导航:首页 > 研究方法 > 数学思想方法的研究课题

数学思想方法的研究课题

发布时间:2023-05-13 18:49:11

㈠ 小学数学教学中如何应用数形结合思想的研究

一、研究背景:数学是研究客观世界的空间形式与数量关系的科学,数是形的抽象概括,形是数的直观表现。华罗庚先生指出,数缺形时少直观,形少数时难入微。数形结合既是一个重要的数学思想,又是一种常用的数学方法。数形结合在数学解题中有重要的指导意义,这种“数”与“形”的信息转换,相互渗透,即数量问题和图象性质是可以相互转化的,这不仅可以使一些题目的解决简捷明快,同时还可以大大开拓我们的解题思路,为研究和探求数学问题开辟了一条重要的途径。长期以来,在教学中数学知识是一条明线,得到数学教师的重视;数学思想方法是一条暗线,容易被教师所忽视。在我们的小学数学教学中,如果教师能有意识地运用数形结合思想来设计教学,那将非常有利于学生从不同的侧面加深对问题的认识和理解,提供解决问题的方法,也有利于培养学生将实际问题转化为数学问题的能力。“数形结合”对教师来说是一种教学方法、教学策略,对学生来说是一种学习方法,如果长期渗透,运用恰当,则使学生形成良好的数学意识和思想,长期稳固地作用于学生的数学学习生涯中。作为一线教师,如何系统的运用数形结合思想进行数学教学,是我们面临的一个极富实践价值的重要课题。二、研究价值:1、通过组织、实施本课题的研究,提高教师对数形结合思想的理解,加深对教材中数形结合思想的分析能力。能在平时的教学中,时刻注意渗透数形结合思想,提升教师自身的专业素养。2、通过组织、实施本课题的研究,提升学生的思维水平,提高学生应用数形结合思想解决实际问题的能力,以适应未来社会发展的需要。三、研究目标: 1、教师有意识地运用数形结合思想进行教学设计,化抽象为形象,创造性地开发课程资源,有效地提高课堂教学质量。 2、研究“数形结合”在小学数学四至六年级领域中的应用,分阶段、有层次的渗透数形结合思想。 3、通过“数形结合”有效地提高学生学习数学的兴趣,使数形结合成为学生重要的学习方法,能运用数形结合创造性地解决抽象的数学问题。在不断地“探索”与“创造”中构建属于个人的数学思想。四、概念界定:1、数形结合:“数”和“形”是数学中两个最基本的概念,“数”,属于数学抽象思维范畴,是人的左脑思维的产物;而“形”主要指几何图形,属于形象思维范畴,是人的右脑思维的产物。它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数知颤量关系又常常可以通过几何图形做出直观地反映和描述。数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,化难为易,化抽象为直观.使人充分运用左、右脑的思维功能,相互依存、彼此激发,全面、协调、深入发展人的思维能力。2、数形结合思想:所谓数形结合思想,其实质是将抽象的数学语言与直观的图像结合起来,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法。主要有以下几种解题思路:(1)以“数”变“形”;(2)以“形”变“数”;(3)“形”“数”互变。3.“渗透”指某种思想方法在某个实践过程中逐渐的渗入利用,这里主要指在小学数学课堂教学中逐步渗透数形结合思想方法。五、研究内容:1、数形结合思想在“数与代数”知识领域中的应用。2、数形结合思想在“空间与图形”知识领域中的应用。3、数形结合思想在“统计与概率”知识领域中的应用。4、数形结合思想在“实践与综合运用”知识领域中的应用。六、研究思路:1、学习查找相关理论资料;2、开始分年级教师进行具体研究旁猛嫌;3、在具体的实践中进一步完善研究内容和研究措施;4、最后对研究效果进行提升,形成课题成果报告。七、研究方法:1.调查法:调查当前小学数学教师对数形结合思想在教学中渗透的认识,调查当前运手学生对数形结合思想来解题的认识状态。2、文献研究法:收集、学习、整理有关渗透数学思想方法以及数形结合思想的相关文献资料并加以分析,以供实验研究。3、案例研究法:选择不同领域的教学内容(数与代数、空间与图形、统计与概率、实践与综合运用)中的素材,作为案例进行分析研究,寻求在不同数学学习领域中有效渗透数形结合思想的途径与模式。4、经验总结法:把实验过程中积累的经验加以总结、归纳并在实验过程中加以论证。

