⑴ 滑坡灾害易损性评估
滑坡灾害易损性分析与评估一直是滑坡风险评估领域中较薄弱的环节。欧盟委员会资助、在欧洲开展了题为“山区环境中大型滑坡影响:风险识别与减灾—IMIRILAND”项目(2001-2003)。该项目集中了欧洲滑坡灾害研究的顶尖专家,其中所使用的易损性评估理念和方法为当今普遍接受的方法。其评估必要步骤有三个方面:一是承灾体的判别及其定值;二是易损性评估;三是易损度,即承灾体价值(E)×易损性(V)。
一、承灾体的识别及其定值
将区域数据(按照城镇规划的土地利用、根据人口统计学研究的人口分布、按照如运输管理或电力供应等部门所确定的战略方案)放置在有关面积范围的图件上,这些图件的面积范围是通过针对每种情况的运动/形态-动力学模型来判定的,这样就可以识别出承灾体。承灾体在不同的范畴中进行分类并进行计算。对于实际的状态,或者在分类中予以考虑,或者通过折旧系数进行评估,此折旧系数是表示每个风险目标目前和初始成本估计之间的差值。承灾体的编录也考虑了潜在发育带与在建建筑。
为了进行易损性计算,可以将承灾体量化成货币值,或者从整体角度进行评估。就价值计算而言,目前有如下方法(Crosta等人,2001):①对单一要素特定值的计算;②利用效用函数;③利用经验公式;④就某一地区进行整体定性评估。
1.对单一要素特定值的计算
在这种方法中,承灾体的值等于每个单独要素本征值之和。在公开发表的大多数案例里,对于有形物质/经济活动与人类的生活做了区分。在每种案例中,对人类生活的评估是很困难的。根据法国PER项目研究成果(表4-1)可以看出,受伤的人要比死去的人价值更高,这是因为与残疾人的医疗和康复有关的社会成本要高。在建筑物实际价值的评估方面,已经考虑到了所需的参考价格,这取决于当地的情况。
表4-1 法国因灾伤亡相对成本等级
2.效用函数
在这种方法中,承灾体由效用函数u(x)来描述,其中由特定要素造成的社会或人员损失表示成函数,而不是一个单一的值。因此,对于每个要素而言,有必要设定社会或个人效用的变化量(例如线性、对数、指数变化量等)。效用函数对于决定总体损失成本的复杂条件,具有更好的灵活性和适应性。图4-1为效用函数图,首先表示道路破坏随时间变化的成本,然后表示与受伤人员数量有关的成本。在第一种情况中,由于在道路受到破坏的一段时间后确定了或者重新建立了另外的路线,这种变化呈对数关系;第二种情况呈指数关系,这是因为随着受伤人数的增加,营救和医疗的费用往往急剧增加。
图4-1 效用函数图
3.经验公式
第三种方法是利用经验公式来计算承灾体的总体定量值。下面的公式就是一个例子(Del Prete等,1992):
地质灾害风险评估理论与实践
式中:Rm为该地区居民的平均收入;Mm为危险区内居民死亡的平均年龄;Em为危险区内居民的平均年龄;Nab为危险区内居民的数量;Ned为该地区内现有房屋的数量;Ced为现有建筑物的平均成本;Cstr为现有建筑和基础设施的成本;Cmorf为所造成的地形变化的成本。
4.某一地区总体易损性的定性评估
对于分析单个要素的值是相当复杂的,而且面积特别大的区域,这种方法显然有用。按照当地土地规划中确定的土地利用和种类,根据危险区的细分尺度来选择该评估方法。
一般说来,承灾体参数值的评估是按照不同的分类(物质财产和人员)来进行的,因此,可以针对财产和人员计算出不同的风险值。此外,在这种方法中,环境值和经济值(与经济活动的破坏有关)赋予了各自的特色。为了简化对承灾体价值的评估,有时有可能利用几个指数来确定相对值的范围。表4-2和表4-3表示了与一些承灾体类型有关的相对值。对于每个承灾体,指定了财产、经济活动破坏和环境的“相对值指数”。人生命的相对值是根据所涉及的人员来应用的(值的范围可以按照所研究的地区做出调整)。
如果要素(财产和经济活动)能够用货币量来评估,指数值就表示相对成本。在这些表中,相对值是随机评估的(使用1到4的指数值),所以,在每个所考虑的类型中,它们只具有相对意义。下面的例子中,利用类似目标的市场平均值做基础,按货币方式对所有建筑的价值做了评估。
表4-2 面临危险人员的相对值评估
表4-3 危险目标相对值的评估
二、易损性评估
