⑴ 数学思维十种思维方式是什么
1、公式法。
运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
2、对照法。
如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。
例:三个连续自然数的和是18,则这三个自然数从小到大分别是多少。
对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。
3、比较法。
通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
比较法要注意:
1、找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。
2、找联系与区别,这是比较的实质。
3、必须在同一种关系下(同-种标准)进行比较,这是“比较”的基本条件。
4、要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。
5、因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
例:六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生。
这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。
找联系:每人种树棵数变化了,种树的总棵数也发生了变化。
找解决思路:每人多种7-5=2(棵), 那么,全班就多种了75+15=90(棵),全班人数为90+2=45(人)。
4、分类法。
根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。
分类即要注意大类与小类之间的不同层次,又要故到大类之中的各小类不重复、不遗漏、不交叉。
例:自然数按约数的个数来分,可分成几类。
答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有一个数1; (2)有两个约数的,也叫质数,有无数个; (3)有三个约数的,也叫合数,也有无数个。
5、分析法。
把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的种思维方法叫做分析法。
依据:总体都是由部分构成的。
思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路。
也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,-直到问题得到解决为止,这种解题模式是“由果溯因”。分析法也叫逆推法。常用“枝形图”进行图解思路。
例:玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。问平均每天超过计划多少件。
思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。计划每天生产多少件已知,实际每天生产多少件,题中没有告诉,还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知。
6、综合法。
把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。
用综合法解数学题时,通常把各个题知看作是部分(或要素),经过对各部分(或要素)相互之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法。这种方法适用于己知条件较少,数量关系比较简单的数学题。
例:两个质数,它们的差是小于30的合数,它们的和即是11的倍数又是小于50的偶数。写出适合上面条件的各组数。
思路: 11的倍数同时小于50的偶数有22和44。两个数都是质数,而和是偶数,显然这两个质数中没有2。
和是22的两个质数有: 3和19, 5和17。它们的差都是小于30的合数吗?和是44的两个质数有: 3和41, 7和37, 13和31。它们的差是小于30的合数吗?这就是综合法的思路。
7、方程法。
用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。方程法最大的特点是把未知数等同于已知数看待。
参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。
例:一个数扩大3倍后再增加100,然后缩小2倍后再减去36,得50。求这个数。
例:一桶油,第一次用去40%,第二次比第一次多用10千克,还剩余6千克。这桶油重多少千克。
这两题用方程解就比较容易。
8、参数法。
用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的-种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。
例: 一项工作,甲多带带做要4天完成,乙多带带做要5天完成。两人合做要多少天完成。
其实,把总工作量看作“1”,这个“1”就是参数,如果把总工作量看作“2、3、.....都可以,只不过看作“1”运算最方便。
9、排除法。
排除对立的结果叫做排除法。
排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。这是一种不可缺少的形式思维方法。
例:为什么说除2外,所有质数都是奇数。
这就要用反证法:比2大的所有自然数不是质数就是合数。假设:比2大的质数有偶数,那么,这个偶数一定能被2整除,也就是说它一定有约数2。 一个数的约数除了1和它本身外,还有别的约数(约数2),这个数定是合数而不是质数。这和原来假定是质数对立(矛盾)。所以,原来假设错误。
10、特例法。
对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。特例法的逻辑原理是:事物的一。般性存在于特殊性之中。
例:大圆半径是小圆半径的2倍,大圆周长是小圆周长的()倍,大圆面积是小圆面积的()倍。
可以取小圆半径为1,那么大圆半径就是2。计算一下,就能得出正确结果。
⑵ 数学常用的数学思想方法有哪些
数学常用的数学思想方法主要有:用字母表示数的思想,数形结合的思想,转化思想 (化归思想),分类思想,类比思想,函数的思想,方程的思想,无逼近思想等等。
1.用字母表示数的思想:这是基本的数学思想之一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。
2.数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。
3.转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
4.分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
5.类比:类比推理在人们认识和改造客观世界的活动中具有重要意义.它能触类旁通,启发思考,不仅是解决日常生活中大量问题的基础,而且是进行科学研究和发明创造的有力工具.
6.函数的思想 :辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。
7.方程:是初中代数的主要内容.初中阶段主要学习了几类方程和方程组的解法,在初中阶段就要形成方程的思想.所谓方程的思想,就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略,
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用。
⑶ 高中数学思维要求
抽象思维能力
其中数学的抽象思维能力。烂世陆数学的主要研究对象是数与形。因而数学的抽象主要是从数量与数量关系,图形与图形关系,数量与图形关系中概括出概念的定义与隐秘的数学规律。并用数学的语言加以呈现。举个例子,《大戴礼》中的九宫图。
高中数返旁学对学生有哪些思维要求?