㈡ 如何在小学数学教学中渗透数学思想方法课题研究总结

1、在小学数学教学中渗透数学思想方法的途径
(1)备课:研读教材、明确目标、设计预案,挖掘数学思想方法
“凡事预则立,不预则废”。如果课前教师对教材内容的教学适合渗透哪些思想方法一无所知,那么课堂教学就不可能有的放矢。受篇幅的限制,教材内容较多显示的是数学结论,对数学结论里面所隐含的数学思想方法以及数学思维活动的过程,并没有在教材里明显地体现。因此教师在备课时,不应只见直接写在教材上的数学基础知识与技能,而是要进一步钻研教材,创造性地使用教材,挖掘隐含在教材中的数学思想方法,并在教学目标中明确写出渗透哪些数学思想方法,并设计数学活动落实在教学预设的各个环节中,实现数学思想方法有机地融合在数学知识的形成过程中,使教材呈现的知识技能这条明线与隐含的思想方法的暗线同时延展。为此,教师在研读教材时,要多问自己几个为什么,将教材的编排思想内化为自己的教学思想,如:怎样让学生经历知识的产生与发展的过程?怎么样才能唤起学生进行深层次的数学思考?如何激发学生主动探究新知识的积极性?如何依据教材适时地渗透数学思想方法等等,教师只有做到胸有成竹,方能有的放矢。
(2)上课:创设情境、建立模型、解释应用,渗透数学思想方法
数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法。这就要求教师在课堂教学中,在揭示数学知识的形成过程中渗透数学思想方法,在教给学生数学知识的同时,也获得数学思想方法上的点化。教师积极地在课堂中渗透数学思想方法,体现了教师在教学中的大智慧,也为学生的学习开辟了一个广阔的新天地。不同的教学内容,不同的课型,可据其不同特点,恰当地渗透数学思想方法。以下面三种课型为例。
①新授课:探索知识的发生与形成,渗透数学思想方法
数学知识发生、形成、发展的过程也是其思想方法产生、应用的过程。在此过程中,向学生提供丰富的、典型的、正确的直观背景材料,采取“问题情境—建立模型—解释、应用与拓展”的模式,通过实际问题的研究,了解数学知识产生的背景,再现数学形成的过程,揭示知识发展的前景,渗透数学思想,发展学生的思维能力,使学生在掌握数学知识技能的同时,即学会数学概念、公式、定理、法则等的过程中,深入到数学的“灵魂深处”,真正领略数学的精髓——数学思想方法。比如在质数、合数的概念教学中让学生用小正方形拼长 方形,把质数、合数的概念潜藏在图形操作(如右图),明白“质数个”小正方形只能拼成一个长方形,而“合数个”小正方形至少能拼成两个不同形状的长方形(含正方形),渗透数形结合的思想,再通过给这些数分类,引入质数、合数的概念,渗透分类思想。又如在《三角形分类》一课中,教师给学生提供了三角形学具先放手让学生在小组合作中尝试对三角形进行分类,学生从关注三角形的角与边的特征入手,借助学具看一看、比一比、量一量、分一分、想一想,寻找特征、抽象共性,在比较中将具有相同特征的三角形归为一类,在分类中抽象出图形的共同特征。这样的教学,学生经历了三角形分类的过程,渗透了分类、集合的思想,丰富了分类活动的经验,形成分类的基本策略,发展了归纳能力。
②练习课:经历知识的巩固与应用,渗透数学思想方法
数学知识的巩固,技能的形成,智力的开发,能力的培养等需要适量的练习才能实现。练习课的练习不同于新授课的练习,新授课中的练习主要是为了巩固刚学过的新知,习题侧重于知识方面;而练习课中的练习则是为了在形成技能的基础上向能力转化,提高学生运用知识解决实际问题的能力,发展学生的思维能力。因此教师要有数学思想方法教学意识,在练习课的教学中不仅要有具体知识、技能训练的要求,而且要有明确的数学思想方法的教学要求。例如在《6的乘法口诀》练习课中,学生在完成想一想、算一算的练习中,先让学生计算,再通过交流自己的算法,以“7×6+6”为例,借助图片用课件演示来理解式子的意义,运用数形结合启发将式子转化为8×6来计算,渗透变换的思想,懂得两个式子形式虽不同,表示的意义以及结果是相同的。又如让学生算一算每个图中各有多少个格子,之后教师要启发学生怎样将图形转化成同第一个图形那样的图形,可以直接用口诀计算?学生通过实际操作,动手剪一剪、拼一拼,转化成长方形后分别用6×3、4×3来计算,从而感受到转化思想的魅力。
“咱们要教给孩子们什么?”“数学的学习主要是学习思想和方法以及解题的策略”,因此我们要在练习的过程中不断地总结和探索,从中寻找共性,呈现给孩子最有价值、最本质的东西——数学思想方法。
③复习课:学会知识的整理与复习,强化数学思想方法
复习有别于新知识的教学。它是在学生基本掌握了一定的数学知识体系、具备了一定的解题经验,学生基本认识了某些数学思想方法的基础上的复习数学。数学思想方法总是隐含在数学知识中,它与具体的数学知识结合成一个有机整体,但它却无法像数学知识那样编为章节来教学,而是渗透于全部的小学数学知识中。不同章节的数学知识往往蕴含着不同的数学思想方法,有时在一章或一单元的教学中,又涉及很多的数学思想方法。因此教师在上复习课前,教师要能总体把握教材中隐含的思想方法,明确前后知识间的联系,做到“瞻前顾后”,并把数学思想方法的渗透落实到教学计划中。复习时,除了帮助学生掌握好知识与技能,形成良好的认知结构外,还必须加强数学思想方法的渗透,适时地对某种数学思想方法进行揭示、概括和强化,对它的名称、内容及其运用等予以点拨,使学生从数学思想方法的高度把握知识的本质和内在的规律,逐步体会数学思想方法的价值。如在复习多边形的面积推导时,教师可引导学生思考:平行四边形、三角形、梯形的面积计算公式各是怎样推导的?有什么共同点?让学生提炼概括:学习平行四边形面积计算时,我们应用割补法把它转化成学过的长方形来推导;学习三角形和梯形的面积计算时,我们用两个完全相同的图形来拼合或把一个图形割补转化成学过的图形来推导……经过系列概括提炼,学生得出其中重要的思想方法——转化思想。学生一旦掌握了数学思想方法,不仅能使学生的知识结构更完善,还特别有助于今后的学习和运用。因为掌握了数学的思想方法,学生面对新的问题时将懂得怎样去思考,真正实现质的“跃”。
(3)作业:掌握知识、形成技能、发展智力,应用数学思想方法
精心设计作业也是渗透数学思想方法的一条途径。把作业设计好,设计一些蕴含数学思想方法的题目,采取有效的练习方式,既巩固了知识技能,又有机地渗透了数学思想方法,一举两得。为此教师布置作业要有讲究,在学生作业后,要不失时机地恰当地点评,让学生不仅巩固所学知识、习得解题技能,更重要的是能悟出其中的数学规律、数学思想方法。再如一位六年级老师布置了下面这道课后思考题。
在作业讲评中,教师不仅要给出答案,更重要的是启发学生思考:你是怎样算的?是怎么想的?其中运用了什么思想方法? 结合上图引导学生概括出其中的思想与方法:类比思想、数学建模思想、极限的思想、数形结合的思想。
(4)课外:培养兴趣、增长见识、培养能力,提升数学思想方法
学校开展数学课外活动是课内教学的重要补充。根据学生的学习水平在年段里开设有关数学思想方法内容的讲座,如果平时教学中的数学思想方法的点滴渗透是“美味点心”的话,那么专题讲座对学生来说就是“丰盛大餐”了,学生比较系统地了解了常见的数学思想方法以及应用,拓展学生的眼界;数学思想方法的渗透和数学课外实践活动相结合可以使二者相得益彰,定期开展数学实践活动可以发展学生的动手实践能力和创新意识,发展学生应用数学思想方法解决问题的能力;定期开展数学智力竞赛,不但激发优生学习数学的积极性,也考察学生掌握数学思想方法的情况;学生编数学小报、出板报等活动,可以增长学生见识,了解较多相关知识。形式多样的数学课外活动,使数学思想方法潜移默化,引导学生在学与用中提升了对数学思想方法的认识。