易损性指数(V)可定义为由于一定强度的自然现象发生对某一承灾体或者一组承灾体所造成的损失程度。易损性通常用具有相对概念的术语来表示,诸如“没有危害”、“一定危害”、“重大危害”和“全部损失”这样的词汇,或者用0(没有危害,0%)到1(全部损失,100%)之间的数值来表征。正如前面所指出的,所采用的方法预见了对不同易损性参数的评估,这些参数包括物质、社会、环境和经济成分。在评估受危险的目标时,考虑两种方法,即利用货币值或者利用表示相对重要性的系数。物质易损性系数值考虑了灾害强度和建筑设施的质量。
1.物质易损性
该术语表示某一要素或一组要素在一定规模或强度的不稳定块体影响下受损失的程度或者潜在危害的程度。这种影响首先要根据构造破坏,通过分析差异性沉降或运移对切割陡坡的构造的影响,或者通过分析撞击建筑物的岩石块体的影响来进行评估。它也可以根据运营故障来评估,例如房屋或道路的倾斜超过了容许值,即使没有观测到有裂缝发生。物理损害也取决于建筑物或者基础设施中所使用材料的质量以及对它们的维护情况,特别是木制建筑物。
到目前为止,除了模拟石块对墙面的突然影响外,还没有详细的理论阐述来模拟各类型滑坡的危害效应;然而,像这样的可变参数,如速度、块体质量、影响角度、墙面破坏点的位置、整个建筑物的潜在形变、墙面的详细几何形状、材料的强度等,对于大型滑坡地区,不能利用它们通过总体风险分析来获得重要的结果。另一方面,对于大多数已经发生的有限危害的情形,则没有执行系统的监测程序,否则就能够对滑坡的影响做出合适的评估。
确定易损性系数的主要标准包括:事件发生强度(滑动速度、崩塌能量)、就强度而言,建筑物的类型和功能以及对变形的维修状况和承受能力。
如果考虑的不是建筑物和道路而是网状设施(电线、水管、下水道),则可以对这种标准的分类进行调整。
2.社会易损性
该术语表示滑坡对人口的影响率。对于许多突发性滑坡灾害或崩塌来说,即使其强度有限,一旦造成死亡,影响率则达到100%。造成永久性残疾的严重负伤,其影响率也接近100%,这是因为对社会的长期费用非常高。相反,像临时性受伤(例如腿骨折),如果能在短期内得到康复,则其易损性较低。
社会易损性系数也包括家庭破坏所造成的心理影响,因为常常可以看到,受害者失去有效的生活根基比起受伤来,境遇更为困难。甚至一段时间的临时性疏散也属于对人口的易损性影响。
这样说来,确定社会易损性系数的主要标准按降序排列为:
事件发生强度(与警报时间有关);
人口敏感度,取决于年龄和预测滑坡的能力;
了解灾害现象和撤离危险地带的能力。
3.环境易损性
为了面对滑坡的所有直接影响,有必要在物质和社会领域之后增加第三个种类,它涉及自然环境方面。它常常是滑坡的第一“目标”,例如牲畜,因为滑坡发生的地方一般人口不太稠密,也没有大型的基础设施。另一方面,对这些自然物的危害不能用货币形式来评估,特别是森林、野生动物和稀有植物。对于森林而言,由于几个地带是作为崩塌和雪崩防护林,这种影响可能是非常大的,因而必须通过总体功能分析(生产、保护和娱乐功能)来对森林的潜在价值进行评估。
至于对河流中的水资源和水流条件的影响,分析崩塌对山泉的潜在影响(即使没有安装供水设备)非常重要,如果河流受到阻塞河道的滑坡体的影响,分析对鱼类的潜在损失同样也很重要。
这样,确定环境易损性系数值的主要标准包括:事件发生强度(就现象发生对自然的破坏影响而言)、森林或者濒危动植物种类的功能,以及这些种类的敏感度和稀有性。
4.经济易损性
除了对滑坡体上或者其附近的财产造成潜在破坏以外,这样的现象可能造成间接经济影响,如阻塞道路或铁路,破坏电线或水管,或者阻塞山谷形成湖泊,对下游带来危险,以至于必须停止或减少山谷下面的经济活动,或许并没有带来最终的破坏性影响。
在大多数研究的实际情况中,间接影响比直接影响要大得多,了解到这一点很重要。例如1999~2000年冬天发生的雪崩,据估计间接影响比直接影响高4~5倍。又例如厄瓜多爾尔尔的La Josefina滑坡,1993年使大坝水溢出,可能严重影响位于下方的Paute水电站,其威胁所造成的损失应占该国整个发电量的70%;幸亏在10000m3/s的流量充满空空的水库时,只造成了有限的损失,但是这场洪水带来了相当于2年的淤积量,意味着为了保证湖泊的调蓄能力,要花掉成千上万美元来抽水和疏浚。
当然,滑坡阻塞道路所造成的经济影响不仅取决于预计的平均交通量,而且取决于替代线路的存在。例如,Ceppo Morelli崩塌(意大利Valle Anzasca)堵塞了通向Macugnaga胜地的公路,使进出这一重要胜地的所有交通受阻达几个星期;目前在山谷的另一边还有一条道路,一旦遇到大型崩塌,其所在位置就不能保证其能否正常使用。