据说就是上古传下来的河图洛书。如果五千年前,我们的老祖宗即使披发纹身于黄河之畔,如果这时正有外星人光顾,语言不通,只要他们看到河岸上如图摆放的石子,就知道地球上有智慧生命了,数学的抽象其实也具像,也简单,出地域,跨时空,语言便捷。
知识点提炼
集合:我们将研究对象的全体称为一个集合。用A、B、C等字母表示。其中集合中的个体,我们称之为元素,用a、b、c等字母表示。我们研究的集合对元素有三条规定:
①元素的确定性,即对任何一个元素a,a在A中或a不在A中,两者必居其一。
②元素在集合中不管顺序如何放置,我们都视为同一个集合。
③集合中的两个元素不能相同。
集合的结构表达法:
列举法结构:{1,2,3}。描述法结构{x丨x的本质属性}。
描述法中x是代表元素,"|"有些书中用" :",即表示系动词是的意思。所以这个结构就是:x是具有某种特征的元素。如果饥顷a在A中,我们表示为a∈A,读作a属于A。不在A中,我们表示为a?A,读作a不属于A。根据②,有{1,2}={2,1}。根据③,{1,1}的表达错误。
一些数学的思维,你肯定是要学会归纳和总结,然后就要把那个基础给学好基础学好之后你看到大题之风,你就知道它要考什么觉得他在哪挖坑,然后你就可能有效的避免,然后正确的把题做对不仅正确,而且还可以很高效的做出来。
⑷ 大学数学思维方法有哪些
思维的概括性表现在它对一类事物非本质属性的摒弃和对其共同本质特征的反映。那么关于大学数学思维 方法 有哪些呢?下面就是我给大家带来的大学数学思维方法,希望大家喜欢!
大学数学思维方法
1、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。
5、类比思想方法
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
8、集合思想方法
集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。
9、数形结合思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
10、统计思想方法
小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。
11、极限思想方法
事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。
12、代换思想方法
它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
13、可逆思想方法
它是 逻辑思维 中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
14、化归思维方法
把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。化归的方向应该是化隐为显、化繁为简、化难为易、化未知为已知。
15、变中抓不变的思想方法
在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?
16、数学模型思想方法
所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
17、整体思想方法
对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法。
初中数学学什么?
主要考查具体的“数”与“形”,以及抽象的“函数”
“数”——实数、代数式、代数方程
“形”——角与线、三角形、四边形、多边形、圆
“函数”——正反比例函数、一次函数、二次函数
这三者之间,知识相连,数形互通
环环相扣,无懈可击
大学数学思维方法有哪些相关 文章 :
★ 怎么学好大学数学有哪些学习方法
★ 大学数学怎么学?学好大学数学的8个方法
★ 数学八种思维方法介绍
★ 数学思维训练方法介绍
★ 有效的数学教学方法有哪些
★ 常用的数学教学方法有哪些
★ 大学数学学习独特的方法
★ 大学数学学习方法指导
★ 如何培养数学思维方式
⑸ 数学思维的一般方法有哪些
数学思想方法有:函数的思想、分类讨论的思想、逆向思考的思想、数形结合思想、函数与方程、化归与转化、整体思想、转化思想、隐含条件思想、极限思想。
3.逆向思考的思想
逆向思维,也称求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方高指式 ,敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。
4.数形结合思想
数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。
⑹ 数学思维和方法有哪些内容
1、数学思维方法有哪些
一、转化方法:
转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、更清晰。
二、逻辑方法:
逻辑是一切思考的基础。罗辑思维,是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。罗辑思维,在解决逻辑推理问题时使用广泛。
三、逆向方法:
逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。
四、对应方法:
对应思维是在数量关系之间(包括量差、量倍、量率)建立一种直接联系的思维方法。比较常见的是一般对应(如两个量或多个量的和差倍之间的对应关系)和量率对应。
五、创新方法:
创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思考问题,提得出与众不同的解决方案。可分为差异性、探索式、优化式及否定性四种。
六、系统方法:
系统思维也叫整体思维,系统思维法是指在解题时对具体题目所涉及到的知识点有一个系统的认识,即拿到题目先分析、判断属于什么知识点,然后回忆这类问题分为哪几种类型,以及对应的解决方法。
七、类比方法:
类比思维是指根据事物之间某些相似性质,将陌生的、不熟悉的问题与熟悉问题或其他事物进行比较,发现知识的共性,找到其本质,从而解决问题的思维方法。
八、形象方法:
形象思维,主要是指人们在认识世界的过程中,对事物表象进行取舍时形成的,是指用直观形象的表象,解决问题的思维方法。想象是形象思维的高级形式也是其一种基本方法。
如何锻炼自己的数学思维?
