Ⅰ 医学临床病例分析用什么统计学方法
王见定教授挑战“生命科学突破奖”
(三)申报“生命科学突破奖”的理由
作为统计学突破的又一最大受益者(它与经济学并列),非生命科学莫属。生命科学简单地可以定义为:它是系统阐述与生命特征有关的重大课题的科学。医学是针对人进行生命特征研究的科学,从这点意义上讲,医学是生命科学的一个最主要的组成部分。每一个学习生物或医学的人都会发现统计学贯串了生物学与医学的整个过程。
一般认为最早的记录是1348年欧洲一半人死于黑死病(鼠疫);第一世界大战时爆发的西班牙流行性感冒,几个月内带走2000万人的生命,一年时间内,全球范围内5000万到一亿人死于此疫(HINI禽流感)......到1859年达尔文完成了《物种起源》,1865年孟德尔完成的《植物杂交试验》,1889年高尔顿完成的《自然遗传》,1916年皮尔逊完成的《数学对进化论的贡献》,1925年费希尔完成的《研究人员用统计方法》,......这些都是早、中期运用统计学进行生命科学研究的典范。到了20世纪50年代,遗传物质DNA螺旋结构的发现,整个试验过程处处使用了现代统计学方法,开创了从分子水平研究生命活动的新纪元。进一步对基因的检验以及基因检测结果能告诉你有多高的风险患上某种疾病,而且正确指导你合理用药,均应用了现代统计学的基本方法。最后,我们注意到各种病毒、病菌的发现,生存原理、控制方法以及相应的各种药物的研发、各种疾病相关指标的测定无一不是采用了各种统计学方法......
一句话,统计学是生命科学的生命线,离开了统计学,生命科学不得生存和发展。“社会统计学与数理统计学统一理论”作为统计学的最新理论,必将全面提升生命科学的水平,当然完全达到了挑战“生命科学突破奖”的水准。
Ⅱ 统计学,生物统计学,医学统计学有何
你问的是有何作用吗?还是统计学软件有哪些?希望尽量具体。
常用的统计学软件有SPSS、SAS和Stata,常用教材《医学统计学》。
统计学是通过搜索、整理、分析、描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。《医学统计学》分21章,本次再版侧重于三个方面:第一部分主要介绍医学统计基础理论与基本方法,针对《卫生统计学》多元分析方法薄弱的情况,加强了不同类型资料的回归分析方法与软件结果解释,增加了诊断试验的分析与评价。第二部分医学研究设计,在继承第一版教材内容领先优势的基础上,进一步引入了临床试验设计的最新进展。第三部分公共卫生与社区医学统计,不仅突出了公共卫生应用统计的特殊性,增加了信息系统监测数据与生物信息数据分析进展和预测评价方法,而且针对学生动手机会少,综合能力弱的问题,加强了综合分析与解决问题环节训练,补充增加了国际标准化要求的医学论文统计结果报告。
Ⅲ 什么是生物统计学
生物统计学在我国又称卫生统计学,在学科分类中属于预防医学下的一个二级学科——流行病与卫生统计学。现阶段,我国共有25所大学具有流行病与卫生统计学博士学位授予权,61所大学具有流行病与卫生统计学硕士学位授予权。
但只有南方医科大学一所大学设有生物统计学本科专业。而且流行病与卫生统计学专业的研究生中从事生物统计学的只有1/3,全国每年只有不到200名硕士、50名博士毕业。
近年来,生物医学研究中统计学的应用越来越广泛,理论统计学家不断寻求与生物医学研究者的合作,医学领域的生物统计学者也期待得到来自理论统计学家的帮助。
生物统计学家绝不仅仅是分析数据而已,他们不但要有良好的沟通技巧,深刻理解医学伦理及文化背景对研究带来的影响,还要熟悉政府政策以及法律法规体系,用全球化视野来审视自己所从事的研究。
(3)生物医学研究的统计方法扩展阅读:
生物统计学是生物数学中最早形成的一大分支,它是在用统计学的原理和方法研究生物学的客观现象及问题的过程中形成的,生物学中的问题又促使生物统计学中大部分基本方法进一步发展。
生物统计学是应用统计学的分支,它将统计方法应用到医学及生物学领域,在此,数理统计学和应用统计学有些重叠。
Ⅳ 生物统计学方法及应用
生物统计学是运用数理统计的原理和方法来分析和解释生物界各种现象和试验调查资料的一门科学,是现代生物学研究不可缺少的工具。它不仅在传统生物学、医学和农学中被广泛应用,而且在新兴的分子生物学研究中也发挥着重要作用。
Ⅳ 统计学名词解释:总体 样本 方差 标准差 标准误 变异系数 抽样 总体参数 样本统计量 正态分布 t分布 F分布
1.总体:总体(population)是根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。总体可分为有限总体和无限总体。总体中的所有单位都能够标识者为有限总体,反之为无限总体。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。样本应具有代表性。所谓有代表性的样本,是指用随机抽样方法获得的样本。