至于其他的情况,如瑞士的La Frasse滑坡,虽然另有道路可以选择,但要多绕行几十千米,这样会使大部分准备来该地区游玩一天的旅游者最终放弃计划,转而去其他的游览胜地,特别在冬天和春天尤其是这样。如果公布崩塌的威胁,使大家都了解,即使危险控制在有限的范围内,许多人也不会驾车来到有关地区。至于货物运输,一些货物可能会滞留一段时间,如原木,但其他像牛奶和干酪这样的产品,需要连续不断地运到工厂或仓库,万一交通受到破坏,就会造成直接经济损失,如果选择其他路径,运输距离加长,则造成间接经济损失。
这样,评估经济易损性的主要标准为:内在的业务类型(工业、旅游、运输)、受影响的经济活动类型、交通量和交通阻塞的成本(铁路阻塞的成本很高),以及替代线路的可能性。
最后要提到的是,经济易损性方面必须包括对滑坡次生影响所带来的潜在危害的分析,如山谷大坝的变形,造成上游泛滥,下游潜在的灾难性洪水。
5.易损性综合评估
承灾体的易损性取决于要素的类型(T)(因此也取决于对财产的抗冲击特征)和作用强度(I):
地质灾害风险评估理论与实践
从实用的角度,为了评估易损性,可以按照两种方法:①仅仅以对承灾体的影响为基础(表4-4);②以作用强度为基础。
表4-4 物质、社会、环境和经济方面的易损性因素值评估
在第一种情况中,有5个等级的损失百分率(0,0.25,0.5,0.75,1)应用于各易损性类型。然而,通过详细研究,有可能根据“效用曲线”给各种百分率等级赋予不同的权重[例如道路中断的情形-经济易损性-一些研究已经证实,由于替代线路的开通,易损性随时间的推移而逐渐减小(如随时间推移,易损性为0,0.5,0.8,0.95,1),表现为一条对数曲线]。
在第二种情况中,作用强度可以指定为从伸张模型所得到的能量阈值(J)。在不能获取数据模型时,有可能将作用强度“翻译”成定性描述效应。
为了刻画不同滑坡类型的强度,已经制定了几种尺度。例如,瑞士于1997年公布了有关数量级的规则,用以区分石块跌落、崩塌、滑动的低、中、高强度。表示这些尺度或者按照影响能量,或者按照平均速度,或者根据潜在土壤侵蚀带的深度(OFAT,OFFEE和OFEFP,1997)。对于大型崩塌,很明显危险带的强度等级常常从高到很高,而对于滑坡,按照所提出的标准,许多大型滑坡显示低到中等强度。然而,要进行更为详细的分析,意味着要考虑加速阶段,或者崩塌的潜在单位块体的体积以及可能的相互作用。但是无论如何,强度等级的数值范围是示意性的,只能看成定性标准而不是定量参数。
三、易损度评估
评估某一情况所诱发的影响是以理论计算为基础,简单表示为承灾体价值(VE)与易损性(V)的乘积:
地质灾害风险评估理论与实践
在这个方法中,每个承灾体价值与相对易损性种类相乘(例如,物质易损性指数×财产值指数=物质影响指数)。对每个灾害情况重复此计算过程,其中要考虑每个特定的作用强度等级,因为它影响着承灾体的易损性(V)。对每个易损性强度类型(物质的、社会的、环境的和经济的)也重复此计算过程。因此,该方法所基于的矩阵算法求出值类之间的简单乘积,所得到的结果(影响指数)进入下一个矩阵,计算出风险值。按照这种方式,影响评估就由一个自动的目标过程来完成。然而,由于这个原因,同时也为了使影响评估有意义,对于必然受一定程度的主观性影响的评估过程初始阶段(危险定义、承灾体价值的评估、易损性评估),要求做出非常仔细的分析和评估。
⑵ 地质灾害风险评估方法
滑坡泥石流等地质灾害的不确定性决定了其评估方法采用非确定性分析方法。该类方法是基于地质灾害预测理论的广义系统科学原理,在类比法的基础上发展起来的一类研究方法。随着概率论、数理统计及信息理论、模糊数学理论用于地质灾害预测,目前已形成了多种预测模型,其预测成果可相互对比、检验,从而可使预测成果更具合理性、科学性。目前常用的非确定性分析方法主要有以下几种。
一、参数合成法
参数合成法又称专家经验指数综合评判法。它是最为简单的定量评估方法。该类模型主要是建立在专家丰富的经验基础之上的,通过专家打分法等途径获取专家经验知识,专家选择影响地质灾害的因子并编制成图。根据专家的经验,赋予每个因子一个适当的权重,最后进行加权叠加或合成,形成地质灾害危险性分区图。
它的主要优点是:①可以同时考虑大量的参数;②可以应用于任意比例尺的区域和单体斜坡稳定性评估;③大大降低了隐含规则的使用,定量化程度提高;④整个流程可以在GIS的支持下快速完成,使数据管理标准化,时间短,费用少。主要缺点有:①主观性较强,不同的调查者或专家得出的结果无法进行比较。权值的确定仍含有不同程度的主观性;②隐含的评判规则使结果分析和更新困难;③需要详细的野外调查;④应用于大区域评估时,操作复杂,模型难以推广。
