导航:首页 > 研究方法 > 图像去雾方法研究与算法实现论文

图像去雾方法研究与算法实现论文

发布时间:2023-04-27 15:09:25

A. 低亮度图片增强算法:基于去雾算法的低亮度图像增强算法

本文介绍一篇基于去雾算法的低亮度图片增强算法(FAST EFFICIENT ALGORITHM FOR ENHANCEMENT OF LOW LIGHTING VIDEO)。

该论文的作者观察到反转的低亮度图片(inverted image)具有与有雾图片类似的性质,比如:

以上两条性质是有雾图片特有的性质。
因此,我们可以运用成熟的去雾算法来进行低亮念州度图片的增强。

具体地做法如下:

其中, 是大气的亮度, 是相机获取到的图像亮度, 是原始图像或场景的亮度。

基于[1] , 我们可以得到:

其中 是大气的散射系数, 是像素 的景深。

其中 在算法中设置为0.8, 是中心位于 的一个小区域,在算法中设置为9。

为了获取大气的亮度,作者选取了图像中RGB通道中最小值里最大的100个像素,然后选取这些像素中RGB值相加最大的像素值仔蠢蔽最为 的估计值。

这里需要注意,我们需要增强的区域是位于前景的物体,例如房子、车子等物体,同时需要避免过度增强背景区域,像天空等。

所以,这里我们需要根据图片内容的不同,自适应地调节 ,从而重点增强档仿前景的内容。因此,这里引入了一个中间变量:

然后,需要恢复的图片 可由下式计算得到:

[]论文还介绍了如何加速视频的方法,由于不是该博客的研究重点,故而忽略,有兴趣的朋友可以查看原文。

B. 模糊图像复原方法

图像复原-模糊图像处理解决方案
机器视觉智能检测 2017-06-16
造成图像模糊的原因有很多,且不同原因导致的模糊图像需要不同的方法来进行处理。从技术方面来讲,模糊图像处理方法主要分为三大类,分别是图像增强、图像复原和超分辨率重构。本文将从这三方面切入剖析。

智能化设备管理技术是利用系统管理平台软件的设备管理服务,对所有的监控设备包括摄像机、云台、编码器和系统服务器进行不间断的实时监测,当发现故障时能及时通过各种方式告警,提示维护人员及时处置。一个系统可以按照网络拓扑结构部署多台设备管理服务器,分区域对设备进行实时的巡检,这样可以大大提高系统的维护效率,尽可能做到在设备发生故障时,在不超过10分钟的时间内被监测到并告警。

建设目标

本方案拟应用先进的机器学习和计算机视觉技术,仿真人类的视觉系统,针对某市公共安全图像资源前端摄像头出现的雪花、滚屏、模糊、偏色、画面冻结、增益失衡和云台失控等常见摄像头故障以及恶意遮挡和破坏监控设备的不法行为做出准确判断,并自动记录所有的检测结果,生成报表。以便用户轻松维护市公共安全图像资源系统。

技术路线

将视频故障分成视频信号缺失、视频清晰度异常、视频亮度异常、视频噪声、视频雪花、视频偏色、画面冻结、PTZ运动失控八种类型。其中视频信号缺失、随着“平安城市”的广泛建设,各大城市已经建有大量的视频监控系统,虽然监控系统己经广泛地存在于银行、商场、车站和交通路口等公共场所,但是在公安工作中,由于设备或者其他条件的限制,案情发生后的图像回放都存在图像不清晰,数据不完整的问题,无法为案件的及时侦破提供有效线索。经常出现嫌疑人面部特征不清晰、难以辨认、嫌疑车辆车牌模糊无法辨认等问题,这给公安部门破案、法院的取证都带来了极大的麻烦。随着平安城市的推广、各地各类监控系统建设的进一步推进,此类问题将会越来越凸显。

模糊图像产生的原因

造成图像模糊的原因很多,聚焦不准、光学系统的像差、成像过程中的相对运动、大气湍流效应、低光照、环境随机噪声等都会导致图像模糊。另外图像的编解码、传输过程都可能导致图像的进一步模糊。总体来说,造成图像模糊的主要原因如下:

· 镜头聚焦不当、摄像机故障等;

· 传输太远、视频线老化、环境电磁干扰等;