2.随机抽样:随机抽样(random sampling)是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。随机抽样是样本具有代表性的保证。
3.变异:在自然状态下,个体间测量结果的差异称为变异(variation)。变异是生物医学研究领域普遍存在的现象。严格的说,在自然状态下,任何两个患者或研究群体间都存在差异,其表现为各种生理测量值的参差不齐。
4.计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。计量资料亦称定量资料、测量资料。.其变量值是定量的,表现为数值大小,一般有度量衡单位。如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等
计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料(count data)。计数资料亦称定性资料或分类资料。其观察值是定性的,表现为互不相容的类别或属性。如调查某地某时的男、女性人口数;治疗一批患者,其治疗效果为有效、无效的人数;调查一批少数民族居民的A、B、AB、O 四种血型的人数等。
等级资料:将观察单位按测量结果的某种属性的不同程度分组,所得各组的观察单位数,称为等级资料(ordinal data)。等级资料又称有序变量。如患者的治疗结果可分为治愈、好转、有效、无效或死亡,各种结果既是分类结果,又有顺序和等级差别,但这种差别却不能准确测量;一批肾病患者尿蛋白含量的测定结果分为 +、++、+++等。
等级资料与计数资料不同:属性分组有程度差别,各组按大小顺序排列。
等级资料与计量资料不同:每个观察单位未确切定量,故亦称为半计量资料。
5.概率:概率(probability)又称几率,是度量某一随机事件A发生可能性大小的一个数值,记为P(A),P(A)越大,说明A事件发生的可能性越大。0﹤P(A)﹤1。频率:在相同的条件下,独立重复做n 次试验,事件A 出现了m 次,则比值m/n 称为随机事件A 在n 次试验中出现的频率(freqency)。当试验重复很多次时P(A)= m/n。
6. 随机误差:随机误差(random error)又称偶然误差,是指排除了系统误差后尚存的差。它受多种因素的影响,使观察值不按方向性和系统性而随机的变化。误差变量一般服从正态分布。随机误差可以通过统计处理来估计。
抽样误差(sampling error )是指样本统计量与总体参数的差别。在总体确定的情况下,总体参数是固定的常数,统计量是在总体参数附近波动的随机变量。
7.系统误差:系统误差(systematic error)是指由于仪器未校正、测量者感官的某种偏差、医生掌握疗效标准偏高或偏低等原因,使观察值不是分散在真值的两侧,而是有方向性、系统性或周期性地偏离真值。系统误差可以通过实验设计和完善技术措施来消除或使之减少。
8.随机变量:随机变量(random variable)是指取指不能事先确定的观察结果。随机量的具体内容虽然是各式各样的,但共同的特点是不能用一个常数来表示,而且,理论上讲,每个变量的取值服从特定的概率分布。
9.参数:参数(paramater)是指总体的统计指标,如总体均数、总体率等。总体参数是固定的常数。多数情况下,总体参数是不易知道的,但可通过随机抽样抽取有代表性的样本,用算得的样本统计量估计未知的总体参数。
10.统计量:统计量(statistic)是指样本的统计指标,如样本均数、样本率等。样本统计量可用来估计总体参数。总体参数是固定的常数,统计量是在总体参数附近波动的随机变量。
11.频数表(frequency table)用来表示一批数据各观察值或在不同取值区间的出现的频繁程度(频数)。对于离散数据,每一个观察值即对应一个频数,如某医院某年度一日内死亡0,1,2…个病人的天数。对于散布区间很大的离散数据和连续型数据,数据散布区间由若干组段组成,每个组段对应一个频数。
12.算术均数(arithmetic mean)描述一组数据在数量上的平均水平。总体均数用μ表示,样本均数用X 表示。
13.几何均数(geometric mean)用以描述对数正态分布或数据呈倍数变化资料的水平。记为G。
14.中位数(median)Md将一组观察值由小到大排列,n 为奇数时取位次居中的变量值;为偶数时,取位次居中的两个变量的平均值。反映一批观察值在位次上的平均水平。