二、数理多元统计模型法
该方法是通过对现有地质灾害及其类似不稳定现象与地质环境条件和作用因素之间的统计规律研究,建立相关的预测模型,从而预测区域地质灾害的危险性。该类模型方法很多,如回归分析、判别分析、聚类分析方法等。
统计分析的前提是已知学习区(训练区)的地质灾害分布情况,根据数理统计理论,建立影响参数和地质灾害发生与否的数学统计模型,在测试区得到验证后,将其应用到地质环境相同或相似的地区,预测研究区的灾害危险性分布规律。因此,统计分析方法评估的结果的可靠度直接取决于测试区原始数据的精度,模型也不能在任何地区推广使用。尽管如此,大量的研究表明,统计分析是目前最为适用的区域地质灾害危险度评估区划方法,它有严格的数理统计理论作基础,数学模型简单易懂,而且与GIS技术能够很好地结合,使庞大的数据得到合理的标准化管理、分析与储存。
多元统计分析中的主成分分析和因子分析方法在环境统计方面有不少成功的应用。将这两种方法结合起来的主成分-因子分析法可以应用于多变量的因子赋权研究(吴聿明,1991)。主成分-因子分析法的主要思想是(应农根,刘幼慈,1987):在所研究的全部原始变量中将有关信息集中起来,通过探讨相关矩阵的内部依赖结构,将多变量综合成少数彼此互不相关的主成分,以再现原始变量之间的关系,并通过因子荷载矩阵的轴正交或斜交旋转,进一步探索产生这些相关联系的内在原因。
此方法适用于区域地质灾害空间预测研究,对一定地区土地利用、国土开发、城市规划具有宏观指导作用。
三、层次分析法
层次分析法是对一个包括多方面因子而又难以准确量化的复杂系统进行分析评估时,根据各因子之间以及它们与评估目标的相关性,理顺组合方式和层次,据此建立系统评估的结构模型和数学模型;对模型中的各种模糊性因子,根据它们的强度以及对影响对象的控制程度,确定标度指标和作用权重;将这些指标作为基本参数,代入评估模型,逐级进行定量分析并最终取得评估目标。根据地质灾害风险系统组成,大致可通过4个层次的统计分析完成评估工作:以各种要素为主体的基础层统计分析;以危险性、易损性、减灾能力为目的的过渡层分析;以期望损失为目标的准则层分析;以风险度或风险等级为最终目标的目标层分析。
四、模糊与灰色聚类方法
模糊聚类判别法模型以模糊数学理论为基础。由于地质灾害系统的复杂性,用绝对的“非此即彼”不能准确地描述地质灾害系统的客观实际,存在着“亦此亦彼”的模糊现象,不能用1或0二值逻辑来刻画,而需用区间[0,1]的多值(或连续值)逻辑来表达。而模糊数学理论正是适用于地质灾害系统的不确定性,用隶属函数来描述那些边界不清的过渡性问题及受多因素影响的复杂系统的非确定性问题。目前常用的方法有模糊综合评判法、模糊可靠度分析方法及其与层次性原理相结合而派生的模糊层次综合评判法。模糊聚类综合评估的基本步骤是:根据地质灾害风险构成,建立因素集、综合评估集和权重集,确定隶属函数,得到综合评估结果,并进行解释分析。
灰色聚类综合评估法以灰色系统理论为基础,常用于研究“小样本、贫信息不确定性”问题。在地质灾害预测中,可利用灰色关联分析,评估斜坡稳定性各影响因素的影响程度,可以克服通常数理统计方法作系统分析所导致的缺憾,对样本量和样本的规律性无特殊要求。同样可通过灰色聚类中的灰类白化权函数聚类,在考虑多种影响因素的基础上对各研究单元的危险性状态进行判定,进而完成空间预测中的危险性分区。灰色系统的以灰色模型(GM)为核心的各种预测模型还为分析地质灾害预测中的各种时序数据提供了有效途径,成为目前地质灾害实时跟踪预报的常用方法之一。灰色聚类综合评估的基本步骤是:确定聚类白化数和白化函数,标定聚类权,求聚类系数,构造类向量,求解聚类灰数。
五、信息模型评估法
该类模型的理论基础是信息论。用地质灾害发生过程中熵的减少来表征地质灾害事件产生的可能性,因素组合对某地质灾害事件的确定所带来的不肯定性程度的平均减少量等于该地质灾害系统熵值的变化。认为地质灾害的产生与预测过程中所获取的信息的数量和质量有关,是用信息量来衡量的,信息量越大,表明产生地质灾害的可能性越大。该类模型预测法同统计预测模型一样,适用于中小比例尺区域预测。