· 摄像机护罩视窗或镜头受脏污、受遮挡等;

· 大雾、沙尘、雨雪等恶劣环境影响;

· 由视频压缩算法和传输带宽原因导致的模糊;

· 摄像机分辨率低,欠采样成像;

· 光学镜头的极限分辨率和摄像机不匹配导致的模糊;

· 运动目标处于高速运动状态导致的运动模糊等;

……

模糊图像常用解决方案

对于模糊图像处理技术,国内大学和科研机构在多年以前就在研究这些理论和应用,相关文献也发布了不少,已经取得了一些很好的应用。美国 Cognitech软件是相当成熟的一套模糊图像恢复应用软件,在美国FBI及其他执法机构中已有多年实际应用,其恢复出的图像可以直接当作法庭证据使用,可见模糊图像处理技术已经取得了相当的实际应用。

前面提到,造成图像模糊的原因有很多,要取得比较好的处理效果,不同原因导致的模糊往往需要不同的处理方法。从技术方面来讲,模糊图像处理方法主要分为三大类,分别是图像增强、图像复原和超分辨率重构。

图像增强

很多传统图像算法都可以减轻图像的模糊程度,比如图像滤波、几何变换、对比度拉伸、直方图均衡、空间域锐化、亮度均匀化、形态学、颜色处理等。就单个来讲,这些算法都比较成熟,相对简单。但是对于一个具体的模糊图像,往往需要上面的一种或者多种算法组合,配合不同的参数才能达到理想的效果。这些算法和参数的组合进一步发展成为具体的增强算法,比如“图像去雾”算法、“图像去噪”算法、“图像锐化”算法、“图像暗细节增强”算法等等。这些算法都不同程度提高了图像清晰度,很大程度改善了图像质量。

综合使用形态学、图像滤波和颜色处理等算法可以实现图像去雾的算法,图1是一个去雾算法的实际使用效果,类似的图像增强算法还有很多,不再一一列举。图像复原

图像复原与图像增强技术一样,也是一种改善图像质量的技术。图像复原是根据图像退化的先验知识建立一个退化模型,然后以此模型为基础,采用各种逆退化处理方法逐步进行恢复,从而达到改善图像质量的目的。

图像复原和图像增强是有区别的,两者的目的都是为了改善图像的质量。但图像增强不考虑图像是如何退化的,只有通过试探各种技术来增强图像的视觉效果,而图像复原就完全不同,需要知道图像退化过程的先验知识,据此找出一种相应的逆过程方法,从而得到复原的清晰图像。图像复原主要取决于对图像退化过程的先验知识所掌握的精确程度。

对由于离焦、运动、大气湍流等原因引起的图像模糊,图像复原的方法效果较好,常用的算法包括维纳滤波算法、小波算法、基于训练的方法等。图3是使用维纳滤波解决运动模糊图像的例子,取得了很好的复原效果。在知道退化模型的情况下,相对图像增强来说,图像复原可以取得更好的效果。图像超分辨率重构

现有的监控系统主要目标为宏观场景的监视,一个摄像机,覆盖一个很大的范围,导致画面中目标太小,人眼很难直接辨认。这类由于欠采样导致的模糊占很大比例,对于由欠采样导致的模糊需要使用超分辨率重构的方法。

超分辨率复原是通过信号处理的方法,在提高图像的分辨率的同时改善采集图像质量。其核心思想是通过对成像系统截止频率之外的信号高频成分估计来提高图像的分辨率。超分辨率复原技术最初只对单幅图像进行处理,这种方法由于可利用的信息只有单幅图像,图像复原效果有着固有的局限。序列图像的超分辨率复原技术旨在采用信号处理方法通过对序列低分辨率退化图像的处理来获得一幅或者多幅高分辨率复原图像。由于序列图像复原可利用帧间的额外信息,比单幅复原效果更好,是当前的研究热点。