㈢ 研究性学习课题 高中数学思想方法探究

其实吧~现在差也别着急迷茫。我刚高考完前几天。我好玩,其他科可不错 ,可高一时数学没咋听,当时题简单,150分含金量低,可我一直都是110多或120多,敬液很次。就刚入学时立了志考了140多。高二时认真听讲,数学不错。到了高三一综合,我前两次模拟都是考了90多分,一下落到了年级30多名,急死了。于是上课认真听讲,超认真做笔记,作业跟老师进度写(到高三你就会明白,跟进度写练习也不是件容敬衡易事),春节前我已经把以前的补上了,题难,但我考了139.春节后我开始做练习,有段时间保证每天一套数学卷。成绩稳定在了130甚至135以上。高考前我把以前的卷子翻了一遍(超级厚),这次高考我数学估分142.还不错,就一道大题第二问没写完。
所以说,上课认真听讲,超认真做笔记,作业跟老师进度写,考前翻卷子,再加上记性好,你完全可以学好,现在不用着急~!~~`嘿嘿~ 我是高三才这样亮稿做的,都后悔死了。而你很有潜力,还有3年呢!数学好了后我成绩稳定在了年级15名之前。。。。

㈣ 如何引导学生感悟数学思想方法

摘要:数学思想方法是数学的灵魂,两次课标的修改看出对数学思想方法的关注,这是一种全新的教育观,要引起教师的重视并加以研究落实。我们学校课题组研究了数学思想方法的教材体系,并在课堂教学中予以体现。
关键词:数学思想方法感悟数学素养提升
数学思想方法是数学的灵魂,我们的数学课堂,应该致力于追求数学思想方法的价值引领,充分挖掘教材中的数学思想方法,在教学中有意识、有效地加以渗透,让学生在潜移默化中去领悟、运用,并逐步内化为数学思维品质,进而提升学生的数学素养。小学数学青岛版教材设置了专题《智慧广场》,旨在让学生了解与掌握一些基本的解决问题的策略与方法,凸显数学思考,促进学生思维发展。我们学校数学课题组以“感悟数学思想方法,提升学生数学素养”为课题,深入研究《智慧广场》这种课型的课堂教学,有了一些自己的想法,总结一下我们的做法供同行们商榷。
一、挖掘教材中蕴含的数学思想方法
研究中我们坚持教材分析的整体性。作为小学数学教师,我们应该深刻理解小学数学的知识体系,能够从数与代数、图形与几何、统计与概率、实践与综合应用四个方面,通晓小学数学全部的教学内容,逐步了解各部分渗透的数学思想方法,以便渗透时逐步推进,避免顾此失彼。因此,在研究中,我们坚持教材研究的整体性,认清教材特点,梳通教材脉络,理清教材思路,从整体上构建教材中数学思想的立体框架。
青岛版修订教材设计了明、暗两条线。1.暗线,即将基本的数学思想方法渗透于各单元知识教学之中。使学生在学知识的过程中,不仅领略到数学思想方法的魅力,而且还能从数学思想方法的角度,理性地认识数学规律,提升数学思考力;2.明线,即单独设置栏目与专题,助推“思想方法”目标的有效落实。一是保留原教材“聪明小屋”栏目,安排了诸如找规律、简单的推理等内容,给学生提供了一个自主探索平台,促进学生思维的发展。“聪明小屋”栏目中的题目,大都是一些运用小规律、小策略解决的问题,由学生自主探究就可以解决;二是新增“智慧广场”专题,梳理出小学数学基本的数学思想方法,进而举一反三,增长学生聪明才智。
课题研讨中,我们充分抓住这两条线,同时袭樱谈推进,老师们梳理了智慧广场专题教材体系、聪明小屋编排,便于从整体上把握方法结构;接着又梳理了各教材在单元体系中蕴含的思想方颂猛法,把散落于教材中的思想方法提炼出来,便于教师从整体上构建立体框架。
二、抓住核心概念成就课堂亮点
比如三年级《周期的问题》一课,我们根据教材的结构和编写特点,以及三年级学生的认知和心理特点,巧妙处理了以下两个问题,有效地凸显了课程标准中的几个核心概念:模型思想,推理能力,应用意识和创新意识。
1.关注学生探索过程,引导学生有效建模。
本堂课,我们注重突出学生自主建模的全过程,在一系列的数学活动中,让学生体验了建模准备、自主建模、模型应用再到模型拓展的数学学习模式。
首先,建模准备。为保证学生自主建模活动的高效开展,我们先引领学生建构现象模型,在轻松的翻动日历中,通过观察与分析,认识一周为7天的周期现象,感知时间的周期现象的特点。
第二,自主建模。在这一阶段,我们只是向学生呈现了实际问题原型,而问题的探索与解决都由学生自主完成。学生能够探索出列举、推算,计算等方法;学生在对比方法时、在方法梳理时主动提炼模型。这一系列的数学化历程都是学生自主建模的过程。
第三,模型应用。学生通过上述数学活动,自主建构数学模型之后,教师及时引导学生,应用模型解决问题。
最后,模型拓展。全课结束前让孩子找生活中的周期现象,使学生对周期模型的探索之情还将延续,学生所建模型的层次也将不断上升延伸。
这样的设计,有利于学生经历完整的建模过程,使学生充分地体验数学学习的过程,建立模型,由此积累数学学习的经验,从而建立数学学习的信心。
2.关注数学思想方法,注重梳理提升建构。
(1)以点串线,对本课的方法进行梳理提升。在所有的方法交流完之后,继续引领学生进行梳理,把这三种方法整理在一起,然后让学生进行观察发现:仔细观察列举,推算,计算这三种方法你有什么发现?学生就会对这些方法进行对比,发现各种方法的优缺点,能够促使学生对方法主动地进行优化。同时引导学生发现这几种方法都利用了一个周期是7天这个规律,再更深层次把握解决周期问题方法的实质。
(拍碰2)以点带面,对整个方法体系进行建构归网。其实时间的周期问题并不是孤立存在的,有一定的知识基础的。二年级时,学生学过了一个智慧广场——图形的周期问题,还学会了一一列举、表格列举等解决问题的方法,本节课是周期问题的进一步深化和应用。将刚学知识方法与以前的知识方法建立联系,形成网络,就尤为重要了。所以我们又借助微视频,将图形的周期问题和时间的周期问题放在一起进行对比梳理,能够引导学生对周期问题有更深的把握,对解决这类问题的方法形成了一种模式,有效的帮助学生积累数学活动经验,建立数学活动模型。这一有效梳理,给学生形成一个方法串,有助于帮助学生策略的提升和方法的梳理建构、归网,促进学习的方法内化。