信息科学现已成为广泛使用的一门科学,但它的产生却只有短短的半个世纪历史。1948年Shannon 发表的着名论文《通信的数学理论》标志着信息科学的诞生。Shannon把信息定义为“随机事件不确定性的减少”,并把数学统计方法移植到了通信领域,提出了信息量的概念及信息熵的数学公式。信息科学研究的对象是信息,它的重要任务是研究信息的提取、信息传输、信息处理、信息存储等。由于现代自然科学发展的综合整体化趋势,各学科的相互渗透、相互联系,经过几十年的发展,使信息量和信息熵的概念已远远超出了通信领域。信息科学不仅应用于各种自然科学领域,而且已广泛应用在管理、社会等科学领域。
运用信息论方法进行地质学领域的矿床预测研究是由维索奥斯特罗斯卡娅(1968)及恰金(1969)先后提出。赵鹏大等在《矿床统计预测》一书中研究了信息量方法在区域找矿工作中的应用问题。晏同珍、殷坤龙等自1985年起,先后多次在陕南及长江三峡库区探索了信息量方法在区域性滑坡灾害空间预测分区中的应用,并与其他方法(如聚类分析、回归分析、数量化理论方法等)的研究成果进行了比较性研究。艾南山、苗天德(1987)研究了侵蚀流域地貌系统的信息熵问题,他们在斯揣勒的流域面积——高程曲线的基础上构造了侵蚀流域地貌系统的信息熵表达式,并据此作为流域稳定性的一种判定指标。Read J. 和Harr M.(1988)首次将信息熵的概念与斜坡安全系数计算的条分法结合在一起。由于地质灾害预测内容的多样性,所以决定了预测理论和方法的非单一性。晏同珍等(1989)将其概括为三类模型预测法——确定性模型预测法、统计模型预测法、信息模型预测法;前两种模型又可分别称其为“白箱”和“黑箱”模型,而信息模型则是介于两者之间。
地质灾害现象(Y)受多种因素Xi的影响,各种因素所起作用的大小、性质是不相同的。在各种不同的地质环境中,对于地质灾害而言,总会存在一种“最佳因素组合”。因此,对于区域地质灾害预测要综合研究“最佳因素组合”,而不是停留在单个因素上。信息预测的观点认为,地质灾害产生与否是与预测过程中所获取的信息的数量和质量有关,因此可用信息量来衡量:
地质灾害风险评估理论与实践
根据条件概率运算,上式可进一步写成:
地质灾害风险评估理论与实践
式中:I(y,x1x2xn)为因素组合x1x2xn对地质灾害所提供的信息量(bit);P(y,x1x2xn)为因素x1x2xn组合条件下地质灾害发生的概率;Ix1(y,x2)为因素x1存在时,因素x2对地质灾害提供的信息量(bit);P(y)为地质灾害发生的概率。
式(2)说明,因素组合x1x2xn对地质灾害所提供的信息量等于因素x1提供的信息量,加上因素x1确定后因素x2对地质灾害提供的信息量,直至因素x1x2xn-1确定后,xn对地质灾害提供的信息量,反映出信息的可加性特征,从而说明区域地质灾害信息预测是充分考虑因素组合的共同影响与作用。
P(y,x1x2xn)和P(y)可用统计概率来表示,各种因素组合对预测地质灾害提供的信息量可正可负,当P(y,x1x2xn)>;P(y)时,I(y,x1x2xn)>;0;反之I(y,x1x2xn)<;0。大于0情况表示因素组合x1x2xn有利于所预测地质灾害的发生,相反情况则表明这些因素组合不利于地质灾害的发生。
区域地质灾害预测是在对研究区域网格单元划分的基础上进行的,根据不同地区具体的地质、地形条件,采用相应的网格形状和网格大小,进一步结合区域地质灾害分布图开展信息统计分析。假定某区域内共划分成N个单元,已经发生地质灾害的单元为N0个。具相同因素x1x2xn组合的单元共M个,而在这些单元中有地质灾害的单元数为M0个。按照统计概率代表先验概率的原理,式(1),因素x1x2xn在该地区内对地质灾害提供的信息量为:
地质灾害风险评估理论与实践
如果采用面积比来计算信息量值,则式(3)可表示成:
地质灾害风险评估理论与实践
式中:A为区域内单元总面积;A0为已经发生地质灾害的单元面积之和;S为具相同因素x1x2xn组合的单元总面积;S0为具相同因素x1x2xn组合单元中发生地质灾害的单元面积之和。
一般情况下,由于作用于地质灾害的因素很多,相应的因素组合状态也特别多,样本统计数量往往受到限制,故采用简化的单因素信息量模型的分步计算,再综合叠加分析相应的信息量模型改写为:
地质灾害风险评估理论与实践
式中:I为预测区某单元信息量预测值;Si为因素xi所占单元总面积;S0i为因素xi单元中发生地质灾害的单元面积之和。
六、实证权重法
