‘壹’ 低频磁场骚扰测试100khz超标怎么办
本文针对EMC测试中常见的传导发射测试,结合实际的产品整改案例,归纳思路,总结传导测试不合格的整改方法,试图找出深层、较为共性的原因,为企业在进行产品设计和通过测试时提供参考。
传导测试在电磁兼容测试中很常见,在实际工作中,发现很多厂家对于传导测试超标感到一筹莫展。本文试图从探讨传导测试超标的原因讲起(主要针对电源端口),并列举一些常见的整改传导超标的实用方法,给广大厂家在整改传导时提供一些参考。
传导测试为什么会超标:
传导发射,是一种沿电源、控制线或信号线传输的电磁发射,本文重点讨论毁尺沿电源线传输的电磁发射,对于沿信号线或控制线传输的电磁干扰,可以采用近似的思路进行分析。
传导测试超标的原因有很多,样机内部的结构设计、接地设计,以及一些关键元器件的选择,都会直接影响传导测试结果。结合三要素法,首先要找到样机纤迹高内能够使样机传导测试失效的源头,然后针对不同的干扰源,采取分析源特性—判断干扰传输路线——采取相应措施的方法,是一定能解决问题的。
样机内部所有可能的干扰源,以及干扰是如何传播和传输的。在很多情况下,被测样机使用的是开关电源,而开关电源中的开关电路主要由开关管和高频变压器组成,它产生的尖峰电压为有较大辐度的窄脉冲,频带较宽且谐波丰富。对于样机内部使用的数字电路,其产生的干扰源频率通常较高,如果样机内部结构设计不合理,或者没有采取有效的抑制手段,干扰可以通过近场辐射或者耦合的方式,传输到电源线上,然后再传输到LISN,被接收机捕获。对于样机内部更高频率的干扰,其主要传播方式为自由空间中的平面波,这时需要进行辐射骚扰场强测试才能判断样机的EMC性能。
以下是州歼深圳亿博总结的两个案例:
整改方法:
(1)将X电容(C1)加大到0.47uF(2)将共模电感L2的电感量加大到16mH重测,该开关电源传导测试通过。对于开关电路引起的传导测试超标,一个较为直接的整改思路是加强电源输入端口的滤波。X电容用来消除差模干扰;共模电感主要用来消除共模干扰,同时对减小差模干扰也有一定的帮助。
整改方法:
发现该开关电源使用了不带屏蔽层的变压器,选用带屏蔽层的变压器,将屏蔽层接至变压器的初级地,重测合格。
分析:结合图3的开关电源骚扰传递示意图,可以看出,由于初级线圈和次级线圈间存在耦合电容,开关电源变压器初级的共模曝声可以向次级传递,这是开关电源产品EMI问题的一个主要原因。为截断这种骚扰传递的路径,一种行之有效的方法是:在绕制变压器时,在初级与次级之间加上屏蔽层,并接至初级地。屏藏层的电位为零,骚扰传递到屏藏层时,又被引回到初级。这种做法有点类似于“静电屏藏”
‘贰’ 三峡库区地质灾害勘察物探技术方法应用
李洪涛孙党生杨勤海杨进平
(洞友中国地质调查局水文地质工程地质技术方法研究所,河北保定,071051)
【摘要】本文简要叙述了在三峡库区地质灾害勘察中经常使用的物探技术方法以及一些典纳戚槐型的工程实例,以求为今后的工作带来一定示范效应,进一步为地质灾害勘察提供先进有效的测试手段。
【关键词】三峡库区地质灾害勘察物探技术方法
1前言
从1997年至2004年,中国地质调查局水文地质工程地质技术方法研究所承担了三峡库区移民迁建新址重大地质灾害防治研究与论证综合地球物理勘查,奉节三马山小区物探勘察,巴东黄土坡滑坡、万州官塘口滑坡物探勘察,重庆14区县库岸调查等一批应用研究课题及物探勘察任务。先后在三峡库区的巴东、巫山、奉节、万州及丰都、石柱等地进行了大量的综合地球物理勘察。本文为地球物理勘探技术方法在三峡库区地质灾害防治工程中的应用实践经验总结和体会,以求为今后的工作带来一定示范效应,进一步为地质灾害勘察提供先进有效的测试手段。
2地球物理勘探技术方法
2.1浅层高分辨率地震勘探
2.1.1工作技术方法
(1)展开排列法
考虑到库区地形地质条件的复杂性,在奉节和巫山两地,在布置地震剖面之前,作为一种重要的试验方法,都采用了展开排列法。其作用是了解测区地震波波组中各种波的时序排列关系,进行震相分析,从而确定数据采集的仪器参数和观测系统,采取合适的激发与接收措施,进行地层介质速度参数的估算。展开排列法观测系统采用0m、10m、20m、30m、40m、50m等不同偏移距,道距2m或3m。
(2)共深度点多次水平叠加法(CDP)
CDP水平叠加法是在不同激发点和接收点上采集来自相同反射点的反射波,在得到的多张地震记录中抽出界面上共反射点道集,经过速度扫描、动静校正之后,进行叠加处理,以时间剖面的形式给出地质界面及构造信息,这种方法可以提高信噪比,对压制干扰波有显着的作用。CDP剖面观测系统中的偏移距的选择,是根据面波、声波等干扰波与目的层反射波的关系确定,分别采用30m、40m和69m。道距采用2m、3m和5m。水平叠加次数大部分为6次,部分用3次。
(3)地震高密度映像法
高密度映像技术采用单次激发、单次接收等偏移距信号采集,其工作模式与水域中声纳法类似,故又称为陆地声纳法。采集的信号经幅度压缩、彩色调制,以彩色映像的方式显示。高密度映像法的偏移距用2m,点距1m。
2.1.2野外数据仔做采集设备
地震勘探采用北京水电物探研究所的SWS—1A型多功能面波仪与瑞典ABEM公司MARK6轻便多道地震仪。接收检波器用38HZ高灵敏数字检波器配CDP轻便覆盖电缆。根据探测目的层的深度,以及测区施工条件,分别采用锤击与炸药爆破两种震源。锤击震源锤重24磅,锤垫厚20mm。为增加有效信号,压制随机干扰,采用垂直叠加,叠加次数一般为5次。炸药震源一般在炮孔中激发,孔深1~2m,药量100~200g。
2.1.3资料数据处理
CDP剖面资料的数据处理采用CSP.3.3地震数据处理系统。针对本区地形坡度大且起伏剧烈的特点,在叠前和叠后均作了地形校正。处理内容还包括增益控制、噪音和干扰波切除、滤波、速度分析、动校正与水平叠加等,最终输出含有地形线的CDP水平迭加双程反射波时间剖面图,成果地质解释图是在AutoCAD14.0下完成的。处理流程如图1。
图1浅层地震数据处理流程图
2.2面波勘探
采用瞬态面波(瑞雷波)勘探。在地表用震源竖向激震时,一般会产生直达纵波、折射纵波、反射纵波和瑞雷波以及各种转换波。理论分析和实验表明,所有这些波中,瑞雷波的能量最强,约占67%。瑞雷波是一种沿地表传播的表面波,其传播的波阵面为一个圆柱体,传播的深度约为一个波长。利用瑞雷波的频散特性,即不同波长的瑞雷波传播特征反映不同深度地质体的特征,进行地质介质结构的探测。
2.2.1仪器设备
面波勘探采用北京水电物探研究所的SWS—1A型多功能面波仪,接收检波器采用4Hz低频检波器,面波剖面采用12道排列,道距1m,点距5m,偏移距分别为0m、5m、10m、15m和20m。
2.2.2资料处理