㈤ 如何认识在中学数学教学中数学思想方法的地位与作用

一、数学思想方法教学与能力的关系
思想方法就是客观存在反映在人的意识中经过思维活动而产生的结果,它是从大量的思维活动中获得的产物,经过反复提炼和实践,一再被证明为正确、可以反复被应用到新的思维活动中,并产生出新的结果。数学思想方法,就是指现实世界的空间形式和数量关系反映到人的意识中,经过思维活动而产生的结果,它是对数学事实与数学理论(概念、定理、公式、法则等)的本质认识。所以,数学思想是对数学知识的本质认识,是对数学规律的理性认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想。数学方法是指从数学角度提出问题、解决问题(包括数学内部问题和实际问题)的过程中所采用的各种方式、手段、途径等。数学思想和数学方法是紧密联系的,一般来说,强调指导思想时称数学思想,强调操作过程时称数学方法。
数学思想方法是形成学生的良好的认知结构的纽带,是由知识转化为能力的桥梁。中学数学教学大纲中明确指出:数学基础知识是指数学中的概念、性质、法则、公式、公理、定理以及由其内容所反映出来的数学思想方法。数学思想和方法纳入基础知识范畴,足见数学思想方法的教学问题已引起教育部门的重视,也体现了我国数学教育工作者对于数学课程发展的一个共识。这不仅是加强数学素养培养的一项举措,也是数学基础教育现代化进程的必然与要求。这是因为数学的现代化教学,是要把数学基础教育建立在现代数学的思想基础上,并使用现代数学的方法和语言。因此,探讨数学思想方法教学的 一系列问题,已成为数学现代教育研究中的一项重要课题。
从心理发展规律看,初中学生的思维是以形式思维为主向辨证思维过渡,高中学生的思维则是辨证思维的形成。进行数学思想方法教学,不仅有助于学生从形式思维向辩证思维过渡,而且是形成和发展学生辩证思维的重要途径。
从认知心理学角度看,数学学习过程是一个数学认知结构的发展变化过程,这个过程是通过同化和顺应两种方式实现的。所谓同化,就是主体把新的数学学习内容纳入到自身原有的认知结构中去,把新的数学材料进行加工改造,使之与原教学学习认知结构相适应。所谓顺应,是指主体原有的数学认识结构不能有效地同化新的学习材料时,主体调整成改造原来的数学内部结构去适应新的学习材料.在同化中,数学基础知识不具备思维特点和能动性,不能指导“加工”过程的进行。而心理成份只给主体提供愿望和动机,提供主体认知特点,仅凭它也不能实现“加工”过程。数学思想方法不仅提供思维策略(设计思想),而且还提供实施目标的具体手段(解题方法)。实际上数学中的转化、化归就是实现新旧知识的同化。与同化一样,顺应也在数学思想方法的指导下进行。积极进行数学思想方法教学,将极大地促进学生的数学认知结构的发展与完善。
从学习迁移看,数学思想方法有利于学生学习迁移,特别是原理和态度的迁移,从而可以极大地提高学习质量和数学能力。布鲁纳认为 “学习基本原理的目的,就在于促进记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来。高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具。”由此可见,数学思想方法作为数学学科的“一般原理”,在教学中是至关重要的,因此,对于中学生,不管他们将来从事什么工作,唯有深深地铭刻于头脑中的数学思想方法将随时随地发生作用,使他们受益终生。
二、数学思想方法的教学原理
数学思想方法的教学原理是说明数学思想方法的教学规律的。中学数学的课程内容是由具体的数学知识与数学思想方法组成的有机整体,现行数学教材的编排一般是沿知识的纵方向展开的,大量的数学思想方法只是蕴涵在数学知识的体系之中,并没有明确的揭示和总结。这样就产生了如何处理数学思想方法教学的问题。进行数学思想方法的教学,必须在实践中探索规律,以构成数学思想方法教学的指导原则。数学思想方法的构建有三个阶段:潜意识阶段、明朗和形成阶段、深化阶段。一般来说,应以贯彻渗透性原则为主线,结合落实反复性、系统性和明确性的原则.它们相互联系,相辅相成,共同构成数学思想方法教学的指导思想。(如下图所示)

