导航:首页 > 研究方法 > 数学方法论与解题研究期末考试

数学方法论与解题研究期末考试

发布时间:2023-04-15 07:20:40

‘壹’ 浅谈数学方法论在数学教学中的实践

      浅谈数学方法论在数学教学中的实践                                        问 志 祥

(云南省曲靖市第一小学云南曲靖655000)        摘要:数学方法论主要是研究和讨论数学的发展规律,数学的思想方法以及数学中的发现,文明与创造等法则的一门学科。数学方法论给教师在数学教学中提供了理论指导,通过对它的学习有利于教师由“经验型教学”转向“理论指导下的自觉实践”,以数学思维方法的分析去带动和促进具体数学知识内容的教学。数学思想方法是对数学本质的认识,是数学知识的精髓。

关键词:数学方法论  思想方法  数学教学  实践

一、问题的提出

  无论从学生数学素养的培养方面和教师教学实践方面都需要教师精通数学方法论,只有熟知了这些方法论才能开展有效的数学课堂教学。随着课程改革的进行,对于我们数学教学也提出了更高的要求。《全日制义务教育数学课程标准(试验稿)》在总体目标重明确要求学生能够“获得适应未来社会和进一步发展所必需的重要数学知识(包括数学思想方法、数学活动经验)以及基本的数学思想法和必要的应用技能。数学方法论主要是研究和讨论数学的发展规律、数学的思想方法以及数学中的发现、发明与创造等法则的一门新兴学科。数学方法论很大程度上可以被说成对于数学思想(维)方法的研究,其目标就是帮助人们学会数学的思维。或者说,如何能够按照数学家的思维模式去进行思维。通过对具体数学事例的研究实现对真实思维过程的“理性重建”,获得各个方法论原则的深刻体会,并使之真正成为“可以理解的”“可以学到手的”和“能够加以推广应用的”。数学方法论对于数学教学的积极意义主要在于:以数学方法论为指导进行具体数学知识内容的教学有助于我们将数学课“讲活”“讲懂”“讲深”。因此,日常的数学教学中加强数学思想方法的渗透,培养数学的思维显得更加重要。在教学过程中教师要充分认识到数学方法论的重要性,授之于“渔”而非授之于“鱼”,重视学生正确的科学的思维方法的培养,从根本上提高学生的解题能力。本文通过阐述数学方法论的概念及意义,列举数学思想方法在数学解题中的几个应用,来说明数学方法论的的重要性。

二、数学方法论对数学教学的意义

2.1数学思想方法是提高学生数学能力的根本途径.

数学课程改革强调要重视培养学生的数学创新意识,不仅要求学生掌握数学的基础知识和基本技能,而且还要掌握数学的思想方法.数学思想方法是数学知识的本质,是分析数学处理数学解决数学问题的方针和策略,是学生进行探究性学习的工具。方法论的数学教学使教学真正“授之于渔而非授之于鱼”让学生由“学会”变成“会学”,为其今后终身学习奠定基础.。数学思想方法是数学能力的核心要素,只有抓住这一要素才能从根本上提高学生的数学能力。数学教材以及数学知识可以变动,但不管怎样,数学思想方法总能发挥它的作用.在教学中,若仅仅简单地进行数学知识的堆积是不可能培养出学生的数学能力的,只有引导学生真正理解和掌握了数学思想方法,才能使学生在运用数学思想方法的过程中驾驭数学显示能力。所以数学教育的关键就在于形成和发展学生的数学思想方法.

