,给定每条弧段的属性,当求最佳路径时,读出路径的相关属性,求最佳路径。

2、 N条最佳路径分析:确定起点、终点,求代价较小的几条路径。在实际应用中仅求出最佳路径并不能满足要求,可能NN某种因素不走最佳路径,而走近租庆滚似最佳路径。

3、 最短路径:确定起点、终点和所要经过的中间连线,求差枣最短路径。

4、 动态最佳路径分析:实际网络分析中权值是随着权值关系式变化的,而且可能会临时出现一些障碍点,所以往往需要动态地计算最佳路径。

以弊余上就是对于路径分析类型有哪些的全部内容。

阅读全文

与中心边缘路径是分析方法吗相关的资料

热点内容
12伏蓄电池存电量计算方法 浏览:217
冲压工36技计算方法计算实例 浏览:856
骨化三醇免疫治疗方法 浏览:304
三联疗法如何服用方法 浏览:424
93乘43加91的简便方法 浏览:392
海螺吃了头晕有什么方法解决 浏览:811
如何写通项方法 浏览:673
小学生如何写作业快的方法 浏览:346
卫星手机夜景拍摄方法 浏览:97
怎么做瘦肚子最快方法 浏览:11
考场查词典技巧和方法 浏览:639
魔芋水的制作方法视频 浏览:493
同分母分数加减法教学方法分析 浏览:323
平焊单面焊双面成型的教学方法 浏览:601
查询电脑图片有多张的方法 浏览:429
儿童口腔炎的治疗方法 浏览:340
七星漂走漂解决方法 浏览:978
医疗垃圾微生物杀灭率检测方法 浏览:124
汉服打结方法图片 浏览:259
花绳最简便的方法怎么样玩 浏览:521