序列图像的超分辨率复原主要分为频域法和空域法两大类,频域方法的优点是:理论简单,运算复杂度低,缺点是:只局限于全局平移运动和线性空间不变降质模型,包含空域先验知识的能力有限。空域方法所采用的观测模型涉及全局和局部运动、空间可变模糊点扩散函数、非理想亚采样等,而且具有很强的包含空域先验约束的能力。常用的空域法有非均匀插值法、迭代反投影方法(IBP)、凸集投影法(POCS)、最大后验估计法(MAP)、最大似然估计法 (ML)、滤波器法等,其中,MAP和POCS二方法研究较多,发展空间很大。对于具体的算法,不是本文的重点,这里不做详细介绍。图五是一个使用多帧低分辨率图像超分辨率重构的例子。

模糊图像处理技术的关键和不足

虽然很多模糊图像的处理方法在实际应用中取得了很好的效果,但是当前仍然有一些因素制约着模糊图像处理的进一步发展,主要如下。

算法的高度针对性

绝大部分的模糊图像处理算法只适用于特定图像,而算法本身无法智能决定某个算法模块的开启还是关闭。举例来说,对于有雾的图像,“去雾算法”可以取得很好的处理效果,但是作用于正常图像,反而导致图像效果下降,“去雾算法”模块的打开或者关闭需要人工介入。

算法参数复杂性

模糊图像处理里面所有的算法都会包含大量的参数,这些参数的选择需要和实际的图像表现相结合,直接决定最终的处理效果。就目前的算法,还没有办法智能地选择哪些是最优的参数。

算法流程的经验性

由于实际图像非常复杂,需要处理多种情况,这就需要一个算法处理流程,对于一个具体的模糊视频,采用什么样的处理流程很难做到自动选择,需要人工选择一个合适的方法,只能靠人的经验。

结语

由于环境、线路、镜头、摄像机等影响,监控系统建成并运营一段时间后,都会出现一部分的视频模糊不清的问题。

总体来说,虽然模糊图像处理算法已经取得了非常广泛的应用,但是图像算法毕竟有局限性,不能将所有问题都寄希望于图像算法,对于不同种类的模糊问题,要区别对待。对于由镜头离焦、灰尘遮挡、线路老化、摄像机故障等造成的模糊或者图像质量下降,在视频诊断系统的帮助下,一定要及时维修,从源头上解决问题。对于低光照等优先选择日夜两用型高感光度摄像机,对于雨雾、运动和欠采样等造成的图像质量下降,可以借助于“视频增强服务器”包含的各种模糊图像处理算法来提升图像质量。喜欢此内容的人还喜欢
17个教师常用网站推荐给你,再也不用到处找资源了
17个教师常用网站推荐给你,再也不用到处找资源了 ...
高校教师服务工作室
不喜欢
不看的原因
确定
内容质量低 不看此公众号
什么是水磨石?被设计师玩出新高度
什么是水磨石?被设计师玩出新高度 ...
联盟设计库
不喜欢
不看的原因
确定
内容质量低 不看此公众号

C. 水下图像复原论文总结整理

论文简介: 利用图像传输理论测量海水的点扩散函数和调制传递函数并且使用维纳滤波器复原模糊的图像。退化方程H(u,v)在水槽中测量得到。在实验中利用狭缝图像和光源,第一步:一维光照射到水中从而得到不同距离下的狭缝图像数据,这样一维的海水点扩散函数就可以通过去卷积得到。又因为点扩散函数的对称性二维的函数模型也可以通过数学方法得到。利用相似的方法调制传递函数也可以得到。这样传输方程便可以得到:

图像可以由下式获得:

论文简介: 论文中提出自然光照下的水下图像退化效果与光偏振相关,而场景有效箱射则与光偏振无关。在相机镜头端安装可调偏振器,使用不同偏振角度对同一场景成两幅图像,所得到的图像中的背景光会有明显不同。通过对成像物理模型的分析,利用这两幅图像和估计出的偏振度,就能恢复出有效场景辐射。他还提出了一个计算机视觉方法水下视频中的退化效应。分析清晰度退化的物理原因发现主要与光的部分偏振有关。然后提出一个逆成像方法来复原能见度。该方法基于几张通过不同偏振方向的偏振片采集图像。