2.2数学课堂教学现代化的改革要求

现在的数学课堂不在是单纯的“传授式”教学,在新课标中明确指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”意在进一步改变数学的教学模式,拓宽学生在数学教学活动中的空间,关注学生数学素养的提高。而且把“具有解决问题的能力”作为有“数学素养”的一个重要的标志。而数学方法论在教学实践中以“问题解决”为中心组织教学,强调“数学的思维”,把问题作为载体,将数学思维方法的分析渗透到具体数学知识内容的教学中,使学生真正看到思维的力量,并使之成为可以理解的、可以学到手的和能够加以推广应用的。这一教学理论为我们从更深的层次认识数学教学提供了理论依据,值得我们去深入学习研究。因此,为了让教师更好适应和驾驭课堂教学,必须掌握一定的数学方法论。

2.3数学方法论的教学使学生更容易理解学科内容.

心理学认为:如果知识结构中原有的有关观念在统摄和概括的水平上高于新知识,那么这时利用认知结构中的有关观念学习新知识便成为下位学习.学生在掌握了一些数学思想方法后再去学习相关的数学知识,就属于下位学习,这样的学习更具稳定性,有利于新知识的学习,新知识就能够顺利纳入到已有的认知结构中去,而数学思想方法是数学认知结构形成的核心.当学生有了一定的数学思想方法后才能更好地理解和掌握数学内容,挖掘数学体系内在的深层的意义,才能对数学知识做出深刻的解释和理解.

三、数学方法论在数学教学中的实践案例

在数学方法论中,重点阐述了观察、联想、尝试、试验、归纳猜想、类比推广、模拟、化归、公理化方法、数学悖论等数学论证方法,数学与物理方法,数学智力的开发与创新意识的培养等。如果把这些理论和我们的实践教学活动联系起来将使我们的数学课更加有数学味,帮助学生领会内在的数学思想方法,认识数学的本质特征和应用价值。

3.1数学方法论在解题教学中应用

数学大师波利亚曾说过:“良好的组织使得所提供的知识易于用上,这甚至可能比知识的广泛性更为重要。至少在有些情况下,知识太多可能反而成了累赘,可能会妨碍解题者看出一条简单的途径,而良好的组织则有利而无弊。”数学课堂教学有效开展离不开教师的合理引导,教学中突出以问题为主线,启迪学生思考,使学生在课堂中深刻的感受如何发现问题、提出问题、分析问题、解决问题的整个过程,理解和认识发生和发展的必然的因果关系,从而领悟到分析、思考和解决问题的数学思想方法,最终内化为自身知识结构的重要部分。

3.2数学方法论在概念教学中应用

一位数学家说过:“一堆没有亲身体验和视觉形象所支持的概念、定义不能开发智力,而只能关闭思路。”概念的形成有两种途径:一种是直接从客观事物的空间形式或数量关系的反映而得到的,另一种是在已有数学概念的基础上,经过多层次的抽象概括而成。而概念的形成本身有着一定的发展过程,凝聚着前人探索的智慧。在概念再创造过程种,应对学生的思维给予暴露的机会,充分经历概念形成的两个阶段,从具体到抽象,再从抽象到具体,有利于学生对概念的自我意识和自我反省。

3.3数学方法论对提升学生数学素养的作用

着名数学家克莱因认为“数学史是教学的指南”。数学是一门使人创造性思维严格化和理论体系严谨化的科学。数学方法论强调用演绎与推理的理念,来论证概念间转换的恒等变化,从中体现准确、简洁地揭示有条件到结论严密的逻辑关系。而缺乏演绎与推理的人,会犯“想当然”的错误。历史能揭示出数学知识的显示、来源与应用,它告诉我们数学知识当时如何出现在人们头脑中的——即如何产生的。

用数学归纳法证明:

时。

解析:①当时,

左边,右边,左边  = 右边,所以等式成立。

②假设时等式成立,即有



则当时,



所以当时,等式也成立。

由①,②可知,对一切等式都成立。

这就运用了数学方法论中的归纳法。

例 2  鸡兔同笼,笼中有头50,有足140,问鸡、兔各有几只?