面波剖面采用 FKSWSA面波处理系统,通过多道三维傅里叶变换,在时间—空间(T—X)域和频率—波数(F—K)域内进行速度和波数(波长)滤波,消除非面波信号,有效地提取面波信息,绘制面波频散曲线,进行面波资料的反演解释。
FKSWSA面波处理系统的特点是可以进行拟合处理,即设定的地层结构参数与计算的地层参数,通过相关系数判断,确定最佳地层结构反演结果。
2.3地震层析成像(CT)
地震层析成像和其他科学技术领域的成像技术类似,是一种边界投影反演方法。从地震波的运动学与动力学特征出发,地震层析可分为射线层析和波动方程层析两类。它们分别测定地震波的走时、振幅、相位、周期等信息变化,反演地质介质三维速度结构或衰减特性,并以图像表示其结果。
地震 CT数据采集采用井间与井地结合的方式。井地方式是在两孔之间沿地面上激发弹性波,孔中接收;井间方式是在一孔内激发,另一孔内接收。接收点距2m和1m,炮距2m或视井中条件确定,构成上下交叉的观测系统,以保证射线覆盖测试区域,提高成像精度。
2.3.1仪器
SWS—1A多功能面波仪或 MARK6轻便多道地震仪。
接收采用串联式气囊检波器与井壁耦合。
采用爆炸震源,电雷管激发。
2.3.2数据处理
数据处理采用CST for Windows地震层析成像系统。每个成像区域均按2m×2m单元剖分,每个单元块上的射线节点密度为10个×10个。成果以波速等值线色谱图展示,图像输出是通过Winsurf6.04实现的。处理流程如图2。
图2地震层析成像数据处理流程
2.4EH—4电导率成像
EH—4电导率成像方法属部分可控源与天然场相结合的一种大地电磁测试法。不同于直流电法,它不是通过延长电缆和加大极距来增加勘探深度,而是在测点上,通过其变频获得深度信息。EH—4在奉节县宝塔坪三万塘地面塌陷坑调查中,在坑底布置了一条南北向剖面,点距5m,电偶极距15m,与剖面方向一致。在塌陷坑南侧地表布置了一条剖面,点距5m,电偶极距10m。
2.4.1仪器设备
EH—4电导率成像系统是由美国 GEOMETRLCS和EMI公司联合生产。是目前国际上较为先进的一种电磁法勘探仪器。
2.4.2EH—4的资料处理
包括现场数据处理和后续处理两大部分。现场数据处理主要是一维分析,用于检查野外采集的数据质量和调整参数。后续处理包括数据分析、一维数据处理和显示及拟二维处理。数据分析软件用于识别噪声源,估计和调整发射机的信号电平,分析数据采集质量。一维数据处理和显示是在经过数据分析后得到新的功率谱后的资料再处理,可删除噪声严重的数据以减少发散,增加信号的相关度。二维处理是采用EMAP法进行拟二维反演,有效地消除静态效应,构造电阻率断面图,在现场给出解释结果灰度图,通过计算机二维反演,进行彩色成图。
2.5声波测井技术
声波测井是以测定岩、矿的声波速度和幅度为基础,在划分基岩岩性、风化破碎程度,确定破碎带位置、基岩与覆盖层分界面以及在覆盖层、基岩内确定低速层等方面是一种较为有效的方法。
单孔全波列声波测试是采用一发双收探管,发射—接收源距50cm,间距30cm。在钻孔内(裸孔)沿井壁发射、接收声波信息,测井时将探管下至井底,按一定点距向上测试,由计算机完成全波列数据采集与数据存储,室内通过回放和资料处理拾取纵、横波,在全波列采集波形中根据波形干涉点、幅度、频谱分析,确定纵横、波初至走时,计算纵波、横波速度绘制成果图。
测试使用的仪器为SSJ—4D全波列声波测井仪(中国地质调查局水文地质工程地质技术方法研究所)。
井下探头分采用干孔贴壁式和水耦合两种类型。
3应用成果分析
3.1滑崩堆积体
滑崩堆积体是一种多成因、多期次的松散堆积体。其大部分是在构造和重力卸荷及岩溶作用下形成的滑坡体、崩塌体、泥石流堆积体和岩溶塌陷堆积体。地球物理勘探的目的是了解堆积体厚度及深部结构特征,采用的主要工作方法是展开排列法、CDP剖面与面波法。
3.1.1巫山新城址净坛路—祥云路—集仙路深部结构特征
该区由于地形起伏较大,加上冲沟人工回填等因素,给地震探测带来了很大困难。图3(剖面F)反映了净坛路—祥云路—集仙路方向的深部结构特征。可以看出完整基岩埋深达40~50m,而在祥云路至集仙路之间形成深达30m的深槽。图4(剖面 H)横切头道沟,冲沟形态明显。在时间剖面上,凡是在冲沟部位,由于切割、风化呈多同相轴形态,反映冲沟堆积物的复杂性。探测结果明显反映了堆积体的顺层特征。
3.1.2滑崩堆积体精细结构特征
为了进一步提示滑崩堆积体精细结构特征,采用了面波探测来了解浅部的地质结构。图5列出典型的频散曲线及其地质解释结果,可以看到面波勘探能够很好地提供浅部地层细节及其速度分布资料。结果表明,滑崩堆积体内部可划分为3层:
图3巫山新址净坛路—集仙路(剖面F)浅层地震勘探结果
第一层:0~3.15m,为含砾石粘土层,横波速度330~470m/s。
第二层:3~8m,为碎石夹土层,横波速度470~770m/s。
第三层:8~16m,为破碎岩层,横波速度770~970m/s。
3.1.3成果解释
滑崩堆积体埋深约40m,但是祥云路至集仙路之间存在深达70m的凹槽。滑崩堆积体底面明显顺岩层方向,倾角达30°。在滑崩堆积体中,可细分为3层,其波速不超过1000m/s,说明其岩体完整性较差。
3.2 滑坡
滑坡勘查采用的技术方法主要是 CDP剖面法,勘查对象有巴东县新城区黄土坡滑坡、巫山秀峰寺滑坡、重庆市万州区关塘口滑坡、万州区长江大桥—上沱口段库岸滑坡等。本文仅对其中一部分有代表性的成果分述如下。
3.2.1巴东县新城区黄土坡滑坡
(1)地震时间剖面波组特征
巴东黄土坡滑坡共做了9条剖面,本文列举2条剖面予以分析。从图6(D剖面)、图7(C剖面)中的时间剖面可以看出均存在一至二组反射波同相轴,其中T1波组较稳定,时间在30~60ms左右,其深度为30~51m,这一层可以认为是第四系滑坡堆积体与下伏基岩的分界面,T2波组时间在50~90ms左右,其深度为52~76m,这一层可认为是基岩风化岩层与完整基岩的分界面。从图6(D剖面)及图7(C剖面)可见均未发现有大的断层形迹的显示,但裂隙(节理)较发育,形成岩体破碎,从反射波的特征来看,形成了杂乱弱反射或波组的错断标志。
图4巫山新址祥云路(剖面H)浅层地震勘探结果
图5巫山新址净坛路—集仙路面波勘探结果
图6巴东黄土坡滑坡(D剖面)浅层地震勘探时间剖面
图7巴东黄土坡滑坡(C1、C2剖面)浅层地震勘探时间剖面
(2)地质解释
巴东黄土坡滑坡地震勘探结果基本查明了工作区内第四系松散堆积体的厚度及空间分布范围、滑坡堆积体的厚度及分布范围。推断地质解释图直观反映了基岩埋深及起伏形态,其埋藏深度分布范围一般在50~90m左右。查明了工作区内基岩软弱结构面的异常分布带及位置,共解释推断基岩破碎带及裂隙发育带共计21处。
3.2.2巫山秀峰寺滑坡
(1)地震时间剖面的波组特征