论文简介: 论文提出了一种自适应滤波的水下图像复原方法。通过最优化图像局部对比度质量判决函数,可以估计出滤波器中所使用的参数值。
论文提出一种基于简化的Jaffe-McGlamery水下成像模型的自调谐图像复原滤波器。滤波器的最优参数值是针对每幅图像通过优化一个基于全局对比度的质量准则自动估算的。(对一幅图像滤波器能根据全局对比度自动估计最优参数值),简化的模型理想地适合后向散射较少的漫射光成像.1.首先简化Jaffe-McGlamery水下成像模型:假设光照均匀(浅水区阳光直射),并且忽略后向散射部分.然后基于简化后的成像模型设计一个简单的反滤波器2.将滤波器设计成自适应滤波器。

论文简介: 论文对于调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。同时他还建立了一个框架来最大限度复原水下图像,在这个框架下传统的图像复原方法得到了拓展,水下光学参数被包含了进去,尤其时域的点扩散函数和频域的调制传递函数。设计了一个根据环境光学特性进行调整的客观图像质量度量标准来测量复原的有效性。

论文简介: 调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。(这一部分在王子韬的论文中有比较详细介绍)

论文简介: 在散射媒介中的正则化图像复原。论文在基于物理原因的复原方法难以去除噪声以及透射率低的基础上,提出一种自适应的过滤方法,即能明显的改善可见性,又能抑制噪声放大。本质上,恢复方法的正规化,是适合变化媒介的透射率,因此这个正则化不会模糊近距离的目标。

论文简介: 论文提出一种基于对边缘进行GSA(灰度规范角度)加权的测量图像清晰度的方法。图像首先被小波变换分解,去除部分随机噪声,增加真实边缘检测的可能性。每个边缘锐度由回归分析方法基于灰度的一个角的正切来确定边缘像素的灰度值之间的斜率和位置。整个图像的清晰度是平均每个测量的GSA的比例加权的第一级分解细节的量,作为图像的总功率,最后通过图像噪声方差自适应的边缘宽度。

论文简介: 论文提出了基于主动偏振的人工光照下水下图像处理技术。在宽场人工光照下的水下成像中,在光源端或相机端安装可调偏振器。通过调整光源或相机端的偏振器,同时拍摄两幅或多幅同一场景的图像,从两幅图像中可估计出背景光的偏振度。结合水下成像物理模型,就可以进行图像复原和场景3D信息估计。该方法操作简单,设备筒易,适用于水下画定目标的成像。
大范围人工照明条件下研究成像过程,基于该成像模型,提出一种恢复object signal的方法,同时能获得粗糙的3D scene structure.相机配备检偏振器,瞬间获取同一场景的两帧图片with different states of the analyzer or light-source polarizer,然后用算法处理获取的图片.它统一并推广了以前提出的基于偏振的方法.后向散射可以用偏振技术降低,作者在此基础上又用图像后处理去除剩余的后向散射,同时粗糙估测出3D场景结构.创新:之前的方法有的认为目标物反射光的偏振度可以忽略(即认为只有后向散射是偏振的);另外还有的认为后向散射的偏振度可以忽略(即认为只有目标物反射光是偏振的)。本文作者认为两者都是部分偏振光。

论文简介: 论文在没有应用任何标准模式、图像先验、多视点或主动照明的条件下同时估算了水面形状和恢复水下二维场景。重点是应用水面波动方程建立紧凑的空间扭曲模型,基于这个模型,提出一个新的跟踪技术,该技术主要是解决对象模型的缺失以及水的波动存在的复杂的外观变化。在模拟的和真实的场景中,文本和纹理信息得到了有效的复原。

论文简介: 论文提出暗通道先验算法复原有雾图像。暗通道先验是一系列户外无雾图像的数理统计,基于观察户外无雾图像的大部分补丁补丁中包含至少一个颜色通道中低强度的像素点。在有雾图像中应用这些先验,我们可以直接的估算雾的厚度,复原成高质量的无雾图像,同时还能获得高质量的深度图。

论文简介: 论文比较研究了盲反卷积算法中的:R-L算法(Richardson-Lucy)、最小二乘法以及乘法迭代法。并且应用了水下图像去噪和威尔斯小角度近似理论推导出点分布函数。通过执行威尔斯的小角度散射理论和模糊度量方法对三种盲反卷积算法进行比较,确定总迭代次数和最佳图像复原结果。通过比较得出:最小二乘算法的复原率最高,但是乘法迭代的速度最好。