实证权重法(Weights of evidence,)是加拿大数学地质学家Agterberg等(1989)提出的一种基于二值(存在或不存在)图像的地学统计方法,是在假设条件独立的前提下,基于贝叶斯定理(Bayesian’rule)的一种定量预测方法。Bonham-Carter等(1990)和Harris等(2001)都先后应用WOE方法来预测矿产的远景分布。通过对已知成矿情况网格单元的预测因子和响应因子之间的统计分析,计算出权重,然后对各待预测网格单元的各预测因子进行加权综合,最后,通过确定每一单元响应因子出现的概率大小便可得到不同级别的成矿远景区。
Van Westen进一步将模型应用到灾害危险性评估领域。数据驱动权重模拟方法的主要原理是利用滑坡历史分布数据,建立滑坡分布与各影响因子之间的统计关系,即根据在各影响因子不同类别中滑坡分布的统计情况来确定各影响因子对滑坡灾害的贡献率(权重)大小。这种采用数据进行权重确定的方法被称为数据驱动模型。与专家知识模型相比,权重的确定更加科学和可靠,避免了专家的主观性所带来的不确定性。最后,利用另一时期的滑坡分布历史数据对评估结果进行检验和成功率预测,调整不合理的边界,使评估结果更加具有可信度。基于统计学的Bayesian方法的数据驱动权重模型所采用的统计方法更加严谨,充分考虑了滑坡影响因素之间的关系,以及各影响因素与滑坡灾害的关系;并进行影响因素的独立性分析,找出最关键的影响因子。在此基础上计算各影响因素的权重。
七、非线性模型预测法
非线性模型预测法又称BP神经网络法,是把一组样本的输入输出问题变为一个非线性优化问题而建立的预测模型。
鉴于地质灾害系统具有复杂性特点,很难用简单的线性方程表达,因此使一批非线性预测模型迅速发展起来。如分形理论就是通过研究地质灾害系统的自相似性来对地质灾害的运动规律进行研究。易顺民应用分形理论研究了区域性滑坡灾害活动的自相似结构特征,发现在地质灾害活动的高潮期到来前有明显的降维。吴中如、黄国明等依据分形理论提出了滑坡变形失稳判据及滑坡蠕滑的相空间模型,是地质灾害时间预报的一种全新思路。自组织理论探索地质灾害复杂系统如何从无序进化到有序的自组织过程;突变理论主要从定量的角度描述非线性系统在临界失稳时的突变行为,为地质灾害时间预报提供了一种新途径;分形理论则从几何的角度探讨系统内各个层次间的自相似性,应用在地质灾害过程描述及过程预报中,化复杂为简单,化定性为定量;混沌动力学探讨非线性地质灾害系统在其演化过程中的不可逆性和演化行为对初值的敏感性。
人工神经网络(Artificial Neural Network,简称ANN)是由大量与自然神经细胞类似的人工神经元广泛互连而成的网络。网络的信息处理由神经元之间的相互作用来实现,知识与信息的存贮表现为网络元件互连间分布式的物理联系,网络的学习和识别决定于各神经元连接权系的动态演化过程。人工神经网络是一个超大规模非线性连续时间自适应信息处理系统。目前人工神经网络的应用已渗透到许多领域,为学习识别和计算提供了新的现代途径。
人工神经网络使用比较方便,它的信息处理过程同人脑一样,是一个黑箱,如图1-6所示。在实际应用中,和人们打交道的只是它表层的输入和输出,而内部信息处理过程是看不到的。对于不懂神经网络内部原理的人,也可将自己的问题交给这种网络进行解决,只要把你的例子让它学习一段时间,它就可以解决与之有关的问题。这正符合地质灾害预测理论的基本原理和思路。
图1-6 神经网络信息处理示意图
根据人工神经网络对生物神经系统的不同组织层次和抽象层次的模拟,人工神经网络可以分为多种类型。目前已有40余种人工神经网络模型。引用于地质灾害预测评估的多层前馈神经网络模型(Back Propagation,简称BP模型)是目前应用最广泛、发展最成熟的一种神经网络模型,如图1-7所示,它是按层次结构构造的,包括一个输入层、一个输出层和一个或多个隐含层。
图1-7 BP网络模型
实际上,BP模型是把一组样本的输入输出问题变为一个非线性优化问题。我们可以把这种模型看成一个从输入到输出的映射,这个映射是高度非线性的。如果输入节点数为n,输出节点数为m,则神经网络表示的是从n维欧氏空间到m维欧氏空间的映射。
在预测识别过程中,标准样本的选择是否得当,是预测是否成功的关键。一般来说,学习样本最好能涵盖预测对象的所有状态,具有广泛的代表性。在确定网络结构时,一般来讲,一个隐层的三层BP模型已可进行任意精度模拟任何连续函数。隐含层结点数目过少,不能有效地映射输入层和输出层之间的关系;过多,收敛速度过慢。因此,中间层结点数目的选取,需经过反复演算训练,才能得出较为理想的节点数。在计算过程中,为了提高效率,可以适当降低输入结点的数目,减少训练样本的维数,以增加网络的稳定性,同时还可以通过增加冲量项法或者自适应调节学习率、共轭梯度法等方法提高迭代收敛速度。