巫山秀峰寺滑坡共做了8条浅层地震剖面,本文列出其中典型的地震剖面1条见图8,从时间剖面可以看出,均存在一至二组反射波同相轴,其中一组比较稳定,时间在50ms左右(消除地形影响后)。这一层可以认为是滑坡堆积体与下伏基岩的分界面,其深度一般为30m左右。对一些不同结构特征的界面,如风化岩体也有所反映。时间一般为75ms左右,推断为完整基岩与风化岩体或碎块石层的分界面。另外,在图8中,CDP点120~140反射波同相轴向下凹陷甚至尖灭,结合现场地质情况,这一位置为一古寺庙所处位置,在地震反射波中出现这一现象,可能是由于古代工程人工开挖造成地层波阻抗界面差异所致。
图8巫山秀峰寺 D3浅层地震勘探结果
(2)地质解释
巫山秀峰寺滑坡所完成的8条浅层地震剖面,基本查明了滑坡堆积体的厚度和空间形态,推断地质图直观反映了基岩的形态和覆盖层的厚度变化。除基岩面之外,CDP剖面上还有一些同相轴,它们都是地震波地质信息的真实反映,如D3线所反映的同相轴不连续现象与旧寺庙位置相吻合。秀峰寺滑坡的8条剖面展示了秀峰寺滑坡堆积体厚度约在25~35m之间。
3.2.3重庆万州区长江大桥——上沱口段库岸滑坡勘查
(1)地震剖面的波组特征
万州长江大桥上沱口段库岸滑坡勘查共做了5条CDP浅地震剖面。图9、图10是其中两条典型剖面,从图7、图8可见地震反射波的波组特征较明显,一般延续1~2个相位,从波的相位、能量、波形、连续性等方面来对比,其中T1波组为第四系滑坡堆积层与下伏基岩(风化层)的分界面,该层反射波的连续性和相位特征是分析判断崩滑堆积层厚度变化的主要依据。T2反射层推断为基岩内部的反射,是推断基岩埋深及起伏形态的主要依据,它反映了基岩风化壳及软弱岩层的岩性横向的变化特征。
(2)地质解释
长江大桥上沱口段库岸滑坡所完成的5条浅层地震剖面,基本查明了滑坡堆积体的厚度和空间形态。推断地质图直观反映第四系崩滑堆积层的厚度及分布范围,崩滑堆积层平均厚度为3.5~9m。基本确定了工区范围内的基岩风化壳的厚度,基岩风化壳平均厚度为14~17m左右。确定了基岩埋深及起伏形态。对工区内基岩结构面的异常分布及结构特征也作出了相应的地质推断与解释,共解释推断基岩破碎带及裂隙发育带共计11处。
3.2.4重庆万州区关塘口滑坡群和巴东县新城址滑坡体声波测井
重庆万州关塘口滑坡群、巴东县新城址滑坡体进行声波测井勘探,旨在结合地质调查,评估划分岩性、完整性,确定滑带、破碎带位置。
图9万州长江大桥—上沱口段库岸(塌岸)防护工程C—C′浅层地震勘查成果
图10万州长江大桥—上沱口段库岸(塌岸)防护工程D—D′浅层地震勘查成果
万州关塘口滑坡群总计对13口钻孔进行了观测,巴东黄土坡滑坡对12口钻孔进行了观测,图11为关塘口 ZK3典型的声(波)速—孔深曲线,它是由原始记录声波波列及其提取出的声时时差—孔深曲线和计算后绘出的声速—孔深曲线。由此,可对基岩及上覆层的界线明确地做出划分,同时还可看出:基岩部分声速在3500m/s以上,裂隙发育带声速有所低;上部覆盖层可分为平均声速1800m/s、2200m/s两层,其速度变化说明块石与土的含量、块石岩性、地层结构均有不同程度的变化。图12为声波测试曲线图与钻孔柱状图的对比图,20.5~24m之间曲线频率低、声波幅度小,为岩体疏松的反映。钻孔20.5~24m表明完整岩体内部存在裂隙破碎带(见图12)。图13为巴东ZK1典型的声(波)速—孔深曲线,66.0~67.5m、77.5~84.5m两段波速值明显增高到3800m/s,认为已进入基岩,其间所夹68.0~77.0m段,从变面积图像看接收波形频率变低,速度变低,认为是一层软弱夹层,并在后期治理工程中得到了验证。
图11官塘口滑坡勘察ZK3声波测井成果图
图12ZK7声波测试曲线图与钻孔柱状图的对比图
图13巴东黄土坡ZK1孔声波测井成果图
万州关塘口滑坡群的13口钻井声波测试结果统计出不同地层岩性的声速平均值如表1、表2。
表1关塘口滑坡群主要岩性波速
表2黄土坡滑坡主要地层岩性波速
根据测井资料、钻孔资料分析推断关塘口滑坡存在一个以上的滑带。依据测试成果,本次推断解释的滑带,其位置为上部覆盖层与下伏基岩的岩性分界部位。从测试钻孔整体分布位置分析,滑坡体的前后缘较浅,前缘埋深为20m,后缘埋深为30m,滑坡体的中间部位埋深在55m位置。
声波测井在划分基岩岩性、风化破碎程度、确定破碎带位置、基岩与覆盖层分界面以及在覆盖层、基岩内确定低速层等方面是一种较为有效的方法。
3.3岩溶与洞穴
3.3.1岩溶塌陷
奉节县宝塔坪小区赵家梁子西侧三万塘沟底缓坡处,于1997年5月30日下午2:30分发生塌陷,形成长短轴20~25m,深约20m的塌陷坑。剖面呈漏斗形,体积约6000~7000m3,东北侧地面裂缝离新迁移民房不足4m。塌陷引起社会各界,特别是县委各级领导的高度重视。为进一步查明塌陷坑的深度及延伸发育情况,课题组进行了专门的调研,并运用了先进的EH—4电导率成像系统、高分辨地震勘探、高密度电阻率法、音频大地电场法及井间地震层析成像等综合物探。
(1)EH—4电导率成像
图14为塌陷坑底 EH—4勘测剖面。
图14奉节宝塔坪塌陷坑底电法勘探剖面
从图中可以看出,完整基岩界面自坑底向下深约55m,加上坑底至地表的距离,塌陷坑底界面距地表深度约70m,同时该剖面还反映了塌陷坑南北两侧基岩风化破碎程度的差异,北侧粘土层覆盖层厚,基岩风化破碎强烈,南侧有一破碎基岩段,底部边界距地表约55m,其下可能为岩溶发育通道。此解释结果与地震 B剖面结果是吻合的。
(2)高分辨率地震勘探
图15反映了沿宝塔坪塌陷冲沟的深部结构特征。剖面起自塌陷坑,测线长约200m,近南北向。该区地质结构可划分为4层:
第一层:埋深0~40m,以块碎石夹粘土层为主。
第二层:埋深40~70mm,为破碎松动的岩体。
第三层:埋深70~100mm,为较完整的岩体。
第四层:埋深100m以下,为完整岩体。
另外从顺冲沟作了两条近东西向的横切剖面 B、C(图16、图17)。探测结果表明其地层结构与图15所揭示的类似,但是,在塌陷坑南侧反射界面呈现向上弯曲的拱状,类似绕射波的特点,且局部不连续,推断可能为岩溶异常点。其连线方向与冲沟方向一致。发育深度 B为55~60m,C剖面为60~65m。
(3)地震波 CT剖面
为了进一步查明塌陷坑的延伸与发育情况,有针对性地布置了3条地震 CT剖面,根据地震CT成像剖面图的波速图像特征、波速等值线分布结合钻孔资料综合分析如下(见图18)。
图15奉节宝塔坪 A线浅层地震勘探结果
图16奉节宝塔坪B线浅层地震勘探结果
图17奉节宝塔坪 C线浅层地震勘探结果
图18奉节宝塔坪浅震1线钻孔 CT成像图
a.整个工作区纵波速度分布较低,均在0.8~3.8km/s之间。其上部(50~60m)碎块石土的波速分布在0.8~1.6km/s之间,基岩部分的波速仅为2.0~3.8km/s,即为钻孔所揭露的破碎岩体段。