1.渗透性原则:在具体知识教学中,一般不直接点明所应用的数学思想方法,而是通过精心设计的学习情境与教学过程,着意引导学生领会蕴涵在其中的数学思想和方法,使他们在潜移默化中达到理解和掌握。数学思想方法与具体的数学知识虽然是一个有机整体,它们相互关联,相互依存,协同发展,但是具体数学知识的数学并不能替代数学思想方法的数学。一般来说,数学思想方法的教学总是以具体数学知识为载体,在知识的教学过程中实现的。数学思想是对数学知识和方法本质的认识,数学方法是解决数学问题、体现数学思想的手段和工具。所以,数学思想方法具有高度的抽象性与概括性。如果说数学方法尚具有某种外在形式或模式,那么作为一类数学方法的概括的数学思想,却只表现为一种意识或观念,很难找到外在的固定形式。因此,数学思想方法的形式绝不是一朝一夕可以实现的,必须要日积月累,长期渗透才能逐渐为学生所掌握。
数学思想方法的渗透主要是在具体知识的教学过程中实现的。因此,要贯彻好渗透性原则,就要不断优化教学过程。比如,概念的形成过程;公式、法则、性质、定理等结论的推导过程;解题方法的思考过程;知识的小结过程等,只有在这些过程的教学中,数学思想方法才能充分展现它们的活力。取消或压缩教学的思维过程,把数学教学看为知识结论的教学,就失去了渗透数学思想方法的机会,使数学思想方法无有用武之地。
2.反复性原则:学生对数学思想方法的领会和掌握只能遵循从个别到一般,从具体到抽象,从感性到理性,从低级到高级的认识规律。因此,这个认识过程具有长期性和反复性的特征.
从一个较长的学习过程看,学生对每种数学方法的认识都是在反复理解和运用中形成的,其间有一个由低级到高级的螺旋上升过程.如对同一数学思想方法,应该注意其在不同知识阶段的再现,以加强学生对数学思想方法的认识.
另外,由于个体差异的存在,与具体的数学知识相比,学生对数学思想方法的掌握往往表现出更大的不同步性.在教学中,应注意给中差生更多的思考,接受理解的时间,逾越了这个过程,或人为地缩短,会导致学生囫囵吞枣,长此以往,会形成好的更好,差的更差的两极分化局面。
3.系统性原则:与具体的数学知识一样,数学思想方法只有形成具有一定结构的系统,才能更好地发挥其整体功能。数学思想方法有高低层次之别,对于某一种数学思想而言,它所概括的一类数学方法,所串联的具体数学知识,也必须形成自身的体系,才能为学生理解和掌握,这就是数学思想方法教学的系统性原理。
对于数学思想方法的系统性的研究,一般需要从两个方面进行:一方面要研究在每一种具体数学知识的教学中可以进行哪些数学思想方法的教学。另一方面,又要研究一些重要的数学思想方法可以在那些知识点的教学中进行渗透,从而在纵横两个维度上整理出数学思想方法的系统。例如《数列》这一章,就体现了函数与方程、等价转化、分类讨论等重要的数学思想以及待定系数法、配方法、换元法、消元法、“归纳一猜想一证明”等基本的数学方法。
4.明确性原则:在中学数学各科教材中,数学思想方法的内容显得薄弱,除了一些具体的数学方法比较明确外,一些重要的数学思想方法都没有比较明确和系统的阐述,而它们一直蕴含在基础知识的教学之中。从数学思想方法教学的整个过程来看,只是长期、反复、不明确的渗透,将会影响学生认识从感性到理性的飞跃,妨碍了学生有意识地去掌握和领会。渗透性和明确性是数学思想方法教学辩证的两个方面。因此,在反复渗透的教学过程中,利用适当时机,对某些数学思想方法进行概括、强化和提高,对它的内容、名称、规律、使用方法适度明确化,是掌握、运用数学思想方法并转化为能力的前提,所以数学思想方法的教学应贯彻明确性原则。贯彻数学思想明确化原则,是让学生理解数学思想的关键,是熟练掌握、灵活运用、转化为能力的前提。
例如在解题教学中,可经常采用一题多解,多题一解的教学方法明确数学思想方法。一题多解是运用不同的数学思想方法,寻求多种解法;多题一解又是运用同一种数学思想方法于多种题目之中。但是在教学中,往往缺乏从数学思想方法的高度去阐明其中的本质和通法。我们在解题教学中,将蕴含其中的数学思想方法明确化,有利于学生掌握其中规律,使学生的认识能力产生飞跃。
三、中学数学中的主要思想方法
1.中学数学中的主要思想:函数与方程思想,数形结合思想,分类讨论思想,化归与转化思想。
(1)函数与方程思想:就是用函数的观点、方法研究问题,将非函数问题转化为函数问题,通过对函数的研究,使问题得以解决。通常是这样进行的:将问题转化为函数问题,建立函数关系,研究这个函数,得出相应的结论。中学数学中,方程、数列、不等式等问题都可利用函数思想得以简解;几何量的变化问题也可以通过对函数值域的考察加以解决。例如1990年全国高考题:如果实数x、y满足(x-2)2 + y2 =3,那么的最大值是 。分析:为分离出,先给已知等式两边同除以x2,得.分离变量与,得==.此式表示是的二次函数,易知当=2即x=时,有最大值3,则有最大值.此题不是函数而看成函数,这不正是函数思想的实质吗?
(2)数形结合思想:数学是研究现实世界空间形式和数量关系的科学,因而数学研究总是围绕着数与形进行的。“数”就是方程、函数、不等式及表达式,代数中的一切内容;“形”就是图形、图象、曲线等。数形结合的本质是数量关系决定了几何图形的性质,几何图形的性质反映了数量关系。数形结合就是抓住数与形之间的内在联系,以“形”直观地表达数,以“数”精确地研究形。华罗庚曾说:“数缺形时少直觉,形缺数时难入微。”通过深入的观察、联想,由形思数,由数想形,利用图形的直观诱发直觉。例如:已知x1是方程x+ lgx =3的根,x2是x+10x =3的根,则x1+x2等于( )(A)6(B)3(C)2(D)1 . 分析:构造函数y=lgx,y=10x,y=3-x,由于y=lgx与y=10x互为反函数,图象关于直线y=x对称,而直线y=3-x 与y=x互相垂直,所以y=3-x与y=lgx和y=3-x与y=10x的交点P1(x1,y1)P2(x2,y2)是关于直线y=3-x 与y=x的交点M(x0,y0)对称的,故x1+x2=2 x0=3,选(B),(图略).
(3)分类讨论思想:就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同种类的思想方法,分类是以比较为基础的,它能揭示数学对象之间的内在规律,有助于学生总结归纳数学知识,使所学知识条理化。
数学中的分类有现象分类和本质分类两种,前一种分类是以分类对象的外部特征、外部关系为根据的,如复数分为实数与虚数等,这种分法看上去一目了然,但不能揭示所分对象之间的本质联系;后一种分类是按对象的本质特征、内部联系进行分类的,如函数按单调性或有界性分类,多面体按柱、锥、台分类等。引起分类讨论的主要原因有:①由数学概念引起的分类讨论;②由数学定理、性质、公式的限制条件引起的分类讨论;③由数学式子的变形所需要的限制条件引起的分类讨论;④由图形的位置和大小的不确定性而引起的分类讨论;⑤对于含有参数的问题要对参数的允许值进行全面的分类讨论。
(4)化归与转化思想:在教学研究中,使一种对象在一定条件下转化为另一种研究对象的数学思想称为转化思想。体现在数学解题中,就是将原问题进行变形,使之转化为我们所熟悉的或已解决的或易于解决的问题,就这一点来说,解题过程就是不断转化的过程。化归与转化的一般原则是:①化归目标简单化原则;②和谐统一性原则(化归应朝着使待解决问题在表现形式上趋于和谐,在量、形、关系方面趋于统一的方向进行,使问题的条件与结论表现得更均匀和恰当。);③具体化原则;④标准形式化原则(将待解问题在形式上向该类问题的标准形式化归。标准形式是指已经建立起来的数学模式。如二次函数y=ax2+bx+c (a≠0);椭圆方程);⑤低层次化原则(解决数学问题时,应尽量将高维空间的待解问题化归成低维空间的问题,高次数的问题化归成低次数的问题,多元问题化归为少元问题解决。这是因为低层次问题比高层次问题更直观、具体、简单)。化归与转化的策略有:①已知与未知的转化(已知条件常含有丰富的内容,发掘其隐含条件,使已知条件朝着明朗化的方向转化,如综合法;对于一个未知的新问题,通过联想,寻找转化为已知的途径,或从结论人手进行转化,如分析法)。②正面与反面的转化(在处理某一问题,按照习惯思维方式从正面思考而遇到困难,甚至不可能时,用逆向思维的方法去解决,往往能达到突破性的效果)。③数与形的转化(数形结合其实质是将抽象的数学语言与直观的图形相结合,可以使许多概念和关系直观而形象,有利于解题途径的探求)。 ④一般与特殊的转化。⑤复杂与简单元的转化(把一个复杂的、陌生的问题转化为简单的、熟悉的问题来解决,这是数学解题的一条重要原则)。
高中数学涉及最多的是转化思想,如超越方程代数化、三维空间平面化、复数问题实数化等,为了实现转化,相应地产生了许多的数学方法,如消元法、换元法、图象法、待定系数法、配方法等。通过这些数学方法的使用,使学生充分领略数学思想在数学领域里的地位与作用。
2.中学数学中的基本数学方法
(1)数学中的几种常用求解方法:配方法、消去法、换元法、待定系数法、数学归纳法、坐标法、参数法、构造法、数学模型法等;
(2)数学中的几种重要推理方法:综合法与分析法、完全归纳法与数学归纳法、演绎法、反证法与同一法;
(3)数学中的几种重要科学思维方法:观察与试尝、概括与抽象、分析与综合、特殊与一般、比较与分类、归纳与类比、直觉与顿悟等。
四、数学思想方法教学途径的探索
1.在基础知识的教学过程中,适时渗透数学思想方法
在教学过程中,要注意知识的形成过程,特别是定理、性质、公式的推导过程和例题的求解的过程,基本数学思想和数学方法都是在这个过程中形成和发展的,数学基本技能也是在这个过程学习和发展的,数学的各种能力也是在这个过程中得到培养和锻炼的,数学思想和数学观念也是在这个过程中形成的。
(1)重视概念的形成过程
概念是思维的细胞,是感性认识飞跃到理性认识的结果。而飞跃的实现要经过分析、综合、比较、抽象、概括等思维的逻辑加工,需依据数学思想方法的指导。因而概念教学应当完整地体现这一过程,引导学生揭示隐藏于概念之中的思维内核。例如,高一新教材,数学第一册(上)第二章 函数,有关函数的单调性的知识,是数形结合思想渗透教学的最好材料,教学中要充分抓住这一有利时机。函数f(x)在区间A上是增函数或减函数可直观地用下图示意:

