导航:首页 > 研究方法 > 对思想和方法的基本研究

对思想和方法的基本研究

发布时间:2022-01-26 02:07:37

Ⅰ <什么是数学 对思想和方法的基本研究>这本书对高中生适合吗

对学有余力的学生还是适合的,它能让你居高临下地思考问题,能从思维的角度提高对数学的认识,提高元认知水平。

Ⅱ 什么是数学.对思想和方法的基本研究

第一:函数与方程思想

(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用

(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础

高考把函数与方程思想作为七种重要思想方法重点来考查

第二:数形结合思想:

(1)数学研究的对象是数量关系和空间形式,即数与形两个方面

(2)在一维空间,实数与数轴上的点建立一一对应关系

在二维空间,实数对与坐标平面上的点建立一一对应关系

数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化

第三:分类与整合思想

(1)分类是自然科学乃至社会科学研究中的基本逻辑方法

(2)从具体出发,选取适当的分类标准

(3)划分只是手段,分类研究才是目的

(4) 有分有合,先分后合,是分类整合思想的本质属性

(5) 含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性

第四:化归与转化思想

(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题

(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法

(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化

第五: 特殊与一般思想

(1)通过对个例认识与研究,形成对事物的认识

(2)由浅入深,由现象到本质、由局部到整体、由实践到理论

(3)由特殊到一般,再由一般到特殊的反复认识过程

(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程

(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向

第六:有限与无限的思想:

(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路

(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向

(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用

(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查

第七:或然与必然的思想:

(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性

(2)偶然中找必然,再用必然规律解决偶然

(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点

第一:函数与方程思想
(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用
(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础
高考把函数与方程思想作为七种重要思想方法重点来考查

第二:数形结合思想:
(1)数学研究的对象是数量关系和空间形式,即数与形两个方面
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化

第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(3)划分只是手段,分类研究才是目的
(4) 有分有合,先分后合,是分类整合思想的本质属性
(5) 含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性

第四:化归与转化思想
(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向

第六:有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查

第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点

第一:函数与方程思想
(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用
(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础
高考把函数与方程思想作为七种重要思想方法重点来考查

第二:数形结合思想:
(1)数学研究的对象是数量关系和空间形式,即数与形两个方面
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化

第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(3)划分只是手段,分类研究才是目的
(4) 有分有合,先分后合,是分类整合思想的本质属性
(5) 含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性

第四:化归与转化思想
(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向

第六:有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查

第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点

Ⅲ 什么是数学:对思想和方法的基本研究电子书下载

下载地址:http://www.verycd.com/topics/196563/

内容简介:

本书既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。本书是一本数学经典名着,它搜集了许多闪光的数学珍品,它们给出了数学世界的一组有趣的、深入浅出的图画。本书传至今日,又由I·斯图尔特增写了新的一章。此第二版以新的观点阐述了数学的最新进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。
本书是世界着名的数学科普读物,它搜集了许多经典的数学珍品,对整个数学领域中的基本概念与方法,做了精深而生动的阐述。无论是数学专业人士,或是愿意作数学思考者都可以阅读此书。特别对中学数学教师,大学生和高中生,都是一本极好的参考书。
目录:
什么是数学
第1章 自然数
引言
§ 1 整数的计算
§ 2 数系的无限性 数学归纳法
第1章补充 数论
引言
§ 1 素数
§ 2 同余
§ 3 毕达哥拉斯数和费马大定理
§ 4 欧几里得辗转相除法
第2章 数学中的数系
引言
§ 1 有理数
§ 2 不可公度线段 无理数和极限概念
§ 3 解析几何概述
§ 4 无限的数学分析
§ 5 复数
§ 6 代数数和超越数
第2章补充 集合代数
第3章 几何作图 数域的代数
引言
第1部分 不可能性的证明和代数
§ 1 基本几何作图
§ 2 可作图的数和数域
§ 3 三个不可解的希腊问题
第2部分 作图的各种方法
§ 4 几何变换 反演
§ 5 用其他工具作图 只用圆规的马歇罗尼作图
§ 6 再谈反演及其应用
第4章 射影几何 公理体系 非欧几里得几何
§ 1 引言
§ 2 基本概念
§ 3 交比
§ 4 平行性和无穷远
§ 5 应用
§ 6 解析表示
§ 7 只用直尺的作图问题
§ 8 二次曲线和二次曲面
§ 9 公理体系和非欧几何
附录 高维空间中的几何学
第5章 拓扑学
引言
§ 1 多面体的欧拉公式
§ 2 图形的拓扑性质
§ 3 拓扑定理的其他例子
§ 4 曲面的拓扑分类
附录
第6章 函数和极限
引言
§ 1 变量和函数
§ 2 极限
§ 3 连续趋近的极限
§ 4 连续性的精确定义
§ 5 有关连续函数的两个基本定理
§ 6 布尔查诺定理的一些应用
第6章 补充 极限和连续的一些例题
§ 1 极限的例题
§ 2 连续性的例题
第7章 极大与极小
引言
§ 1 初等几何中的问题
§ 2 基本极值问题的一般原则
§ 3 驻点与微分学
§ 4 施瓦茨的三角形问题
§ 5 施泰纳问题
§ 6 极值与不等式
§ 7 极值的存在性 狄里赫莱原理
§ 8 等周问题
§ 9 带有边界条件的极值问题 施泰纳问题和等周问题之间的联系
§ 10 变分法
§ 11 极小问题的实验解法 肥皂膜实验
第8章 微积分
引言
§ 1 积分
§ 2 导数
§ 3 微分法
§ 4 莱布尼茨的记号和“无穷小”
§ 5 微积分基本定理
§ 6 指数函数与对数函数
§ 7 微分方程
第8章 补充
§ 1 原理方面的内容
§ 2 数量级
§ 3 无穷级数和无穷乘积
§ 4 用统计方法得到素数定理
第9章 最新进展
§ 1 产生素数的公式
§ 2 哥德巴赫猜想和孪生素数
§ 3 费马大定理
§ 4 连续统假设
§ 5 集合论中的符号
§ 6 四色定理
§ 7 豪斯道夫维数和分形
§ 8 纽结
§ 9 力学中的一个问题
§ 10 施泰纳问题
§ 11 肥皂膜和最小曲面
§ 12 非标准分析
附录 补充说明 问题和习题
算术和代数
解析几何
几何作图
射影几何和非欧几何
拓扑学
函数、极限和连续性
极大与极小
微积分
积分法