b.CT成像的速度分布呈现不均一状,说明工作区基岩部分的节理裂隙发育,岩体破碎。上部碎块石土堆积形态不一,结构复杂。
c.由图18可以看到一系列由 NW向 SE倾的界面特征,推测为地层产状或岩性接触面。这一点与浅震B、C剖面(图16、图17)解释结果相一致。
综上所述,宝塔坪赵家梁子塌陷坑附近,在CT剖面所处位置,基岩部分未发现较大的溶洞。但是高分辨地震与音频大地电场显示的结果都表明,在塌陷坑的下游方向,顺沟发育有一SN向构造破碎异常带,形成地下水通道,对地层介质起到溶蚀、迁移作用,其深度在50~60m。3.3.2 溶洞
为配合“重庆巫山新城地质灾害防治与利用示范研究”专题中有关浅部岩溶发育状况研究,在巫山新城周家包统建房基础作了三对地震波CT。图19为巫山县周家包ZB5—ZB6钻孔CT成像图。其速度分布在0.71~3.40km/s之间,与完整灰岩相比偏低,浅部岩溶极为发育。310m高程以下岩体相对完整,但其波速依然不高,推断解释为裂隙或小溶洞较多,尤其是ZB5—ZB6剖面的底部有一直径3m左右的红色区域,推断为溶洞。从ZB5孔310m高程至ZB6孔280m高程有6个串珠状分布的相对独立闭合的红色区域推断为受构造影响形成的溶洞。
图19巫山县周家包ZB5—ZB6钻孔CT成像图
4结束语
地质灾害受天然和人为的多种复杂因素影响和控制,其分布、形成、发生、发展和变化都十分复杂,特别是在三峡库区,地质地理条件复杂、地质灾害繁多、分布广、发生频繁。单纯借助传统地质技术方法已不能完成勘查、监测、预报和防治的任务,新技术方法是改善常规地质勘查方法、实现地质工作现代化的有力武器,是地质工作取得新进展和突破的有力手段。在此次三峡库区移民迁建的整个过程中,由于地质问题的复杂性,给移民迁建带来了巨大的压力,也为勘查新技术的应用提供了一个广阔的用武之地。
在库区地质灾害勘查防治与合理开发利用的全过程中,地球物理勘查得到了较为广泛的应用。尤其在地质灾害调查中,勘查新技术的应用无论从涉及的地质灾害类型、选择的方法种类及其适宜性和投入的工作都是前所未有的,所取得的成果也是多方面的、突出的,历年来我所采用先进的CT层析成像、浅层地震探测、面波勘探、高密度映像、声波探测、EH—4等方法,对三峡库区岩溶分布规律、塌陷坑、滑坡体结构、人防工程分布等进行了示范研究,为地质灾害的预防提供了科学的依据,具有重要的实用价值与指导意义。然而由于物探方法理论基础所决定的地质解释多解性的局限,以及三峡库区复杂的地质条件、恶劣的工作环境,某些物探工作成果中往往不免存在一些差强人意之处。这要求我们以锲而不舍的精神,通过合理有效地利用地球物理勘探新技术(包括根据不同的地质条件和目的,正确地选择物探方法及其最佳组合形式)对现有物探方法的工作布置方式、数据采集和解释处理方法提出改进,以适应三峡库区特殊的工作环境。
‘叁’ EMI接收机 与 频谱分析仪 有什么区别
选择时,采用如下方法:用一个点频脉冲调制渣培信号源,设置为0dbm,脉宽为1ms/10ms,此时把emi测试接收机和频谱分析仪设置为中心频饥梁升率为1mhz,rbw为9khz,检波器为qp(测量时间为1s),这时会看烂老到明显的差异。
‘肆’ 什么是EDAEMA/EMI是什么TOPEDA是什么
它超越文电鉴别和数字签名来对电子表格或信息的接受者提供保证。其发送者具有特许权或适当的费用限制来签署和发送文件。EDA技术是在电子CAD技术基础上发展起来的计算机软件系统,是指以计算机为工作平台,融合了应用电子技术、计算机技术、信息处理及智能化技术的最新成果,进行电子产品的自动设计。
利用EDA工具,电子设计师可以从概念、算法、协议等开始设计电子系统,大量工作可以通过计算机完成,并可以将电子产品从电路设计、性能分析到设计出IC版图或PCB版图的整个过程的计算机上自动处理完成。
现在对EDA的概念或范畴用得很宽。包括在机械、电子、通信、航空航天、化工、矿产、生物、医学、军事等各个领域,都有EDA的应用。目前EDA技术已在各大公司、企事业单位和科研教学部门广泛使用。例如在飞机制造过程中,从设计、性能测试及特性分析直到飞行模拟,都可能涉及到EDA技术。本文所指的EDA技术,主要针对电子电路设计、PCB设计和IC设计。
EDA设计可分为系统级、电路级和物理实现级。
EDA常用软件:EDA工具层出不穷,目前进入我国并具有广泛影响的EDA软件有:multiSIM7(原EWB的最新版本)、PSPICE、OrCAD、PCAD、Protel、Viewlogic、Mentor、Graphics、Synopsys、LSIIogic、Cadence、MicroSim等等。这些工具都有较强的功能,一般可用于几个方面,例如很多软件都可以进行电路设计与仿真,同进还可以进行PCB自动布局布线,可输出多种网表文件与喊此第三方软件接口。
EDA主要应用于电子电路原理图的设计.电路板的设计和绘制以及电子电路逻辑分析和仿真等.PROTEL 99 SE是一个基于WINDOWS平台地32位EDA设计系统,他具有丰富多样的编辑功能、强大便捷的自动化设计能力 、完善有效的检测工具、灵活有序的设计管理手段,提供了极其丰富的原理图元件库,PCB元器件库以及出色的在线库编辑和库管理,良好的开放性她可以兼容多种格式的设计文件.使用户可以轻松的控制电子线路设计的全过程 叫EDA。
TOPEDA开发中心是广州拓创科技有限公司旗下的关键技术研发中心,始终以尖端科技为本中心发展的核心引擎,为客户提供先进的嵌入式技术解决方案,使客户产品增加了市场竞争力。
我司与华南链扰理工大学等多所高校进行了紧密的技术交流与合作,时刻跟踪最新的技术发展动态,公司拥有由多名博士、硕士研究生为主的经验丰富的研发人员和先进的项目开发设备,可完成各种单片机/ARM/FPGA/DSP硬棚渗旦件系统以及计算机软件系统的开发和设计,在嵌入式系统开发领域拥有处于业内领先地位的新技术、新产品。
‘伍’ EMI共模电感一般是什么材质
共模电感常见的磁芯材质有锰芯、镍芯、铁粉芯这三种。这其中,镍芯材质的特点是它的阻抗可以做的比较大,非常适合用于EMI使用。
磁芯材质的确对EMI的影响很大,根据多年经验,一般采用知名品牌的磁芯材料EMI的效果相对来说会好很多。主要是由于品牌磁芯的晌洞质量相对来说更稳定,一致性更好。当然,具体案例还需具体分析。
‘陆’ 如何解决电磁干扰(EMI / RFI)/射频干扰
电磁干扰EMI中电子设备产生的干扰信号是通过导线或公共电源线进行传输,互相产生干扰称为传导干扰。传导干扰给不少电子工程师带来困惑,如何解决传导干扰?找对方法,你会发现,传导干扰其实很容易解决,只要增加电源输入电路中 EMC 滤波器的节数,并适当调整每节滤波器的参数,基本上都能满足要求,第七届电路保护与电磁兼容研讨会主办方总结八大对策,以解决对付传导干扰难题。