    分析:化归的实质是待解决的问题转化为已解决的问题,这里包含了转化的思考,可以先对已知成分进行变形。每只鸡有2只脚,每只兔有4只脚,这是问题中不言而喻的已知成分。现在对问题中的已知成分进行变形:“一声令下”,要求每只鸡悬起一只脚(呈金鸡独立状),又要求每只兔悬起两只前脚(呈玉兔拜月状)。那么,笼中仍有头50,而脚只剩下70只了,并且,这时鸡的头数与足数相等,而兔的足数与兔的头数不等——有一头兔,就多出一只脚,现在有头50,有足70,这就说明有兔20头,有鸡30头。

这就运用了数学方法论中的化归法。

例3  假设我们可以沿地球赤道紧紧地拉一根绳子,打上结,此时,绳子长度与赤道相等。然后把绳子剪开,加长10米,这样绳子已不紧扣在赤道上,产生了缝隙,问该缝隙有多少大?

解:设地球赤道为L,地球的半径为R,缝隙为a

实际情况让学生大吃一惊,缝隙居然有1.59米,大多说学生都可以从缝隙中走过。数学教育能培养正确的认知态度,使主观想象符合客观实际,培养学生严谨求实的个性品质。演绎与推理的理念,使人克服想当然的错误,正确认识自己,正确认识世界,这是学生走向社会的必备素质。同时数学方法论在教学中特别指出数学史的重要性。着名数学家克莱因认为“数学史是教学的指南”。历史能揭示出数学知识的显示、来源与应用,它不仅告诉我们数学知识当时如何出现在人们头脑中的——即如何产生的。

例4 将8个数字从左至右排成一行,从第三个数开始,每个数都恰好等于前面两个数字之和。如第七个数字和第八个数字分别是81,131,求第一个数字是多少?

解: 第六个数字是:131-81=50

第五个数字是:81-﹙131-81﹚=31

第四个数字是:第六个数字减去第五个数字131-81-[81-(131-81﹚]=19

第三个数字是:第五个数字减去第四个数字[81-﹙131-81﹚]-131-81-[81-﹙131-81﹚]=12

第二个数字是:第四个数字减去第三个数字﹛131-81-[81-﹙131-81﹚]﹜-﹛[81-﹙131-81﹚]-131-81-[81-﹙131-81﹚]﹜=8

所以第一个数字是:12-8=4

这就运用了数学方法论中的简单性原则。

四、数学方法论在教学实践中注意的问题

4.1注重渗透的循序渐进和逐步积累

在教学中首先要强调解决问题以后的“反思”。因为在一个过程中提炼出来的数学思想方法,对学生来说才是易于体会、易于接受的;其次,要注意渗透的长期性,应该看到,对于数学思想方法的渗透不是一朝一夕就能见到学生数学能力提高的,需要一个过程。数学思想方法必须经过循序渐进的渗透和反复训练,才能使学生真正地有所领悟。

4.2关注学生最近发展区和层次性

在贯彻数学思想方法地教学中,要关注学生的最进发展区,尽可能帮助学生掌握现代数学思想方法并根据学生的差异,采取不同的思想方法解决问题,帮助学生完成学习迁移。教育的基本任务是找到这样的策略,既考虑到个别的差异,又能促进个体最充分地发展。因此,教师尽可能设计有利于学生发展的教学环节,如在教案设计,课堂探究等过程中,都应该注意不同层次的学生能不同程度的领会数学思想方法,使全体学生尽量使用数学思想方法分析问题、解决问题的思维策略,促成其最近发展区的形成。最终实现使“不同的人在数学上得到不同的发展。现代教育理论及心理学发展成果指出:人的智能是多元的;知识是个体通过与其环境的相互作用作用后获得的信息及其组织;要用开放、多元的眼光看待世界,为人充分展示生命的本真提供舞台。基于这些理论,我们应该从不同的视角、不同的层面去看待每个学生,善于发现学生各自的优势智能领域,并运用评价促进学生将其优势智能领域的优秀品质想其他智能领域迁移;应该注重对学生建构知识时采用的策略或方法的评价,把评价作为教学的一个组成部分;应该采用师对生、生对生及学生自我评价相结合的多元评价机制。