一、做出来不如讲出来,听得懂不如说得通。
做10道题,不如讲一道题。孩子做完家庭作业后,家长不妨鼓励孩子开口讲解一下数学作业中的难题,我也在群里会经常发一些比较好的训练题,您也可以鼓励去想一想说一说,如果讲得好,家长还可进行小奖励,让孩子更有成就感。
二、举一反三,学会变通。
举一反三出自孔子的《论语·述而》:“举一隅,不以三隅反,则不复也。”意思是说:我举出一个墙角,你们应该要能灵活的推想到另外三个墙角,如果不能的话,我也不会再教你们了。后来,大家就把孔子说的这段话变成了“举一反三”这句成语,意思是说,学一件东西,可以灵活的思考,运用到其他相类似的东西上!
在数学的训练中,一定要给孩子举一反三训练。一道题看似理解了,但他的思维可能比较直线,不多做几道举一反三或在此基础上变式的题,他还是转不过玩了。
举一反三其实就是“师傅领进门,学艺在自身”这句话的执行行为。
三、建立错题本,培养正确的思维习惯
每上第一次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和错因分析。
一般来说,错题分为三种类型:第一种是特别愚蠢的错误、特别简单的错误;第二种就是拿到题目时一点思路都没有,不知道解题该从何下手,但是一看到答案却恍然大悟;第三种就是题目难度中等,按道理有能力做对,但是却做错了。
尤其第二种、第三种,必须放到错题本上。建立错题本的好处就是掌握了自己所犯错的类型,为防范一类错误成为习惯性的思维。
四、图形推理是培养逻辑思维能力最好的工具
假是真时真亦假,真是假时假亦真;逻辑思维是在规则的确定下而进行的思维,如果联系生活就属于非常规思维。一切看似与生活毫无联系却自在法则约束规范的范围内。逻辑推理的“瞒天过海”可谓五花八门,好似一个万花筒,百变无穷,乐趣无穷。
几何图形是助其锻炼逻辑思维的好工具,经典的图形推理题总有其构思、思路、巧妙的思维;经典在于其看似变态,而实际解法却简而又简单。
因此,多训练一些图形推理题,对其逻辑思维很有帮助。
⑺ 如何掌握高中数学的四种思维方法
一、函数方程思想
函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想.
1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;
2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;
3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想.
二、数形结合思想
数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合.
1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短.
2.恩格斯是这样来定义数学的:“数学是研究现实世界的量的关系与空间形式的科学”.这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一.因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂.
3.数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质.
4.华罗庚先生曾指出:“数缺形时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非.”数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,或者借助于形的几何直观性来阐明数之间的某种关系.
5.把数作为手段的数形结合主要体现在解析几何中,历年高考的解答题都有关于这个方面的考查(即用代数方法研究几何问题).而以形为手段的数形结合在高考客观题中体现.
6.我们要抓住以下几点数形结合的解题要领:
(1) 对于研究距离、角或面积的问题,可直接从几何图形入手进行求解即可;
(2) 对于研究函数、方程或不等式(最值)的问题,可通过函数的图象求解(函数的零点,顶点是关键点),作好知识的迁移与综合运用;
(3) 对于以下类型的问题需要注意:可分别通过构造距离函数、斜率函数、截距函数、单位圆x2+y2=1上的点及余弦定理进行转化达到解题目的.
三、分类讨论的数学思想
分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答.
1.有关分类讨论的数学问题需要运用分类讨论思想来解决,引起分类讨论的原因大致可归纳为如下几种:
(1)涉及的数学概念是分类讨论的;
(2)运用的数学定理、公式、或运算性质、法则是分类给出的;
(3)求解的数学问题的结论有多种情况或多种可能性;
(4)数学问题中含有参变量,这些参变量的不同取值导致不同的结果的;
(5)较复杂或非常规的数学问题,需要采取分类讨论的解题策略来解决的.
2.分类讨论是一种逻辑方法,在中学数学中有极广泛的应用.根据不同标准可以有不同的分类方法,但分类必须从同一标准出发,做到不重复,不遗漏,包含各种情况,同时要有利于问题研究.
四、化归与转化思想
所谓化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而达到解决的一种方法.一般总是将复杂的问题通过变化转化为简单的问题,将难解问题通过变换转化为容易求解的问题,将未解决的问题转化为已解决的问题.