对策一:尽量减少每个回路的有效面积
‘柒’ 脉冲频率调制开关稳压器电路分析
V4V5组成无贺手稳态多谐振荡器。
无稳态即指它不能稳定在某种状态,会不断的发生唯拍漏改变。两个管轮流导通截止。
多谐指输出的波形不是正弦波,有很多谐波成分。
比多谐振荡器并不完全对称,所以输出的波形是不对称的。V4的导通时间由R8、R5和V3的集电极电压决定。
V2是一个射极跟随器(跟随输出电压),把输出的电源电压反馈到V3的发射级,由V3放大后控制V4的导通时间。
V4导通V5截止,V4截止V5导通。
V5截止时,V1导通,通过V5的截止时间控制V1的导通时间。V1导通时间越长,输出电压越高。
V1输出的电压经L1和C1滤波变成稳定的直流电源输出。
VD4是增强二极管,防止L1在V1截止时产生的高反压击穿V1发射极基极。
VD1是泄流二极管,防止L1产生的感应电流损坏V1。
此电路主要工作在开关状态,所以比较容易分析。
V2V3是射极偶合放大电路,VD2为指烂V3基极提供更稳定一点的电位,增强R4的偶合效率。
VD3为振荡器和放大取样电路提供相对稳定一点的工作电压。
R1R2是V2的基极偏置电路,同时也是输出电源的取样电路。
‘捌’ 电脑机箱漏电的原因及解决方法
电脑机箱是计算机不可缺少的配件,它起着固定、保护电脑各个部件的作用,此外,电脑机箱具有电磁辐射的屏蔽的重要作用。由于电脑机箱木有CPU、显卡、主板等配件发展快,所以在组装电脑中一直不被列为重点考虑对象。但是机箱也并不是毫无作用,一些用户买了杂牌机箱后,因为主板和电脑机箱形成回路,导致短路,使系统变得很不稳定。下面是我为大家带来的电脑机箱漏电的原因及解决方法,欢迎阅读。
在国家3C认证的电脑电源中,220V交流输入线都是采用三根线供电的,分别为火线 (L)、零线(N)和地线(E)。由于3C标准规定,通过3C的电脑电源都必须加入EMI滤波电路,以滤除电网中高频脉冲对电源的干扰,同时也起到滤除电源自身对外界产。220V交流电,经火线和零线输入到电脑电源的EMI滤波电路中,电容之间的联接点通过螺丝钉与电源的外壳连在一起的,并且电脑电源的外壳与接地线连在一起,当没有接地线时(只有二线供电时),因电容的串联分压作用,使电压为110V(理论值是输入电压220V的一半),这么高的电压,由于电脑的机箱、主板的地线和电源外壳都是连接在一起的,此时就会导致电脑机箱漏电,但是由于电容容量很小(200W的电源通常使用3300pF,300W的电源通常使用4700pF),因此通过的“漏电流”很小,不会对人体造成“电击”的危险,但会有“电击”的感觉,“电击”感觉的强度会因电源功率不同而感觉不一样,通常300W的电源,因为电容容量是4700pF的',“漏电流”比200W使用的3300pF会大一些,“电击”感觉会强一些,这就是为什么用户会感到有些电源机箱漏电会强些,有些电源机箱漏电会弱些的原因。 由上面估算可见,EMI滤波电容产生的“漏电流”在零点几个毫安级,因此电流很小,不会对人体产生危险。
我们分析了上面电脑电源漏电现象。3C电源都会有“漏电”现象,不小心碰到机箱金属部分时,还会有“电击”的感觉,许多用户还是不放心,下面介绍2种方法,消除这种电脑机箱故障现象。
①最好的方法是采用三线供电,使一线有良好的接地,电脑电源的外壳和ATX机箱就不会带“电”了。(此法推荐使用)
②对于因各种原因无法使用三线供电的用户,用户可以自做一根地线,将一根一尺长铁线插入比较潮湿的土地中,用导线将铁线与电脑机箱的金属钢板连接起来。
如果前面两种方法都做不到的用户,就不用去理会这个漏电流了,因为它对人体不会造成危险,有些用户用一根导线将电脑机箱与家中的自来水管连接起来,此法虽然可以解决漏电流问题,但是更不安全,因为自来水管的接地效果不稳定,万一电脑真的漏电时,就会很危险,不推荐这样的做法。
③由于电脑机箱内某根线与机箱搭在一起,这个问题很麻烦,大概要把机箱里的东西全拆了再重新装排除故障。或者是机箱电源线质量问题。
‘玖’ 第一次做一电路,请大家给我点指导
可查查遥控车电原理图,或拆一个看看。
PCB布线
在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的, 在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。PCB布线有单面布线、 双面布线及多层布线。布线的方式也有两种:自动布线及交互式布线,在自动布线之前, 可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行, 以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。
自动布线的布通率,依赖于良好的布局,布线规则可以预先设定, 包括走线的弯曲次数、导通孔的数目、步进的数目等。一般先进行探索式布经线,快速地把短线连通, 然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。 并试着重新再布线,以改进总体效果。
对目前高密度的PCB设计已感觉到贯通孔不太适应了, 它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用, 还省出许多布线通道使布线过程完成得更加衫做方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会, 才能得到其中的真谛。
1 电源、地线的处理
既使在整个PCB板中的布线完成得都很好,但由于电源、 地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、 地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。
对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因, 现只对降低式抑制噪音作以表述:
(1)、众所周知的是在电源、地线之间加上去耦电容。
(2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm
对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用)
(3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。
2 数字电路与模拟电路的共地处理
现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。
数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的斗肆问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。