4.3提高教师的自身认识和可行性

  古人云:“师者,人之楷模也”,意思是教师是学生的楷模,对学生起着潜移默化的影响。前苏联教育家乌申斯基说:“教师的思想道德、人格对学生的心灵上的影响是任何教科书,任何道德箴言,任何惩罚和奖励都不能代替的一种力量”。以自己高尚的品质、良好的修养与人格去感化、影响所教育对象,做到以情感人,以理服人,达到理想的教育目的。数学思想方法的教学必须通过具体的教学过程加以实现,通常以具体的知识内容为载体,必须把握好数学思想方法教学的契机——概念的形成,结论推导的过程,方法思考的过程,思路探索的过程,规律揭示的过程等。数学思想方法的教学要注意有机结合、自然渗透、依势而行、潜移默化的启发学生领悟蕴含于数学知识中各种数学思想方法。教学理论应用于教学实践的过程,决不是机械地对号入座,这是对教师教学智慧的一种考验。

参考文献:

①徐献卿,纪保存 ;数学方法论与数学教学,北京:中国铁道出版社2009.7.1

②杨在荣,数学方法论,成都:西南交通大学出版社,2012.8

③刘兼,孙晓天,数学课程标准解读,北京:北京师范大学出版社,2002

④李玮,应重视和加强数学教育理论研究,天津:数学教育学报杂志编辑部2006,01期

⑤美.G.波利亚,怎样解题,上海:上海科技教育出版社,2007

⑥徐利治,数学方法论选讲,武汉:华中理工大学出版社,2000

⑦郑毓信,数学方法论入门,杭州:浙江教育出版社,2008

‘贰’ 初中数学解题思路和方法

初中阶段学生数学学习成绩两极分化非常严重,学习差的学生占的比例较大,如果学生在解题过程中没有机会尝尽为求解而奋斗的喜怒哀乐,那么他的数学解题训练就在最重要的地方失败了。那么有哪些解题思路可以帮助初中数学提高得分呢?

一、如何获得数学解题思路

解题思路的获得,一般要经历三个步骤:1.从理解题意中提取有用的信息,如数式特点,图形结构特征等;2.从记忆储存中提取相关的信息,如有关公式,定理,基本模式等;3.将上述两组信息进行有效重组,使之成为一个合乎逻辑的和谐结构。

数学的表达,有3种方式:1.文字语言,即用汉字表达的内容;2.图形语言,如几何的图形,函数的图象;3.符号语言,即用数学符号表达的内容,比如AB∥CD。

在初中学段中,不仅要学好数学知识,同时也要注意数学思想方法的学习,掌握好思想和方法,对数学的学习将会起到事半功倍的良好效果。

其中整体与分类、类比与联想、转化与化归和数形结合等不仅仅是学好数学的重要思想,同时对您今后的生活也必将起重要的作用。

先来看转化思想:

我们知道任何事物都在不断的运动,也就是转化和变化。

在生活中,为了解决一个具体问题,不论它有多复杂,我们都会把它简单化,熟悉化以后再去解决。

体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。

如方程的学习中,一元一次方程是学习方程的基础,那么在学习二元一次方程组时,可以通过加减消元和代入消元这样的手段把二元一次方程组转化为一元一次方程来解决,

转化(加减和代入)是手段,消元是目的;在学习一元二次方程时,可以通过因式分解把一元二次方程转化为两个一元一次方程,在这里,转化(分解因式)是手段,降次是目的。

把未知转化为已知,把复杂转化为简单。

同样,三元一次方程组可以通过加减和代入转化为二元一次方程组,再转化为一元一次方程。

在几何学习中,三角形是基础,可能通过连对角线等作辅助线的方法把多边形转化为多个三角形进行问题的解决。

所以,在数学学习和生活中都要注意转化思想的运用,解决问题,转化是关键。

二、初中数学学生必备的解题理念

1.如果把解题比做打仗,那么解题者的“兵器”就是数学基础知识,“兵力”就是数学基本方法,而调动数学基础知识、运用数学思想方法的数学解题思想则正是“兵法”。

2.数学家存在的主要理由就是解决问题。

因此,数学的真正的组成部分是问题和解答。

“问题是数学的心脏”。

3.问题反映了现有水平与客观需要的矛盾,对学生来说,就是已知和未知的矛盾。

问题就是矛盾。

对于学生而言,问题有三个特征:

(1)接受性:学生愿意解决并且具有解决它的知识基础和能力基础。

(2)障碍性:学生不能直接看出它的解法和答案,而必须经过思考才能解决。

(3)探究性:学生不能按照现成的的套路去解,需要进行探索,寻找新的处理方法。

4.练习型的问题具有教学性,它的结论为数学家或教师所已知,其之成为问题仅相对于教学或学生而言,包括一个待计算的答案、一个待证明的结论、一个待作出的图形、一个待判断的命题、一个待解决的实际问题。

5.“问题解决”有不同的解释,比较典型的观点可归纳为4种:

(1)问题解决是心理活动。

面临新情境、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理办法的一种活动。

(2)问题解决是一个探究过程。

把“问题解决”定义为“将先前已获得的知识用于新的、不熟悉的情境的过程”。

这就是说,问题解决是一个发现的过程、探索的过程、创新的过程。

(3)问题解决是一个学习目的。

“学习数学的主要目的在于问题解决”。

因而,学习怎样解决问题就成为学习数学的根本原因。

此时,问题解决就独立于特殊的问题,独立于一般过程或方法,也独立于数学的具体内容。

(4)问题解决是一种生存能力。

重视问题解决能力的培养、发展问题解决的能力,其目的之一是,在这个充满疑问、有时连问题和答案都是不确定的世界里,学习生存的本领。

6.解题研究存在一些误区,首先一个表现是,用现成的例子说明现成的观点,或用现成的观点解释现成的例子。

其次一个表现是,长期徘徊在一招一式的归类上,缺少观点上的提高或实质性的突破。

第三个表现是,多研究“怎样解”,较少问“为什么这样解”。

在这些误区里,“解题而不立法、作答而不立论”。

7.人的思维依赖于必要的知识和经验,数学知识正是数学解题思维活动的出发点与凭借。

丰富的知识并加以优化的结构能为题意的本质理解与思路的迅速寻找创造成功的条件。

解题研究的一代宗师波利亚说过:“货源充足和组织良好的知识仓库是一个解题者的重要资本”。

8.熟练掌握数学基础知识的体系。

对于中学数学解题来说,应如数学家珍说出教材的概念系统、定理系统、符号系统。

还应掌握中学数学竞赛涉及的基础理论。

深刻理解数学概念、准确掌握数学定理、公式和法则。

熟悉基本规则和常用的方法,不断积累数学技巧。

9.数学的本质活动是思维。

思维的对象是概念,思维的方式是逻辑。

当这种思维与新事物接触时,将出现“相容”和“不容”的两种可能。

出现“相容”时,产生新结果,且被原概念吸收,并发展成新概念;当出现“不容”时,则产生了所谓的问题。

这时,思维出现迂回,甚至暂时退回原地,将原概念扩大或将原逻辑变式,直到新思维与事物相容为止。

至此,也产生新的结果,也被原思维吸收。

这就是一个思维活动的全过程。

10.解题能力,表现于发现问题、分析问题、解决问题的敏锐、洞察力与整体把握。

其主要成分是3种基本的数学能力(运算能力、逻辑思维能力、空间想象能力),核心是能否掌握正确的思维方法,包括逻辑思维与非逻辑思维。

其基本要求包括:

(1)掌握解题的科学程序;