论文简介: 论文提出点扩算函数(PSF)和调制解调函数(MFT)的方法用于水下图像复原,应用基于威尔斯小角度近似理论来进行图像增强。在本文中作者分析了水下图像退化的原因,在强化超快激光成像系统中采用了距离选通脉冲的方法,降低了反向散射中的加性噪声。本文对图像的基本噪声模式进行了分析,并使用算术平均滤波首先对图像进行去噪,然后,使用执行迭代盲反褶积方法的去噪图像的初始点扩散函数的理想值,来获得更好的恢复结果。本文通过比较得出,盲反褶积算法中,正确使用点扩散函数和调制解调函数对于水下图像复原的重要性。

论文简介: 本文提出一种图像复原的新方法,该方法不需要专门的硬件、水下条件或现在知识结构只是一个与小波变换的融合框架支持相邻帧之间的时间相干性进行一个有效的边缘保留噪声的方法。该图像增强的特点是降低噪声水平、更好的暴露黑暗区域、改善全局对比、增强细节和边缘显着性。此算法不使用补充信息,只处理未去噪的输入退化图像,三个输入主要来源于计算输入图像的白平衡和min-max增强版本。结论证明,融合和小波变换方法的复原结果优于直接对水下退化图像进行去雾得到的结果。

论文简介: 本文是一篇综述性质的论文。介绍了:1、水下光学成像系统 2、图像复原的方法(对各种图像复原方法的总结) 3、图像增强和颜色校正的方法总结 4、光学问题总结。

论文简介: 论文针对普通水下图像处理的方法不适用于水下非均匀光场中的问题,提出一种基于专业区域的水下非均匀光场图像复原方法,在该算法中,考虑去除噪声和颜色补偿,相对于普通的水下图像复原和增强算法,该方法获得的复原复原的清晰度和色彩保真度通过视觉评估,质量评估的分数也很高。

论文简介: 论文基于水下图像的衰减与光的波长的关系,提出一种R通道复原方法,复原与短波长的颜色,作为水下图像的预期,可以对低对比度进行复原。这个R通道复原的方法可以看做大气中有雾图像的暗通道先验方法的变体。实验表明,该方法在人工照明领域应用良好,颜色校正和可见性得到提高。

论文简介: 作者对各种水下图像增强和复原的算法做了调查和综述,然后对自己的提高水下质量的方法做了介绍。作者依次用到了过滤技术中的同态滤波、小波去噪、双边过滤和对比度均衡。相比于其他方法,该方法有效的提高了水下目标物的可见性。

论文简介: 论文应用湍流退化模型以质量标准为导向复原因水下湍流退化的图像。参考大气湍流图像复原的算法,省略了盐分的影响,只考虑水中波动引起的湍流对水下成像的影响,应用一种自适应的平均各向异性的度量标准进行水下图像复原。经过验证,使用STOIQ的方法优于双频谱的复原方法。

论文简介: 本文提出了一种新的方法来提高对比度和降低图像噪声,该方法将修改后的图像直方图合并入RGB和HSV颜色模型。在RGB通道中,占主导地位的直方图中的蓝色通道以95%的最大限度延伸向低水平通道,RGB通道中的低水平通道即红色通道以5%的最低限度向上层延伸且RGB颜色模型中的所有处理都满足瑞利分布。将RGB颜色模型转化为HSV颜色模型,S和V的参数以最大限度和最小限度的1%进行修改。这种方法降低了输出图像的欠拟合和过拟合,提高了水下图像的对比度。

论文简介: 论文根据简化的J-M模型提出一种水下图像复原的有效算法。在论文中定义了R通道,推导估算得到背景光和变换。场景可见度被深度补偿,背景与目标物之间的颜色得到恢复。通过分析PSF的物理特性,提出一种简单、有效的低通滤波器来去模糊。论文框架如下:1.重新定义暗通道先验,来估算背景光和变化,在RGB的每个通道中通过标准化变换来复原扭曲颜色。2.根据PSF的性能,选择没有被散射的光,用低通滤波器进行处理来提高图片的对比度和可见度。

论文简介: 论文中对当代水下图像处理的复原与增强做了综述,作者阐明了两种方法的模型的假设和分类,同时分析了优缺点以及适用的场景。

参考:
https://github.com/zhenglab/UnderwaterImageRestoration/tree/master/underwater%20image%20enhancement