3 信号线布在电(地)层上
在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是保留地层的完整性。
4 大面积导体中连接腿的处理
在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器。②容易造成虚焊点。所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离(heat shield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。多层板的接电(地)层腿的处理相同。
5 布线中网络系统的作用
在许多CAD系统中,布线是依据网络系统决定的。网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。而有些通路是无效的,如被元件腿的焊盘占用的或被安装孔、定们孔所占用的等。网格过疏,通路太少对布通率的影响极大。所以要有一个疏密合理的网格系统来支持布线的空塌轿进行。
标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54 mm)或小于0.1英寸的整倍数,如:0.05英寸、0.025英寸、0.02英寸等。
6 设计规则检查(DRC)
布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查有如下几个方面:
(1)、线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。
(2)、电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?在PCB中是否还有能让地线加宽的地方。
(3)、对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。
(4)、模拟电路和数字电路部分,是否有各自独立的地线。
(5)后加在PCB中的图形(如图标、注标)是否会造成信号短路。
(6)对一些不理想的线形进行修改。
(7)、在PCB上是否加有工艺线?阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影响电装质量。
(8)、多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。
第二篇 PCB布局
在设计中,布局是一个重要的环节。布局结果的好坏将直接影响布线的效果,因此可以这样认为,合理的布局是PCB设计成功的第一步。
布局的方式分两种,一种是交互式布局,另一种是自动布局,一般是在自动布局的基础上用交互式布局进行调整,在布局时还可根据走线的情况对门电路进行再分配,将两个门电路进行交换,使其成为便于布线的最佳布局。在布局完成后,还可对设计文件及有关信息进行返回标注于原理图,使得PCB板中的有关信息与原理图相一致,以便在今后的建档、更改设计能同步起来, 同时对模拟的有关信息进行更新,使得能对电路的电气性能及功能进行板级验证。
--考虑整体美观
一个产品的成功与否,一是要注重内在质量,二是兼顾整体的美观,两者都较完美才能认为该产品是成功的。
在一个PCB板上,元件的布局要求要均衡,疏密有序,不能头重脚轻或一头沉。
--布局的检查
印制板尺寸是否与加工图纸尺寸相符?能否符合PCB制造工艺要求?有无定位标记?
元件在二维、三维空间上有无冲突?
元件布局是否疏密有序,排列整齐?是否全部布完?
需经常更换的元件能否方便的更换?插件板插入设备是否方便?
热敏元件与发热元件之间是否有适当的距离?
调整可调元件是否方便?
在需要散热的地方,装了散热器没有?空气流是否通畅?
信号流程是否顺畅且互连最短?
插头、插座等与机械设计是否矛盾?
线路的干扰问题是否有所考虑?
第三篇 高速PCB设计
(一)、电子系统设计所面临的挑战
随着系统设计复杂性和集成度的大规模提高,电子系统设计师们正在从事100MHZ以上的电路设计,总线的工作频率也已经达到或者超过50MHZ,有的甚至超过100MHZ。目前约50% 的设计的时钟频率超过50MHz,将近20% 的设计主频超过120MHz。
当系统工作在50MHz时,将产生传输线效应和信号的完整性问题;而当系统时钟达到120MHz时,除非使用高速电路设计知识,否则基于传统方法设计的PCB将无法工作。因此,高速电路设计技术已经成为电子系统设计师必须采取的设计手段。只有通过使用高速电路设计师的设计技术,才能实现设计过程的可控性。
(二)、什么是高速电路
通常认为如果数字逻辑电路的频率达到或者超过45MHZ~50MHZ,而且工作在这个频率之上的电路已经占到了整个电子系统一定的份量(比如说1/3),就称为高速电路。
实际上,信号边沿的谐波频率比信号本身的频率高,是信号快速变化的上升沿与下降沿(或称信号的跳变)引发了信号传输的非预期结果。因此,通常约定如果线传播延时大于1/2数字信号驱动端的上升时间,则认为此类信号是高速信号并产生传输线效应。
信号的传递发生在信号状态改变的瞬间,如上升或下降时间。信号从驱动端到接收端经过一段固定的时间,如果传输时间小于1/2的上升或下降时间,那么来自接收端的反射信号将在信号改变状态之前到达驱动端。反之,反射信号将在信号改变状态之后到达驱动端。如果反射信号很强,叠加的波形就有可能会改变逻辑状态。
(三)、高速信号的确定
上面我们定义了传输线效应发生的前提条件,但是如何得知线延时是否大于1/2驱动端的信号上升时间? 一般地,信号上升时间的典型值可通过器件手册给出,而信号的传播时间在PCB设计中由实际布线长度决定。下图为信号上升时间和允许的布线长度(延时)的对应关系。
PCB 板上每单位英寸的延时为 0.167ns.。但是,如果过孔多,器件管脚多,网线上设置的约束多,延时将增大。通常高速逻辑器件的信号上升时间大约为0.2ns。如果板上有GaAs芯片,则最大布线长度为7.62mm。
设Tr 为信号上升时间, Tpd 为信号线传播延时。如果Tr≥4Tpd,信号落在安全区域。如果2Tpd≥Tr≥4Tpd,信号落在不确定区域。如果Tr≤2Tpd,信号落在问题区域。对于落在不确定区域及问题区域的信号,应该使用高速布线方法。
(四)、什么是传输线