Ⅳ 什么是数学 对思想和方法的基本研究 中文版 第3版

第一:函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用 (2)方程思想是解决各类计算问题的基本思想,是运算能力的基础 高考把函数与方程思想作为七种重要思想方法重点来考查 第二:数形结合思想: (1)数学研究的对象是数量关系和空间形式,即数与形两个方面 (2)在一维空间,实数与数轴上的点建立一一对应关系 在二维空间,实数对与坐标平面上的点建立一一对应关系 数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化 第三:分类与整合思想 (1)分类是自然科学乃至社会科学研究中的基本逻辑方法 (2)从具体出发,选取适当的分类标准 (3)划分只是手段,分类研究才是目的 (4) 有分有合,先分后合,是分类整合思想的本质属性 (5) 含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性 第四:化归与转化思想 (1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题 (2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法 (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化 第五: 特殊与一般思想 (1)通过对个例认识与研究,形成对事物的认识 (2)由浅入深,由现象到本质、由局部到整体、由实践到理论 (3)由特殊到一般,再由一般到特殊的反复认识过程 (4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程 (5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向 第六:有限与无限的思想: (1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路 (2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向 (3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用 (4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查 第七:或然与必然的思想: (1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性 (2)偶然中找必然,再用必然规律解决偶然 (3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点 第一:函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用 (2)方程思想是解决各类计算问题的基本思想,是运算能力的基础 高考把函数与方程思想作为七种重要思想方法重点来考查 第二:数形结合思想: (1)数学研究的对象是数量关系和空间形式,即数与形两个方面 (2)在一维空间,实数与数轴上的点建立一一对应关系 在二维空间,实数对与坐标平面上的点建立一一对应关系 数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化 第三:分类与整合思想 (1)分类是自然科学乃至社会科学研究中的基本逻辑方法 (2)从具体出发,选取适当的分类标准 (3)划分只是手段,分类研究才是目的 (4) 有分有合,先分后合,是分类整合思想的本质属性 (5) 含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性 第四:化归与转化思想 (1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题 (2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法 (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化 第五: 特殊与一般思想 (1)通过对个例认识与研究,形成对事物的认识 (2)由浅入深,由现象到本质、由局部到整体、由实践到理论 (3)由特殊到一般,再由一般到特殊的反复认识过程 (4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程 (5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向 第六:有限与无限的思想: (1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路 (2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向 (3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用 (4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查 第七:或然与必然的思想: (1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性 (2)偶然中找必然,再用必然规律解决偶然 (3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点 第一:函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用 (2)方程思想是解决各类计算问题的基本思想,是运算能力的基础 高考把函数与方程思想作为七种重要思想方法重点来考查 第二:数形结合思想: (1)数学研究的对象是数量关系和空间形式,即数与形两个方面 (2)在一维空间,实数与数轴上的点建立一一对应关系 在二维空间,实数对与坐标平面上的点建立一一对应关系 数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化 第三:分类与整合思想 (1)分类是自然科学乃至社会科学研究中的基本逻辑方法 (2)从具体出发,选取适当的分类标准 (3)划分只是手段,分类研究才是目的 (4) 有分有合,先分后合,是分类整合思想的本质属性 (5) 含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性 第四:化归与转化思想 (1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题 (2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法 (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化 第五: 特殊与一般思想 (1)通过对个例认识与研究,形成对事物的认识 (2)由浅入深,由现象到本质、由局部到整体、由实践到理论 (3)由特殊到一般,再由一般到特殊的反复认识过程 (4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程 (5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向 第六:有限与无限的思想: (1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路 (2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向 (3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用 (4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查 第七:或然与必然的思想: (1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性 (2)偶然中找必然,再用必然规律解决偶然 (3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点