⑻ 数学的八大思维方法
1、数形结合
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。
2、转化思想
转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
8、极限思想方法
事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割州陆思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。
⑼ 数学思维十种思维方式是什么
数学思维十种思维方式:
1、对照法
根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
2、公式法
运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。
3、比较法
通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
4、分类法
根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。
5、分析法
把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的种思维方法叫做分析法。
6、综合法
把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。
7、方程法
用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。
方程法最大的特点是把未知数等同于已知数看待,参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。
8、参数法
用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的-种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。
9、排除法
排除对立的结果叫做排除法。
排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。
这是一种不可缺少的形式思维方法。
10、特例法
对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。
特例法的逻辑原理是:事物的一.般性存在于特殊性之中。
⑽ 谈数学思维与文化
数学是我们从小就要学习的课程,但是数学到底是什么,我们中学所学习的仅仅是数学的冰山一角。恩格斯曾说过,数学是以现实世界的空间形式和数量关系为研究对象的。这是哲学上对数学的看法,数学作为一门具体科学,我认为最重要的是两点既数学思维与数学应用。
数学思维在我看来,它主要强调创造力的联想、想象与对数字的敏感。数学常常会将具体的问题普遍化,抽象化为一个纯粹的数学问题。离开了具体就要求我们拥有强大的创造思维和空间想象能力,只有在这个能力基础上才会便利的解决数学问题。同时,数学体系的不断完善,需要创新思维和强烈的数字敏感以不断注入新鲜活力,时刻产生思维的碰撞,才能不断推动数学体系的发展。
数学以现实事件为研究对象。这就要求它必须具备解决实际问题的能力。因而学会建立数学模型就显得格外重要了。通过运用数理逻辑方法和数学语言建构科学或工程模型,能够更好的化难为易。数学模型的由来历史已久,人类开始使用数字既数学模型被建立。通过数学模型,抓住与原型相似的数学表达式或数学理论,对原型进行简化处理,以更好的解决实际问题。数学源于生活,也高于生活。数学要真正做到创造性的发展,除了要面对思维碰撞,内部矛盾外,昌世还要密切关注现实世界对数学提出的问题,从不断解决问题中获得发展,使二者能够相互促进,相得益彰。
数学中的数字在数学刚开始产生时就产生了,有人说数字是一堆笔道或者说是1的组合,但是随着文明的不断发展,人们对于数字功能的要求也越来越多,于是人们发明了数字系统,新的符号也由此产生,为后世的数学研究提供了工具。
不过,数字在各国推广的时间却不尽相同。15世纪罗马数字才在欧洲占据主导地位,中国在十七世纪时才开始使用阿拉伯数字系统,直到18世纪俄国才采用现代数字取代了基于希腊数字的系统,这与各国文明交融、开放程度息息相关。
永远不要问数学是什么,而要问数学解决了什么?数学是能够解决具体问题的一门科学。
日本现代数学家米耐游肢山国藏曾言:"纵然是把数学知识忘记了,但数学的精神,思想和方法也会深深地铭刻在头脑里长磨盯久地活跃于日常的业务中。"数学精神,我认为它是数学的精髓和数学文化最为深刻的核心。人们在数学活动中所形成的思维方式、价值取向、行为方式等就是数学精神,这也是人们在长期进行数学探索和创造中积累的精神财富。
我们应当意识到理性与创造精神,求真与应用精神在个体发展中发挥的巨大作用。我们要能够通过逐步深入的抽象概括和分析综合中去寻求事物的本质和规律,再用它们去解决实际问题,并在解决问题的过程中继续发展理论。除了创新精神外,我们要能够不懈追求真理,不断在思想碰撞中去探索、揭示真理。数学之所以发展成现今如此庞大的体系,生成如此众多的分支,取得如此辉煌的成果,都是数学家们进行创造性思维的结果,数学归根结底是一门充满创新精神的科学。同时,作为中国人,作为华夏儿女,我们应当为我们祖先创造的数学文化而感到骄傲与自豪。如被西方称为卡瓦列利原理的祖暅原理便至少早于卡瓦列利1100多年发现。
数学思维的培养能够使我们养成深入思考和反复斟酌的好习惯,同时,数学思想也是指导我们正确分析和解决数学问题的原则,因此我们必须重视数学思维的学习与培养,必须在各种数学活动中重视数学思想的学习和总结,培养自己以数学思想为指导解决数学问题的自觉意识,用系统而丰富的数学思想来充实和武装自己的头脑,把我们对数学知识的理解提升到一个新的层面,以便能更好地驾驭它们,并促成其灵活运用和各种数学问题的顺利解决。