BP模型运用到地质灾害危险性区划中,可以通过样本区的标准样本的学习建立相应预测网络,从而推广到预测区进行预测。网络的输入层的变量对应于影响地质灾害产生的主要影响因素,变量可以是二态变量,也可以是具体的观测数据。当然由于各变量存在单位或数量级的差异,必须把变量数据经过正规化或标准化处理。输出层对应的是地质灾害预测等级(极高、高、中等、低、极低)的划分,或是危险程度的具体数值表达,如稳定性系数、破坏概率等,这就要求样本区的研究精度较高,指标细化程度较高。
八、地质灾害风险分析与GIS技术
地理信息系统(GIS)是集计算机科学、信息科学、现代地理学、遥感测绘学、环境科学、城市科学、空间科学、管理科学和现代通讯技术于一体的一门新兴学科。具体而言,GIS是指对各种地理信息及其载体(文字、数据、图表、专题图等)进行输入、存储、检索、修改、量测、运算、分析、输出等的技术系统。GIS的主要功能有采集、存储、管理、分析、输出各种数据、数据维护和更新、区域空间分析以及多因素综合分析和动态监测等。GIS不仅可以像传统的数据库管理系统(DBMS)那样管理数字和文字(属性)信息,而且还可以管理空间(图形)信息;它可以使用各种空间分析的方法,对多种不同的信息进行综合分析,寻找空间实体间的相互关系,分析和处理一定区域内分布的现象和过程。当代地理信息系统正向能够提供丰富、全面的空间分析功能的智能化GIS的方向发展。智能化的GIS具有强大的空间建模功能,能够构建各种具有专业性、综合性、集成性的地学分析模型来完成具体的实际工作,解决以前只有靠地学专家才能解决的问题。
GIS把各种与空间信息相关的技术与学科有机地融合在一起,并与不同数据源的空间与非空间数据相结合,通过空间操作与模型分析,提供对规划、管理、决策有用的信息产品。GIS为我们提供了一种认识和理解地学信息的新方式,GIS强大的空间分析功能和空间数据库管理能力为我们研究区域地质灾害提供了一个科学、便捷的崭新途径。
作为数字地球的核心技术之一,GIS经过将近40年的发展,已经成为一种日益成熟的空间数据处理技术和方法。它提供了一种认识和理解地学信息的新方式,已广泛应用于国土资源调查、环境质量评估、区域规划设计、公共设施管理等方面。在地质灾害研究领域,GIS技术的应用已从最初的数据管理、多源数据采集数字化输入和绘图输出,到数字高程模型、数字地面模型的使用、GIS 结合灾害评估模型的扩展分析、GIS与决策支持系统的集成、GIS虚拟现实技术的应用等,并逐步发展与深入应用。
各种地质灾害都是在地球表层一定空间范围和一定时间限度内发生的,尽管不同种类的地质灾害之间、同一种类的地质灾害的不同个体之间大都形态各异,形成机理也是千差万别,但它们都是灾害孕育环境与触发因子共同作用的结果,而这些都与空间信息密切相关,利用GIS技术不仅可以对各种地质灾害及其相关信息进行管理,而且可以从不同空间和时间的尺度上分析地质灾害的发生与环境因素之间的统计关系,评估各种地质灾害的发生概率和可能的灾害后果。地质灾害危险性区划图属于一种综合图件,而且具有一定时段内的静态特点,因此需要不断更新;尤其是有新的地质灾害发生的时候,更应及时修订。由于GIS技术的空间分析、制图功能和可视化的特点,所以GIS技术在地质灾害区划研究方面正得到快速发展,以GIS软件为技术平台的地质灾害的危险性、易损性和风险评估的系统研究逐步成为本领域研究的发展方向,并有可能在不远的未来与网络技术相结合。
国外尤其是发达国家,对GIS技术应用于地质灾害领域的研究已做了很多工作。从20世纪80年代至今,GIS技术的应用已从数据管理、多源数据采集、数据化输入和绘图输出,到数字高程模型、数字地面模型的使用、GIS结合灾害评估模型的扩展分析、GIS与决策支持系统(DSS)的集成、GIS虚拟现实技术的使用,都得到不断的发展和广泛的应用。在滑坡灾害研究领域,GIS技术的应用已经比较成熟,主要体现在以下几个方面:
(1)建立基于GIS的滑坡灾害信息管理系统。如Keane James M.(1992), BaharIrwan(1998), Bliss Norman B.(1998)等将GIS运用到滑坡灾害历史数据的管理及预测成果成图表征中。