通过图象的直观性,可使学生深刻理解函数的单调性,也使学生对增函数、减函数的定义有更加明确的认识。
(2)引导学生对定理、公式的探索、发现、推导的过程
在定理、性质、法则、公式、规律等的教学中要引导学生积极参与这些结论的探索、发现、推导的过程,不断在数学思想方法指导下,弄清每个结论的因果关系,最后再引导学生归纳得出结论。
例如,高一新教材,数学第一册(上)第三章 数列,教师要不失时机地引导学生观察发现数列是特殊的函数,关于等差数列,由通项公式和求和公式看出,an和Sn都是n的函数,当d≠0时,an是n的一次函数,Sn是n的二次函数。因此可以用一次、二次函数的有关知识来解决等差数列的通项、前n项和的问题。函数的图象是函数的灵魂。an =a1 +(n-1)d的图象是一条直线上的点.Sn =na1 +d的图象是一条抛物线上的点,借助图形的直观,解决问题。
2.在小结复习的教学过程中,揭示、提炼概括数学思想方法
由于同一内容可蕴含几种不同的数学思想方法,而同一数学思想方法又常常分布在许多不同的基础知识之中,及时小结、复习以进行强化刺激,让学生在脑海中留下深刻的印象,这样有意识、有目的地结合数学基础知识,揭示、提炼概括数学思想方法,既可避免单纯追求数学思想方法教学欲速则不达的问题,又明快地促使学生认识从感性到理性的飞跃。例如,《数列》这一章,体现了函数与方程、等价转化、分类讨论等重要的数学思想以及待定系数法、配方法、换元法、消元法、“归纳一猜想一证明”等基本的数学方法。复习小结时可配合知识点和典型例题强化训练。
3.抓好运用,不断巩固和深化数学思想方法
在抓住学习重点、突破学习难点及解决具体数学问题中,数学思想方法是处理这些问题的精灵,这些问题的解决过程,无一不是数学思想方法反复运用的过程,因此,时时注意数学思想方法的运用既有条件又有可能,这是进行数学思想方法教学行之有效的普遍途径.数学思想方法也只有在反复运用中,得到巩固与深化.例如2000年全国高考题:设{}是首项为1的正项数列,且,(n=1,2,3…),则它的通项公式= 。
分析:题设给出了数列相邻两项所满足的关系式(递推公式)和首项=1 ,由此可求出,,,从而可猜想出=,由特殊到一般,灵活运用“归纳一猜想一证明”这一探究问题的思维方式猜想出结果(填空题可不必证明)。
如果注意到递推公式是关于和的二次齐次式,也可通过分解因式或解一元二次方程来解决,即灵活运用方程思想求得更简单的递推式,进而运用迭乘法迅速求得.