15.极差(range)亦称全距,即最大值与最小值之差,用于资料的粗略分析,其计算简便但稳定性较差。
16.百分位数(percentile)是将n 个观察值从小到大依次排列,再把它们的位次依次转化为百分位。百分位数的另一个重要用途是确定医学参考值范围。
17.四分位数间距(inter-quartile range)是由第3 四分位数和第1 四分位数相减计算而得,常与中位数一起使用,描述偏态分布资料的分布特征,较极差稳定。
18.方差(variance):方差表示一组数据的平均离散情况,由离均差的平方和除以样本个数得到。
19.标准差(standard deviation)是方差的正平方根,使用的量纲与原量纲相同,适用于近似正态分布的资料,大样本、小样本均可,最为常用。
20.变异系数(coefficient of variation)用于观察指标单位不同或均数相差较大时两组资料变异程度的比较。用CV 表示。计算:标准差/均数*100%
21.统计推断:通过样本指标来说明总体特征,这种从样本获取有关总体信息的过程称为统计推断(statistical inference)。
22.抽样误差:由个体变异产生的,抽样造成的样本统计量与总体参数的差异,称为抽样误差(sampling error)。
23.标准误及X s :通常将样本统计量的标准差称为标准误。许多样本均数的标准差X s称为均数的标准误(standard error of mean,SEM ),它反映了样本均数间的离散程度,也反映了样本均数与总体均数的差异,说明均数抽样误差的大小。
24.可信区间:按预先给定的概率确定的包含未知总体参数的可能范围。该范围称为总体参数的可信区间(confidence interval,CI)。它的确切含义是:可信区间包含总体参数的可能性是1- α ,而不是总体参数落在该范围的可能性为1-α 。
25.参数估计:指用样本指标值(统计量)估计总体指标值(参数)。参数估计有两种方法:点估计和区间估计。
26.假设检验中P 的含义:指从H0 规定的总体随机抽得等于及大于(或等于及小于)现有样本获得的检验统计量值的概率。
27.I 型和II 型错误:I 型错误(type I error ),指拒绝了实际上成立的H0,这类“弃真”的错误称为I 型错误,其概率大小用α表示;II 型错误(type II error),指接受了实际上不成立的H0,这类“存伪”的误称为II 型错误,其概率大小用β表示。
28.检验效能:1- β称为检验效能(power of test),它是指当两总体确有差别,按规定的检验水准a 所能发现该差异的能力。
29.检验水准:是预先规定的,当假设检验结果拒绝H0,接受H1,下“有差别”的结论时犯错误的概率称为检验水准(level of a test),记为α 。
30..率(rate)又称频率指标,说明一定时期内某现象发生的频率或强度。计算公式为:发生某现象的观察单位数/可能发生某现象的观察单位总数*100%,表示方式有:百分率(%)、千分率(‰)等。
31.构成比(proportion)又称构成指标,说明某一事物内部各组成部分所占的比重或分布。计算公式为:某一组成部分的观察单位数/同一事物各组成部分的观察单位总数*100%,表示方式有:百分数等。
32.比(ratio)又称相对比,是A、B 两个有关指标之比,说明A 是B 的若干倍或百分之几。计算公式为:A/B ,表示方式有:倍数或分数等。
33.非参数统计:针对某些资料的总体分布难以用某种函数式来表达,或者资料的总体分布的函数式是未知的,只知道总体分布是连续型的或离散型的,用于解决这类问题的一种不依赖总体分布的具体形式的统计分析方法。由于这类方法不受总体参数的限制,故称非参数统计法(non-parametric statistics),或称为不拘分布(distribution-free statistics)的统计分析方法,又称为无分布型式假定(assumption free statistics)的统计分析方法。
34.参数统计:通常要求样本来自总体分布型是已知的(如正态分布),在这种假设的基础上,对总体参数(如总体均数)进行估计和检验,称为参数统计(parametric statistics)
35.秩次:变量值按照从小到大顺序所编的秩序号称为秩次(rank)。
36.秩和:各组秩次的合计称为秩和(rank sum),是非参数检验的基本统计量。
37.直线回归(linear regression)建立一个描述应变量依自变量变化而变化的直线方程,并要求各点与该直线纵向距离的平方和为最小。直线回归是回归分析中最基本、最简单的一种,故又称简单回归(simple regression)。