Ⅳ 《什么是数学对思想和方法的基本研究》pdf下载在线阅读全文,求百度网盘云资源

《什么是数学》([美] R·柯朗 H·罗宾 着)电子书网盘下载免费在线阅读

链接: https://pan..com/s/1dteMvFF6YzEonTjkRKSYtQ 提取码: 3u94

书名:什么是数学

作者:[美] R·柯朗 H·罗宾 着

译者:左平

豆瓣评分:9.1

出版社:复旦大学出版社

出版年份:2005-5

页数:584

内容简介:

《什么是数学》既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。它是一本世界着名的数学科普读物。书中搜集了许多经典的数学珍品,给出了数学世界的一组有趣的、深入浅出的图画,对整个数学领域中的基本概念与方法,做了精深而生动的阐述。

I·斯图尔特增写了新的一章,以新的观点阐述了数学的最新进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。

作者简介:

R·柯朗(Richard Courant)是20世纪杰出的数学家,哥廷根学派重要成员。他生前是纽约大学数学系和数学科学研究院的主任,该研究院后被重命名为柯朗数学科学研究院。他写的书《数学物理方程》为每一个物理学家所熟知;而他的《微积分学》已被认为是近代写得最好的该学科的代表作。

H·罗宾(Herbert Robbins)是新泽西拉特杰斯大学的数理统计教授。

I·斯图尔特(Ian Stewart)是沃里克大学的数学教授,并且是《自然界中的数和上帝玩色子游戏吗》一书的作者;他还在《科学美国人》杂志上主编《数学娱乐》专栏;他因使科学为大众理解的杰出贡献而在1995年获得了皇家协会的米凯勒法拉第奖章。

Ⅵ 什么是数学:对思想和方法的基本研究

数学是一门历史性或者说是累积性很强的学科,重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有的理论,二期总是包容原先的理论。例如,数的理论的演进就表现出明显的累积性。摘自哈工大出版社的《数学史概论》

Ⅶ 什么是数学,对思想和方法的基本研究.pdf

Ⅷ 什么是数学对思想和方法的基本研究

数学思想,无非就是建模,推理和抽象这几个基本的,加上数形结合几何直观等等,你可以在课程标准里看到,至于渗透的话,主要是让学生经历知识的形成过程,不能只背公式,上课的时候别急,就让学生讲,讲不出你再引导。实际上很简单,就是你要学会做一个“懒”老师。我也是一名数学老师,也在努力的探索中。

Ⅸ 什么是数学对思想和方法的基本研究 pdf

第一:函数与方程思想

(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用

(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础

高考把函数与方程思想作为七种重要思想方法重点来考查

第二:数形结合思想:

(1)数学研究的对象是数量关系和空间形式,即数与形两个方面

(2)在一维空间,实数与数轴上的点建立一一对应关系

在二维空间,实数对与坐标平面上的点建立一一对应关系

数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化

Ⅹ 哪位大神有《什么是数学:对思想和方法的基本研究》电子版书籍百度云盘下载

《书名》网络网盘txt最新全集下载

链接:

提取码:0nha

本书既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。《什么是数学》是一本数学经典名着,它搜集了许多闪光的数学珍品,它们给出了数学世界的一组有趣的、深入浅出的图画。本书传至今日,又由I·斯图尔特增写了新的一章。此版以新的观点阐述了数学的最新进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。

阅读全文

与对思想和方法的基本研究相关的资料

热点内容
14岁肠鸣音最佳治疗方法 浏览:946
分析弹体内力的一般方法为 浏览:195
吊顶软膜长灯安装方法 浏览:209
换热器总换热量计算方法 浏览:924
怎么给领导请假的方法 浏览:312
真假野蜂蜜的鉴别方法视频 浏览:986
秦皇岛祛斑最佳方法 浏览:192
琉璃苣种植方法 浏览:412
快速泡发薏仁的方法 浏览:479
孩子有什么方法戒掉奶粉 浏览:703
129x98的简便计算方法 浏览:242
宽带的水晶头安装方法 浏览:539
对应聘人员综合测评有哪些方法 浏览:332
采用哪些方法可以帮助禾苗 浏览:27
金虫草泡酒的正确方法 浏览:822
沙发上的滑雪方法视频 浏览:939
乡镇开汽车修理厂有什么方法 浏览:666
基因病的现代检测方法 浏览:474
vivo怎么共享文件夹在哪里设置方法 浏览:349
治疗骨刺好的方法 浏览:229