①(∵>0) (常数) =


===.

㈥ 初中数学思想方法及其教学

初中数学思想方法及其教学

在日常学习、工作生活中,许多人都写过论文吧,论文是指进行各个学术领域的研究和描述学术研究成果的文章。你写论文时总是无从下笔?下面是我帮大家整理的初中数学思想方法及其教学,希望对大家有所帮助。

【摘 要】 数学思想方法是数学的精髓,是学生形成良好认知结构的纽带,是知识转化为能力的桥梁,是培养学生良好的数学观念和创新思维的载体,在族陵教学中我们必须重视数学思想方法的渗透教学。

【关键词】 初中数学 思想 方法 教学模式

数郑碧学教学有两条线,一条是明线即数学知识的教学,一条是暗线即数学思想方法的教学。而数学思想方法是数学的精髓,是学生形成良好认知结构的纽带,是知识转化为能力的桥梁,是培养学生良好的数学观念和创新思维的载体,在教学中我们必须重视数学思想方法的渗透教学。

1 数学思想与数学方法

数学思想与数学方法目前尚没有确切的定义,我们通常认为,数学思想就是“人对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想”。就中学数学知识体系而言,中学数学思想往往是数学思想中最常见、最基本、比较浅显的内容,例如:模型思想、极限思想、统计思想、化归思想、分类思想等。所谓数学方法,是指人们从事数学活动的程序、途径,是实施数学思想的技术手段,也是数学思想的具体化反映。所以说,数学思想是内隐的,而数学方法是外显的,数学思想比数学方法更深刻,更抽象地反映了数学对象间的内在联系。由于数学是逐层抽象的,数学方法在实际运用中往往具有过程性和层次性特点,层次越低操作性越强。总之,数学思想和数学方法有区别也有联系,在解决数学问题时,总的指导思想是把问题化归为能解决的问题,而为实现化归,常用如一般化、特殊化、类比、归纳、恒等变形等方法,这时又常称用化归方法。