D. 图像去雾(一)—— 基于暗通道先验理论的图像去雾

姓名:张昊楠   

学号:21021210691  

 学院:电子工程学院

【嵌牛导读】简要介绍暗通道先验理论基础

【嵌牛鼻子】图像处理 图像去雾

【嵌牛正文】:

        暗通道先验理论是何凯明基于对大量户外无雾图像的观察笑梁敬所得到的统计规律:在大多数不包含天空区域的图像中,存在一些像素点,这些像素点中至少有一个通道的值有非常低的值。如果将无雾图像用J表示,那么图像的暗通道可以表示为:

式中Ω(x)表示以像素点x为中心的方形窗口。暗通道图像即为对原图作最小值滤波。

    根据暗通道先验理论,在没有雾的户外图像中,除天空区域外,其暗通道趋向于零,即:

造成暗通道图像亮度低的原因一般包括图像中的阴影区域,颜色鲜艳的物体以及本身就比较暗的物体。

        一般来说,一张含雾霾的图片往往比没有雾霾的图片更亮。在雾霾越厚的地方,其暗通道像素值越高。根据暗通道先验理论,我们可以认为,含雾图片中暗通道的亮度大致接近雾霾的厚度。

        图1是一幅无雾图和它的暗通道图像,图2是一幅有雾图和它的暗通道图像。通过对比可以发现,图1的暗通道图几乎全部是黑色,图2的有雾图像白色区域明显较多,且原图中雾越浓,暗通道图像对应的区域越亮。雾天图像的暗通道图像亮度值可以很好地反映雾的浓度。根据这一点,我们可以通过暗通道图像来估计雾的浓度。

        下面介绍如何利用暗通道先验理论对图像进行去雾:

 渣链       在一些关于图像去雾的方法中,一般将图像中像素的最大值作为大气光的估计值。但在实际的图片中,最亮的像素点可能是白色的背景墙或者白色的汽车。所以利用原图最亮的像素点作为大气光的强度有时会产生较大误差。

        如第1节介绍的那样,雾霾图像暗通道亮度近似等同于雾霾厚度,所以可以利用图像的暗通道的亮度来更准确估计整体大气光。整体大气光的估计方法如下:

        首先取暗通道图像中千分之一个最亮的像素点;然后找到这些像素点对应在原彩色图像中的位置;最后,在原彩色图像中的这些位置里面找到亮度最大的点,作为大气光强的估计值。实际操作中,这种方法比“最亮像素法”更具有更高的稳定性。

        对大气散射模型变形,有

        假设在区域 中,透射率t(x)是一个常数,记为 。对上式两端作两次最小值滤波,第一次对等式两端R,G,B三个通道取最小值,第二次滤波对以目标像素点为中心的方形区域内取最小值作为该像素点的值,公式表示如下所示:

根据暗通道先验理论:

将2-3式代入2-2式,可以求得透射率

实际生活中,即使是在晴朗的天气下也会不可避免地在空气中存在一些杂质分子。而且,雾的存在可以帮助我们更好获取景深信息,这种现象就是我们所说的空间透视。如果将雾完全除掉的话,景深信息也会丢失,这样一来,复原出的图像会显得不自然。所以在实际操作时,我们会选择保留一部分覆盖远景的雾。为此,引入参数,对2-4式作出调整,得到修正后透射率的表达式:

w越大,表示去雾效果越好。当w=0时,透射率恒为1,复原结果图即为原图;当w=1时,表示雾霾全部去除。这里,为保留一定的景深信息,令w=0.95。

        根据上述方法,我们已经求出了大气光强和透射率信息,对大气散射模型作恒等变形,利用(2-6)式在图像的R,G,B三个通道分别进行计算即可得到复原后的无雾图像。

        透射率t(x)是一个介于0和1之间的碰慎值,当t(x)的某个值为0时,根据上述公式,所得到的图像对应点的像素值则趋向于无穷大,这是我们不希望看到的。所以,为了避免这种情况的发生,我们引入限制透射率阈值的参数 ,以此来控制透射率的下限,则修正后的表达式为:

复原效果图:

        从图中可以看出,虽然利用上述方法实现了去雾的效果,但效果并不理想。在天安门与天空连接的边缘部分,会有明显的带状区域产生,这种现象我们称之为光晕效应。经过对比发现,滤波窗口的半径越大,光晕效应越明显。这是因为,我们最初的假设是透射率 在以某一像素点为中心的 为半径的区域内是常数,这种假设在图像的平滑区域是成立的,但在景深突变的边缘处,这种假设并不成立。在边缘部分的透射率信息和实际有一定的误差,我们称这个透射率是粗糙的。因此,为取得更加理想的去雾效果,需要进一步对计算出的透射率 进行细化处理。

        在后续的文章中,我们将会介绍一些方法对透射率进行细化,用以抑制光晕效果的产生。

     K. He, J. Sun and X. Tang, "Guided Image Filtering,"in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no.6, pp. 1397-1409, June 2013, doi: 10.1109/TPAMI.2012.213.

E. 粒子滤波是否能实现图像去雾

 

在雾、霾之类的恶劣天气下,采集的图像质量会由于大气散射而严重降低, 使图像颜色偏灰白色, 对比度降低, 物体特征难以辨认。所以 需要图像去雾技术来增强或修复, 以改善视觉效果。目前图像去雾方法主要可以分为两大类:
(1)基于图像处理的增强方法。这种方法通过对雾天图像进行增强, 改善图像质量。其优点是可以利用已有的成熟图像处理算法进行针对性运用, 增强图像的对比度, 突出图像中景物的特征和有价值的信息;缺点是可能会造成图像部分信息的损失, 使图像失真。
(2)基于物理模型的复原方法。这种方法通过研究大气悬浮颗粒对光的散射作用, 建立大气散射模型,了解图像退化的物理机理, 并复原出未降质前的图像。

F. 图像去雨去雾综述

这是何凯明在博士期间发表的一篇经典的图像去雾算法的文章。这篇文章中他通过观察提出了一种暗通道算法(Dark Channel Prior),简单来说就在一张正常图像中,除了天空区域,在图像的每个小块(patch)中一定有一些像素点至少有一个通道的值是非常小的,基于这个先验谈答条件,何凯明团队使用了一种简单有效的办法来进行图像去雾。
下面的公式为经典的去雾模型,其中 指获取得到的图片亮度, 是去雾后恢复的图像,宏侍升 指透射率, 是指大气的光成分(即雾成分)。这个公式还是很容易直观的理解,因为透射率可以在一定程度上代表损失率。 为大气散射系数, 为景深。

由于在统计意义上,一个patch中总有几个像素的至少一个通道是很暗的,此时的 趋近于0,于是在一个patch中有如下公式成立:

这样我们就可以算出t的近似值了。同时,当patch为天空时,大气光 和真实图像光 十分相近,于是t的近似值趋向于0。
获得了反射率t以后,下一步便是对图像进行soft matting获得轮廓特征,这样可以将透射率t精细化。
这样我们就获得了精细化后的透射率t值。对于有雾区域,我们可以根据下面的公式进行去雾,其中我们对t设定了一个最低的阈值。

最终的蔽老公式如下:

在这篇文章中,作者提出了用神经网络方法对反射率t进行训练并预测,网络结构如下:
首先用CNN接maxout抽取图像特征,再接几个平行的multi-scale mapping,然后进行池化,经过BReLU激活函数得到最终的反射率t

BReLU如图b所示,因为rgb具有上界和下界,如果不进行截断可能会越界。

G. MATLAB代码 求分析 何的去雾算法里面的暗通道算法 每一句都是什么意思啊又分别对应论文里的什么原理

function dark = darkChannel(imRGB)

r=imRGB(:,:,1);
g=imRGB(:,:,2);
b=imRGB(:,:,3); 分别提取三色的灰度图

[m n] = size(r); 提取单色图矩阵的宽度和长度
a = zeros(m,n); 创建m*n的零矩阵a
for i = 1: m
for j = 1: n
a(i,j) = min(r(i,j), g(i,j));
a(i,j)= min(a(i,j), b(i,j)); 依次比较三色分量的最小值提取为暗通道图

end
end

d = ones(15,15); 创建15*15的单位矩阵
fun = @(block_struct)min(min(block_struct.data))*d;
dark = blockproc(a, [15 15], fun); 将图片分成15*15的小块并将每一块变成其中的最小值