(2)掌握数学中各种常用的思维方法,如观察、试验、归纳、演绎、类比、分析、综合、抽象、概括等;

(3)掌握解题的基本策略,能“因题制宜”地选择对口的解题思路,使用有效的解题方法、调动精明的解题技巧;

(4)具有敏锐的直觉。

应该明白,我们的数学解题活动是在纵横交错的数学关系中进行的,在这个过程中,我们从一种可能性过渡到另一种可能性时,并非对每一个数学细节都洞察无遗,并非总能借助于“三段论”的桥梁,而是在短时间内朦胧地插上幻想的翅膀,直接飞翔到最近的可能性上,从而达到对某种数学对象的本质领悟:

11.解题具有实践性与探索性的特征,“就像游泳,滑雪或弹钢琴一样,只能通过模仿和实践来学到它……你想学会游泳,你就必须下水,你想成为解题的能手,你就必须去解题”,“寻找题解,不能教会,而只能靠自己学会”。

12.所谓解题经验,就是某些数学知识、某些解题方法与某些条件的有序组合。

成功是一种有效的有序组合,失败是一种无效的无序组合(它从反面向我们提供有效的有序组合)。

成功经验所获得的有序组合,就好像建筑上的预制构件(或称为思维组块),遇到合适的场合,可以原封不动地把它搬上去。

13.认为解题纯粹是一种智能活动显然是错误的;决心与情绪所起的作用非常重要。

教育学生解题是一种意志教育。

当学生求解那些对他来说并不太容易的题目时,他学会了败而不馁,学会了赞赏微小的进展,学会了等待主要念头的萌动,学会了当主要念头出现后如何全力以赴,直扑问题的核心或主干;当一旦突破关卡,如何去占领问题的至高点,并冷静地府视全局,从而得到问题的完善解决。

如果学生在解题过程中没有机会尝尽为求解而奋斗的喜怒哀乐,那么他的数学解题训练就在最重要的地方失败了。

14.教师的例题教学要暴露自己思维的真实过程,老师备课时,遇上的曲折和错误不能随草纸扔到废纸堆。

如果教师掩瞒了解题中的曲折,自己在讲台装神弄巧,得心应手,左右逢源,把自己打扮成超人,将给学生的学习产生误导。

这样的教师越高明,学生越自卑。

三、浅议初中生数学学习差的原因

一、造成分化的原因

1、被动学习。

许多同学进初中入后,还像小学那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。

表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。

2、学不得法。

老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。

而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。

也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

3、不重视基础。

一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。

到正规作业或考试中不是演算出错就是中途“卡壳”。

4、思维方式和学习方法不适应数学学习要求。

初二阶段是数学学习分化最明显的阶段。

一个重要原因是初中阶段数学课程对学生抽象逻辑思维能力要求有了明显提高。

而初二学生正处于由直观形象思维为主向以抽象逻辑思维为主过渡的又一个关键期,没有形成比较成熟的抽象逻辑思维方式,而且学生个体差异也比较大,有的抽象逻辑思维能力发展快一些,有的则慢一些,因此表现出数学学习接受能力的差异。

除了年龄特征因素以外,更重要的是教师没有很好地根据学生的实际和教学要求去组织教学活动,指导学生掌握有效的学习方法,促进学生抽象逻辑思维的发展,提高学习能力和学习适应性。

二、减少学习分化的教学对策

1、培养学生学习数学的兴趣兴趣是推动学生学习的动力,学生如果能在学习数学中产生兴趣,就会形成较强的求知欲,就能积极主动地学习。

培养学生数学学习兴趣的途径很多,如让学生积极参与教学活动,并让其体验到成功的.愉悦;创设一个适度的学习竞赛环境;发挥趣味数学的作用;提高教师自身的教学艺术等等。

2、教会学生学习

(1)加强学法指导,培养良好学习习惯反复使用的方法将变成人们的习惯行为。

什么是良好的学习习惯?我向学生做了如下具体解释,它包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

(2)制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。

‘叁’ 数学考试技巧方法

数学在高考成绩中占了很大分值,也是最容易拉分的科目,掌握一些答题技巧能够帮你拿到好成绩哦。那么接下来给大家分享一些关于数学考试技巧 方法 ,希望对大家有所帮助。

数学考试技巧方法

数形结合思想

中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的 “法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