(2)GIS技术与各种评估模型结合运用到滑坡危险性预测中。如Matula(1987),Lekkas E.(1995), Randall(1998), Dhakal Amod Sagar(1999)等利用GIS的空间分析功能与预测模型的结合,完成了滑坡预测因素的空间叠加,进行滑坡危险性预测,得出相应的预测分区图和滑坡敏感性图。
(3)进行基于GIS的滑坡灾害风险分析预测与管理。如 Ellene(1994),Leroi(1996),Bunza(1996), Castaneda Oscar E.(1998), Atkinson(1998), Michael(2000), Aleotti(2000)等从影响滑坡灾害风险的因素出发,利用GIS的空间分析功能进行因素叠加,实现风险评估并结合GIS的信息管理功能,对灾害信息进行管理,最终进行管理决策,大到防灾减灾的目的。目前,国外在滑坡灾害预测领域已基本实现了RS与GIS的紧密结合,个别项目已达到了3S技术的结合。
国内基于GIS技术开展地质灾害评估工作起步较晚,目前还没有成熟实用的地质灾害预测评估的GIS系统。姜云、王兰生(1994)在山区城市地面岩体稳定性管理与控制中应用了GIS技术,以重庆市为典型研究对象,对地面岩体变形破坏进行了时空预测预报;同时,通过分析城市地质环境对土地工程利用的制约关系,应用GIS的信息存储、查询、空间叠加运算及DEM模型等功能,做出地力等级划分,并编制了斜坡稳定性综合评估分区图。雷明堂、蒋小珍等(1994)将GIS技术运用在岩溶塌陷评估中,完成了研究区岩溶塌陷危险度评估及分区。成都理工学院(1998)和中国地质环境监测院及国土资源部长江三峡地质灾害防治指挥部合作进行了“地质灾害信息系统及防治决策支持系统”开发试验工作,初步建立了一个全国地质灾害调查与综合评估系统。中国国土资源经济研究院、中国地质大学、中国地质科学院岩溶地质研究所、国土资源部实物地质资料中心(2002)联合开展了“全国地质灾害风险区划”项目攻关,利用国产软件MAPGIS,对全国小比例尺滑坡、泥石流、岩溶塌陷地质灾害进行了基于GIS的风险评估(包括地质灾害危险性评估、易损性评估和风险性区划)。朱良峰等在国产版权的MAPGIS软件平台上,开发了一套地质灾害风险评估系统RISKANLY。这套基于GIS技术的地质灾害风险分析不仅方法上可行,而且技术上先进,代表着地质灾害风险分析的发展方向。当然,无论是地质灾害的危险性分析模型,还是区域社会经济易损性分析模型,都有待于实践中的进一步研究与发展,这显然是应该随着人类对地质灾害本质属性认识的逐渐深化而不断发展的。
随着我国社会经济的迅速发展和城市化进程的加快,崩塌、滑坡、泥石流、地面塌陷等地质灾害破坏的广度与深度也在迅速增大,需要更加关注地质灾害的区域时空预测研究。与地质灾害有关的相关因素很多且成因复杂,都与空间信息密切相关,因此,利用GIS技术不仅可以对地质灾害相关的各种空间信息进行管理,而且可以从不同的空间和时间尺度上分析地质灾害的发生与环境因素之间的统计关系,评估地质灾害的发生风险和可能的灾害范围。因此,基于GIS的地质灾害风险评估与区划将会在未来我国的社会经济发展中起着重要的作用。
九、小结
地质灾害风险评估涉及两个重要的方面:一是地质灾害发生的可能性问题,二是人类自身、社会及环境等对象对地质灾害的抵御能力问题。因此,地质灾害的定义采用国际上的geological hazard一词。本书遵循科学性、通用性的原则,结合国内近年来在地质灾害风险评估领域已初步形成的有代表性的术语表达方式,在联合国教科文组织提出的统一定义的基础上,对地质灾害风险评估所涉及的基本术语定义如下:
(1)危险度H(Hazard)。特定地区范围内某种潜在的地质灾害现象在一定时期内发生的概率。
(2)易损性V(Vulnerability)。某种地质灾害现象以一定的强度发生而对承灾体可能造成的损失程度,易损性可以用0-1来表示,0表示无损失,1表示完全损失。
(3)承灾体E(Element at risk)。特定区域内受地质灾害威胁的各种对象,包括人口、财产、经济活动、公共设施、土地、资源、环境等。
(4)风险度R(Risk)。承灾体可能受到各种地质灾害现象袭击而造成的直接和间接经济损失、人员伤亡、环境破坏等。风险等于危险性、易损性、承灾体价值三者的乘积。
风险度(R)=危险度(H)×易损度(V)×承灾体价值(E)