38.回归系数(regression coefficient )即直线的斜率(slope),在直线回归方程中用b 表示,b 的统计意义为X每增(减)一个单位时,Y平均改变b 个单位。
39.相关系数r:用以描述两个随机变量之间线性相关关系的密切程度与相关方向的统计指标。
Ⅵ 医学统计学
医学统计学
医学统计学是运用概率论与数理统计的原理及方法,结合医学实际,研究数字资料的搜集、整理分析与推断的一门学科。医学研究的对象主要是人体以及与人的健康有关的各种因素。
基本信息
中文名:医学统计学
拼音:yixuetongjixue
内容:统计研究设计
特点
生物现象的一个重要特点就是普遍存在着变异。所谓变异(个体差异),系指相同条件下同类个体之间某一方面发展的不平衡性,系偶然因素起作用的结果。例如同地区、同性别、同年龄的健康人,他们的身长、体重、血压、脉搏、体温、红细胞、白细胞等数值都会有所不同。又如在同样条件下,用同一种药物来治疗某病,有的病人被治愈,有的疗效不显着,有的可能无效甚至死亡。引起客观现象差异的原因是多种多样的,归纳起来,一类原因是普遍的、共同起作用的主要因素,另一类原因则是偶然的、随机起作用的次要因素。这两类原因总是错综复杂地交织在一起,并以某种偶然性的形式表现出来。科学的任务就在于,要从看起来是错综复杂的偶然性中揭露出潜在的必然性,即事物的客观规律性。这种客观规律性是在大量现象中发现的,比如临床要观察某种疗法对某病的疗效时,如果观察的病人很少,便不易正确判断该疗法对某病是否有效;但当观察病人的数量足够多时,就可以得出该疗法在一定程度上有效或无效的结论。所以,医学统计学是医学科学研究的重要工具。
医学统计学在本世纪二十年代以后才逐渐形成为一门学科。解放前,我国学者即致力于把统计方法应用到医学中去,但人力有限、范围较窄。解放后,随着医学科研工作的发展,本学科得到迅速普及与提高。通过大量实践,在不少方面积累了自己的经验,丰富了医学统计学的内容。而电子计算机的作用,更促进了多变量分析等统计方法在医学研究中的应用。
Ⅶ 为什么生物医学数据的收集,整理和分析必须使用正确的统计方法
专业的事情必须交给专业的人来处理的,涉及到生命科学的东西
Ⅷ 求助——医学统计学与统计学,卫生统计学,生物统计学的联系与区别
什么叫医学统计学?医学统计学与统计学、卫生统计学、生物统计学有何联系与区别?医学统计学:是运用统计学原理和方法研究生物医学资料的搜索、整理、分析和推断的一门学科 统计学:是研究数据的收集、整理、分析与推断的科学。卫生统计学:是把统计理论、方法应用于居民健康状况研究、医疗卫生实践、卫生事业管理和医学科研的一门应用学科。生物统计学:是一门探讨如何从不完整的信息中获取科学可靠的结论从而进一步进行生物学实验研究的设计,取样,分析,资料整理与推论的科学。
Ⅸ 什么是生物统计
生物统计(shengwu tongji,biostatistics,biometry,biometrics)含义 应用于中的数理统计方法。即用数理统计的原理和方法,分析和解释生物界的种种现象和数据资料,以求把握其本质和规律性。
发展简况
最早提出生物统计思想的是比利时数学家L.A.J.凯特莱,他试图把统计学的理论应用于解决生物学、医学和社会学中的问题。1866年,揭示了遗传的基本规律,这是最早运用数理统计于生物实验的一个成功的范例(见)。1889年,在《自然的遗传》一书中,通过对人体身高的研究指出,子代的身高不仅与亲代的身高相关,而且有向平均值“回归”的趋势,由此提出了“回归”和“相关”的概念和算法,从而奠定了生物统计的基础。高尔顿的学生K.皮尔逊进一步把统计学应用于生物研究,提出了实际测定数与理论预期数之间的偏离度指数即卡方差()的概念和算法,这在属性的统计分析上起了重要作用。1899年,他创办了《生物统计》杂志,还建立了一所数理统计学校。他的学生W.S.戈塞特对样本标准差作了许多研究,并于1908年以“Student”的笔名将t-检验法发表于《生物统计》杂志上。此后,t-检验法就成了生物统计学中的基本工具之一。英国数学家指出,只注意事后的数据分析是不够的,事先必须作好实验设计。他使实验设计成了生物统计的一个分支。他的学生G.W.斯奈迪格把变异来源不同的均方比值称为F值,并指出当值大于理论上 5%概率水准的值时,该项变异来源的必然性效应就从偶然性变量中分析出来了,这就是“方差分析法”。上述这些方法对于农业科学、生物学特别是的研究,起了重大的推动作用,20世纪20年代以来,各种数理统计方法陆续创立,它们在实验室、田间、饲养和临床实验中得到广泛应用并日益扩大到整个工业界。70年代,随着计算机的普及,使本来由于计算量过大而不得不放弃的统计方法又获得了新的生命力,应用更为广泛,并在现代科技中占有十分重要的地位。