dark = dark(1:m, 1:n);
我也是新手啊兄弟只能帮你到这儿了

H. 边缘检测,图像模糊,灰度化和图像去雾的基本思路是什么呢 说出是需要改变哪些色彩空间的值。。。

我挨个说一下吧,也算给自己复习一下。
一 边缘检测
方法很多很多啊。
1 常用的是用各种边缘检测算子对图像进行卷积运算,计算出来图像每个部分的梯度值,由于边缘有突变的像素值,所以梯度大的地方很可能是边缘。常见的有 sobel算子等。
2 形态学运算,主要是针对二值化之后的图比较高效,直接先膨胀再腐蚀,然后相减图像就是边缘。
3 canny算法,这个用的很多,我也很喜欢,主要是用到强边缘和弱边缘进行区分。
4 通过识别feature进行识别,在边缘不明显的时候比较有效。

二 图像模糊
这里你要知道一个概念,什么是模糊呢?
咱们近视眼就是一个模糊,这个模糊就是眼睛的成像不能精确的成像在视网膜上吧?
你可以想象一下,其实这就是一个尺度变换的问题,你看一张报纸很清楚,但是从五十米外看你这张报纸(我们假设能看得到),就非常模糊,不能辨认吧?
我这里就引出这个模糊的概念:叫做高斯滤波,高斯滤波其实就是一个尺度变换。
我再打个比方吧,比如一个围棋棋盘,黑线是黑线,棋盘是棋盘,即使黑线很细,你也能分清楚是吧?
但是如果你摘下眼镜看呢?黑线变粗了是吧?黑线变暗了是吧?
其实真正原因是棋盘的信息进入了原本黑线的地方,而黑线也进入了棋盘的地方。
这就是滤波的魅力,可以使像素各个梯度变小,让图像的像素点之间的联系没有那么强烈。。
既然引出高斯滤波,那就有其他的各种滤波,比如拉普拉斯滤波,中值滤波,均值滤波。
实际操作中应用的也都是算子求卷积的方法。

三 灰度化
你看电视的时候应该知道,电视上的一个彩色点,其实是GRB颜色模式,就是绿红蓝三色。
对应这个RGB颜色模式,你可以通过对这三个颜色通道的值进行处理,比如我就定义 V=(R+G+B)/3。那么这个V就包含了三种颜色的信息了吧?
但是一般的我们不直接用三个平均,而是由各个相应的系数相乘得到。

这是RGB颜色模式,但是如果你用到HSV颜色模式,问题就简单多了。
什么是HSV模式呢?你遥控器上可能有 色度 饱和度 亮度按钮吧?
这个就是HSV模式,其中这个V 就是 亮度 value,这个就直接是灰度信息了。

四 图像去雾
我对这个去雾的理解是,图像增强。
也可以叫做是图像锐化,这个过程正好和图像模糊相对应。
模糊是让梯度值变小,锐化就是让梯度变大。
对应的方法也是响应的算子进行滤波了。
而需要注意的是,锐化用的是高通滤波,模糊是低通滤波。
因为边缘信息一般都是频率高的信号。

视频分析系统团队
风之风信子

阅读全文

与图像去雾方法研究与算法实现论文相关的资料

热点内容
自己如何取铁耳屎的去除方法 浏览:886
解决城市拥挤的方法 浏览:246
绿豆酸浆制作方法视频 浏览:808
韭菜兰花种植方法 浏览:331
电脑玩对峙2下载方法 浏览:18
断桥铝门窗窗框安装方法 浏览:379
8字拉力器的正确锻炼方法高难度 浏览:577
按米水电安装计算方法 浏览:176
沏奶粉的正确方法 浏览:996
试述刷浆工程常用的材料配制方法 浏览:61
牙长骨刺怎么治疗方法 浏览:794
立体龙舟手工制作方法步骤视频 浏览:623
树叶盒制作方法视频 浏览:274
物理特殊方法测量液体的密度 浏览:957
怎样用简单方法清洗洗衣机 浏览:64
脱敏治疗仪的方法及过程 浏览:377
核桃壳的功效与作用及食用方法 浏览:523
方法学验证专属性怎么做 浏览:399
显卡电源的检测方法 浏览:785
楼顶种葱方法视频教程 浏览:529