PCB板上的走线可等效为下图所示的串联和并联的电容、电阻和电感结构。串联电阻的典型值0.25-0.55 ohms/foot,因为绝缘层的缘故,并联电阻阻值通常很高。将寄生电阻、电容和电感加到实际的PCB连线中之后,连线上的最终阻抗称为特征阻抗Zo。线径越宽,距电源/地越近,或隔离层的介电常数越高,特征阻抗就越小。如果传输线和接收端的阻抗不匹配,那么输出的电流信号和信号最终的稳定状态将不同,这就引起信号在接收端产生反射,这个反射信号将传回信号发射端并再次反射回来。随着能量的减弱反射信号的幅度将减小,直到信号的电压和电流达到稳定。这种效应被称为振荡,信号的振荡在信号的上升沿和下降沿经常可以看到。
(五)、传输线效应
基于上述定义的传输线模型,归纳起来,传输线会对整个电路设计带来以下效应。
• 反射信号Reflected signals
• 延时和时序错误Delay & Timing errors
• 多次跨越逻辑电平门限错误False Switching
• 过冲与下冲Overshoot/Undershoot
• 串扰Inced Noise (or crosstalk)
• 电磁辐射EMI radiation
5.1 反射信号
如果一根走线没有被正确终结(终端匹配),那么来自于驱动端的信号脉冲在接收端被反射,从而引发不预期效应,使信号轮廓失真。当失真变形非常显着时可导致多种错误,引起设计失败。同时,失真变形的信号对噪声的敏感性增加了,也会引起设计失败。如果上述情况没有被足够考虑,EMI将显着增加,这就不单单影响自身设计结果,还会造成整个系统的失败。
反射信号产生的主要原因:过长的走线;未被匹配终结的传输线,过量电容或电感以及阻抗失配。
5.2 延时和时序错误
信号延时和时序错误表现为:信号在逻辑电平的高与低门限之间变化时保持一段时间信号不跳变。过多的信号延时可能导致时序错误和器件功能的混乱。
通常在有多个接收端时会出现问题。电路设计师必须确定最坏情况下的时间延时以确保设计的正确性。信号延时产生的原因:驱动过载,走线过长。
5.3 多次跨越逻辑电平门限错误
信号在跳变的过程中可能多次跨越逻辑电平门限从而导致这一类型的错误。多次跨越逻辑电平门限错误是信号振荡的一种特殊的形式,即信号的振荡发生在逻辑电平门限附近,多次跨越逻辑电平门限会导致逻辑功能紊乱。反射信号产生的原因:过长的走线,未被终结的传输线,过量电容或电感以及阻抗失配。
5.4 过冲与下冲
过冲与下冲来源于走线过长或者信号变化太快两方面的原因。虽然大多数元件接收端有输入保护二极管保护,但有时这些过冲电平会远远超过元件电源电压范围,损坏元器件。
5.5 串扰
串扰表现为在一根信号线上有信号通过时,在PCB板上与之相邻的信号线上就会感应出相关的信号,我们称之为串扰。
信号线距离地线越近,线间距越大,产生的串扰信号越小。异步信号和时钟信号更容易产生串扰。因此解串扰的方法是移开发生串扰的信号或屏蔽被严重干扰的信号。
5.6 电磁辐射
EMI(Electro-Magnetic Interference)即电磁干扰,产生的问题包含过量的电磁辐射及对电磁辐射的敏感性两方面。EMI表现为当数字系统加电运行时,会对周围环境辐射电磁波,从而干扰周围环境中电子设备的正常工作。它产生的主要原因是电路工作频率太高以及布局布线不合理。目前已有进行 EMI仿真的软件工具,但EMI仿真器都很昂贵,仿真参数和边界条件设置又很困难,这将直接影响仿真结果的准确性和实用性。最通常的做法是将控制EMI的各项设计规则应用在设计的每一环节,实现在设计各环节上的规则驱动和控制。
(六)、避免传输线效应的方法
针对上述传输线问题所引入的影响,我们从以下几方面谈谈控制这些影响的方法。
6.1 严格控制关键网线的走线长度
如果设计中有高速跳变的边沿,就必须考虑到在PCB板上存在传输线效应的问题。现在普遍使用的很高时钟频率的快速集成电路芯片更是存在这样的问题。解决这个问题有一些基本原则:如果采用CMOS或TTL电路进行设计,工作频率小于10MHz,布线长度应不大于7英寸。工作频率在50MHz布线长度应不大于1.5英寸。如果工作频率达到或超过75MHz布线长度应在1英寸。对于GaAs芯片最大的布线长度应为0.3英寸。如果超过这个标准,就存在传输线的问题。
6.2 合理规划走线的拓扑结构
解决传输线效应的另一个方法是选择正确的布线路径和终端拓扑结构。走线的拓扑结构是指一根网线的布线顺序及布线结构。当使用高速逻辑器件时,除非走线分支长度保持很短,否则边沿快速变化的信号将被信号主干走线上的分支走线所扭曲。通常情形下,PCB走线采用两种基本拓扑结构,即菊花链(Daisy Chain)布线和星形(Star)分布。
对于菊花链布线,布线从驱动端开始,依次到达各接收端。如果使用串联电阻来改变信号特性,串联电阻的位置应该紧靠驱动端。在控制走线的高次谐波干扰方面,菊花链走线效果最好。但这种走线方式布通率最低,不容易100%布通。实际设计中,我们是使菊花链布线中分支长度尽可能短,安全的长度值应该是:Stub Delay <= Trt *0.1.
例如,高速TTL电路中的分支端长度应小于1.5英寸。这种拓扑结构占用的布线空间较小并可用单一电阻匹配终结。但是这种走线结构使得在不同的信号接收端信号的接收是不同步的。
星形拓扑结构可以有效的避免时钟信号的不同步问题,但在密度很高的PCB板上手工完成布线十分困难。采用自动布线器是完成星型布线的最好的方法。每条分支上都需要终端电阻。终端电阻的阻值应和连线的特征阻抗相匹配。这可通过手工计算,也可通过CAD工具计算出特征阻抗值和终端匹配电阻值。
在上面的两个例子中使用了简单的终端电阻,实际中可选择使用更复杂的匹配终端。第一种选择是RC匹配终端。RC匹配终端可以减少功率消耗,但只能使用于信号工作比较稳定的情况。这种方式最适合于对时钟线信号进行匹配处理。其缺点是RC匹配终端中的电容可能影响信号的形状和传播速度。
串联电阻匹配终端不会产生额外的功率消耗,但会减慢信号的传输。这种方式用于时间延迟影响不大的总线驱动电路。 串联电阻匹配终端的优势还在于可以减少板上器件的使用数量和连线密度。
最后一种方式为分离匹配终端,这种方式匹配元件需要放置在接收端附近。其优点是不会拉低信号,并且可以很好的避免噪声。典型的用于TTL输入信号(ACT, HCT, FAST)。
此外,对于终端匹配电阻的封装型式和安装型式也必须考虑。通常SMD表面贴装电阻比通孔元件具有较低的电感,所以SMD封装元件成为首选。如果选择普通直插电阻也有两种安装方式可选:垂直方式和水平方式。
垂直安装方式中电阻的一条安装管脚很短,可以减少电阻和电路板间的热阻,使电阻的热量更加容易散发到空气中。但较长的垂直安装会增加电阻的电感。水平安装方式因安装较低有更低的电感。但过热的电阻会出现漂移,在最坏的情况下电阻成为开路,造成PCB走线终结匹配失效,成为潜在的失败因素。
6.3 抑止电磁干扰的方法