2 数学思想方法教学的心理学意义

数学思想方法是形成学生的良好的认知结构的纽带,是由知识转化为能力的桥梁。中学数学教学大纲中明确指出:数学基础知识是指数学中的概念、性质、法则、公式、公理、定理以及由其内容所反映出来的数学思想方法。数学思想和方法纳入基础知识范畴,足见数学思想方法的教学问题已引起教育部门的重视,也体现了我国数学教育工作者对于数学课程发展的一个共识。这不仅是加强数学素养培养的一项举措,也是数学基础教育现代化进程的必然与要求。这是因为数学的现代化教学,是要把数学基础教育建立在现代数学的思想基础上,并使用现代数学的方法和语言。因此,探讨数学思想方法教学的一系列问题,已成为数学现代教育研究中的一项重要课题。

从心理发展规律看,初中学生的思维是以形式思维为主向辨证思维过渡。进行数学思想方法教学,不仅有助于学生从形式思维向辩证思维过渡,而且是形成和发展学生辩证思维的重要途径。

从认知心理学角度看,数学学习过程是一个数学认知结构的发展变化过程,这个过程是通过同化和顺应两种方式实现的。所谓同化,就是主体把新的数学学习内容纳入到自身原有的认知结构中去,把新的数学材料进行加工改造,使之与原教学学习认知结构相适应。所谓顺应,是指主体原有的数学认识结构不能有效地同化新的学习材料时,主体调整成改造原来的数学内部结构去适应新的学习材料.在同化中,数学基础知识不具备思维特点和能动性,不能指导“加工”过程的进行。而心理成份只给主体提供愿望和动机,提供主体认知特点,仅凭它也不能实现“加工”过程。数学思想方法不仅提供思维策略(设计思想),而且还提供实施目标的具体手段(解题方法)。积极进行数学思想方法教学,将极大地促进学生的数学认知结构的发展与完善。

3 数学思想方法的教学模式

为了在教学中更好地渗透数学思想方法教学,我觉得可以根据不同的教学内容采用以下不同的教学模式:

3.1 发现法教学模式。发现法教学模式也称问题解决教学模式,是按照美国教育家布鲁纳针对学生好奇、好问、好动的.心理特点提出的教学理论而创立的教学模式。发现法教学模式的基本程喊穗举序是:创设情景——分析研究——猜测归纳——验证反思——运用结论。这种模式的特点是有利于培养学生的探究精神和创造性,有利于学生独立思考和收集、处理有关信息能力的培养,有利于体现学生的主体地位及研究问题的方法,有利于激发学生学习数学的兴趣。发现法教学模式适用于知识引用阶段,通过对概念、定理、公式、法则等数学知识的探究发现,达到培养学生解决问题的能力;在教学中强调从特殊到一般的思想方法。

3.2 “比较——归纳”的教学模式。我们主张学生参与实践获取知识,但学生不可能事事都直接体验。数学知识之间的联系非常紧密,要让学生参与知识形成的过程,从已有知识经验出发是很好的途径。运用类比、对比帮助学生找出相关数学概念、相关数学命题之间的联系和区别,从而确切地去理解数学概念系统,澄清一些易混淆的概念、定理、公式。此模式适合于新课、复习课。在教学中强调:结构思想、优化思想、比较与分析、归纳与类比等方法。例如:当讲完相似三角形的判定定理之后,教师可将相似三角形的判定与全等三角形的判定进行比较。首先应指出全等三角形是相似比为1的相似三角形。将两者的判定定理进行一一比较,使学生进一步强化对定理的认识。

3.3 “问题观察——联想旧知识——问题解决”的教学模式。在教学中强调化归思想、转化思想、数形结合思想。学习新知识时,联想有关旧知识,是培养化归意识的一种有效途径。它既有思维上的迁移性又有思维上的创造性。多数的表现为接近联想和相似联想、类比联想,如分式性质联想到分数性质、二次函数联想到一次函数、形联想到数、数联想到形。

转换是一种重要的解题策略,转换的基础是联想,而化归是转换的一种具体形式。例如运用符号法则,把有理数四则运算转化成算术运算,把减法转化成加法,把除法转化成乘法;通过消元、降次把高次方程转化成低次方程,多元方程转化成一元方程;在研究立体几何问题时,通常转换成平面几何问题来解决;把实际问题转换成数学问题来解决等。

在教学中,教师应尽可能揭示知识间的联系和演变,探究、展示知识发生过程,以此开拓学生思路,启迪联想和转换。注意分析、揭示题设、结论的相互关系,隐含因素,激发学生的联想和转换动机。此外,数学中的基本思想方法是产生联想和转换的基础,一定要加强这方面的训练。

;
阅读全文

与数学思想方法的研究课题相关的资料

热点内容
扭伤的治疗方法 浏览:363
慢性湿疹好的治疗方法如何治 浏览:257
主板里的声音怎么设置在哪里设置方法 浏览:548
物理教学方法对比法 浏览:26
中药材木瓜的食用方法 浏览:285
不拘泥的方法有哪些 浏览:521
一类盈亏问题解决方法 浏览:725
封店注意事项及解决方法 浏览:613
终于找到做酸奶最简单的方法 浏览:255
法学的规范分析方法包括 浏览:164
精神病治疗有哪些方法 浏览:477
苹果石榴种植方法 浏览:202
北京治疗阳痿的好方法 浏览:58
如何做一个高效的学习方法 浏览:295
安卓手机有哪几种扩容方法 浏览:170
艾滋检测方法及原理 浏览:218
竹椅子使用方法视频 浏览:63
照片去水印的方法手机上 浏览:791
男性腺素高的治疗方法 浏览:600
8x45x2用简便方法算 浏览:960