很好地解决信号完整性问题将改善PCB板的电磁兼容性(EMC)。其中非常重要的是保证PCB板有很好的接地。对复杂的设计采用一个信号层配一个地线层是十分有效的方法。此外,使电路板的最外层信号的密度最小也是减少电磁辐射的好方法,这种方法可采用"表面积层"技术"Build-up"设计制做PCB来实现。表面积层通过在普通工艺 PCB 上增加薄绝缘层和用于贯穿这些层的微孔的组合来实现 ,电阻和电容可埋在表层下,单位面积上的走线密度会增加近一倍,因而可降低 PCB的体积。PCB 面积的缩小对走线的拓扑结构有巨大的影响,这意味着缩小的电流回路,缩小的分支走线长度,而电磁辐射近似正比于电流回路的面积;同时小体积特征意味着高密度引脚封装器件可以被使用,这又使得连线长度下降,从而电流回路减小,提高电磁兼容特性。
6.4 其它可采用技术
为减小集成电路芯片电源上的电压瞬时过冲,应该为集成电路芯片添加去耦电容。这可以有效去除电源上的毛刺的影响并减少在印制板上的电源环路的辐射。
当去耦电容直接连接在集成电路的电源管腿上而不是连接在电源层上时,其平滑毛刺的效果最好。这就是为什么有一些器件插座上带有去耦电容,而有的器件要求去耦电容距器件的距离要足够的小。
任何高速和高功耗的器件应尽量放置在一起以减少电源电压瞬时过冲。
如果没有电源层,那么长的电源连线会在信号和回路间形成环路,成为辐射源和易感应电路。
走线构成一个不穿过同一网线或其它走线的环路的情况称为开环。如果环路穿过同一网线其它走线则构成闭环。两种情况都会形成天线效应(线天线和环形天线)。天线对外产生EMI辐射,同时自身也是敏感电路。闭环是一个必须考虑的问题,因为它产生的辐射与闭环面积近似成正比。
结束语
高速电路设计是一个非常复杂的设计过程,ZUKEN公司的高速电路布线算法(Route Editor)和EMC/EMI分析软件(INCASES,Hot-Stage)应用于分析和发现问题。本文所阐述的方法就是专门针对解决这些高速电路设计问题的。此外,在进行高速电路设计时有多个因素需要加以考虑,这些因素有时互相对立。如高速器件布局时位置靠近,虽可以减少延时,但可能产生串扰和显着的热效应。因此在设计中,需权衡各因素,做出全面的折衷考虑;既满足设计要求,又降低设计复杂度。高速PCB设计手段的采用构成了设计过程的可控性,只有可控的,才是可靠的,也才能是成功的
电路板的印制:
热转印法:
硬 件:
1:一台用于产生高精度塑料碳粉阻焊层的打印输出设备,比如一台激光打印机或者一台复印机(复印机的话需要有复印原稿,原稿可以用喷墨打印机打印出来)。
2:一个能用的电熨斗。
3:一张不干胶贴纸的光滑底衬纸。
4:一定量的三氯化铁腐蚀液,根据板的大小而定。补充,有个量程在0~200度的数字温度计的话更好,高档数字万用表附带的也行。
软 件:低版本的PROTEL,比如PROTEL2.5中文版高版本的PROTEL,比如PROTEL99SE中文版甚至只是一个WIN自带的画图程序总之就是要一个能画图的软件即可 步骤:
第一步:利用一个能生成图像的软件生成一些图像文件,比如用低版本PROTEL组织SCH,再利用网络表生成相应PCB图,或用PowerPCB直接画PCB图(不会PROTEL、PowerPCB的话,甚至是WINDOWS的画笔程序也行),以备打印。
第二步:将PCB图打印到热转印纸上(JS所说的热转印纸就是不干胶纸的黄色底衬!)。
第三步:将打印好PCB的转印纸平铺在覆铜板上,准备转印。
第四步:用电熨斗加温(要很热)将转印纸上黑色塑料粉压在覆铜板上形成高精度的抗腐层。
第五步:电熨斗加温加压成功转印后的效果!若你经常搞,熟练了,很容易成功。
第六步:准备好三氯化铁溶液进行腐蚀。
第七步:效果还不错吧!注意不要腐蚀过度,腐蚀结束,准备焊接。
第八步:将焊盘铣刀装到台钻上,清理出焊盘部分,剩下的部分用于阻焊。
第九步:安装所需预定原件并焊接好。
注 意:
1:不要使电熨斗过热或者过凉,最佳温度是140~170之间,在这个温度范围以内,塑料碳粉的转移特性最佳
2:要等温度低一些以后再将转印纸揭下来,慢慢的揭,发现又没转印好的部分请再盖上
再次加温加压进行热转移。
3:一些实在有问题的部分(比如断线)请用油性碳素笔或者指甲油,油漆什么的进行补救一下不过这种情况不是很多
‘拾’ 什么是准峰值,一般测EMI为什么要测准峰值和平均值
准峰值(QP),所表现的是测量信号能量的大小。由于准峰值检波器的充电时间要比放电时间快得多,因此信号的重复频率越高,得出的准峰值也就越高。(在GB9254-1998中提到过在测量接收机上所示的读数在限值附近波动时,则读数的观察时间应不少于15s,记录最高读数,而孤立的瞬间高值忽略不记。)准峰值检波器还能以线性方式对不同幅度的信号起响应。这样,准峰值既可以反映信号的幅度,也能反映出信号的时间分布。 QP值是一种测量方法: 在该测量过程中,随着构成信号的光谱成分的重复出现,信号增多,也就是说QP值的测量结果取决于信号重复出现的频率,根据它们的重复出现频率,信号主要有两种,一种为宽带信号,友态另一种是窄带信号,窄带信号是一种可以被光谱公析仪所分解的信号,不间断波信号就是一种频率固定不变的窄带信号,宽带信号是一种不能被光谱分析仪分解的信号。 如果是窄带信号,在Peak值,QP值以及平均值的测量中会产生相同的振幅,如果是宽带信号,测量出的QP值就小于Peak值,信号的增加量(可以通过QP值的测量电路中具体的充放电时间常量来解释)是被测信号的重复出现频率的函数信号的重复出现频率越低QP什就越小。 由于QP值测量仪会用到充放电时间常量,因此当QP值测量仪接通时,光谱分析仪就必须减慢其扫描的速度,由于信号QP值总是小于或等于其Peak值,所以只有当信号的Peak值接近或超过测试限值时才有必要测量它的QP值。 采用准峰值检波是民用电磁骚扰发射测试特点,由于民用的电磁兼容产品族标准都是从CISPR标准转化过来的,这些标准都是为了保证通信和广播的畅通而编制的,因此骚扰对通信和广播的影响最终是有人的主观听觉效果来判断,平均值检波和峰值检波都不足以描述脉冲的幅度,宽度和频度对视觉造成的影响,而必须用准峰值检波,只有准峰值检波才比较符合人耳对声音的反应规律几种检波方式的各自特点: 1. 平均值检波:其最大特点是检波器的充放电时间常数相同冲虚,特别适用于对连续波的测量 2. 峰值检波:它的充电时间常数很小,即使是很窄的脉冲也能很快充电到稳定值,当中频信号消失后,由于电路的放电时间常数很大,检波的输出电压可在很长一段时间内保持在峰值上峰值检波的特点首先在军用设备的骚扰发射试验中被优先采用,因为好多军用装备只要单次脉冲的激励就可以造成爆炸或数字设备的误动作,而无需像音响设备那样讲究时间的积累 3. 准峰值检波:这种检波器的冲放点时间常数介于平均值于峰值好判源之间,在测量周期内的检波器输出既与脉冲幅度有关,又与脉冲重复频率有关,其输出与干扰对听觉造成的效果相一致 4. 准峰值测试的主要问题与改进措施 用准峰值检波方式进行测试的主要问题是测量时间长