函数与方程思想

函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。

特殊与一般的思想

用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。

极限思想解题步骤

极限思想解决问题的一般步骤为:

(1)对于所求的未知量,先设法构思一个与它有关的变量;

(2)确认这变量通过无限过程的结果就是所求的未知量;

(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

分类讨论思想

我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种拿老拆情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。

入场临战,通览全卷

最容易导致心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此时保持心态平稳是非常重要的。刚拿到试卷,一般心情比较紧张,不要匆忙作答,可先通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作铺垫,一般可在五分钟之内做完下面几件事:

(1)填写好全部考生信息,检查试卷消枣有无问题;

(2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定);

(3)对于不能立即作答的题目,可一边通览,一边粗略地分为A、B两类:A类指题型比较熟悉、容易上手的题目;B类指题型比较陌生、自我感觉有困难的题目,做到心中有数。

高考数学的答题技巧

高考数学答题技巧1:充分利用考前五分钟

按照大型的考试的要求,考前五分钟是发卷时间,考生填写准考证。

这五分钟是不准做题的,但是这五分钟可以看题。

我发现很多考生拿到试卷之后,就从第一个题开始看,我给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。

之前没看到题目,含圆你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。

学生拿着数学卷子,不要看选择,不要看填空,先看后边的六个大题。

这六个大题的难度分布一般是从易到难。

我们为了应付这样的一次考试,提前做了大量的习题,试卷上有些题目可能已经做过了,或者你一目了然,感觉很轻松,我建议先把这样的大题拿下来。

大题一般12分左右,这12分如囊中取物,你就有底气了,心情也好了。

特别是要看看最后那个大题,一看那个题目压根儿就不是自己力所能及的,就把它砍掉,只想着后边只有五个题,这样在做题的时候,就能够控制速度和质量。

如果倒数第二题也没有什么感觉,你就想,可能今年这个题出得比较难,那么我现在最好的做法应该是把前边会做的题目踏踏实实做好,不要急于去做后边的题目,因为后边的题目不是正常人能做的题目。

高考数学答题技巧2:进入考试阶段先要审题

高考

审题一定要仔细,一定要慢。

我发现数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。

你在误读的基础上来做的话,你可能感觉做得很轻松,但这个题一分不得。

所以审题一定要仔细,你一旦把题意弄明白了,这个题目也就会做了。

会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用多少时间。

高考数学答题技巧3:培养自己一次就做对的习惯

现在有些学生,好不容易遇到一个会做的题目,就快速地把会做的题目做错,争取时间去做不会做的题目。

殊不知,前面的选择题和后边的大题,难易差距是很大的,但是分值的含金量是一样的,有些学生以为前边题目的分数不值钱,后边大题的分数才值钱,不知道这是什么心理。

所以我希望学生在考试的时候,一定要培养自己一次就做对的习惯,不要指望腾出时间来检查。

越是重要的考试,往往越没有时间回来检查,因为题目越往后越难,可能你陷在那些难题里面出不来,抬起头来的时候已经开始收卷了。

高考数学答题技巧4:要由易到难

一般大型的考试是要有一个铺垫的,比如说前边的题目,往往入手比较简单,越往后越难,这样有利于学生正常的发挥。

1979年的高考,数学就吓倒了很多人。

它第一个题就是一个大题,很多学生就被吓蒙了,于是整个考试考得一塌糊涂,就出现一些心态的不稳。

所以后期,就因为这样的一些事故性的试题的出现,不能让一个学生正常发挥,我们国家在命题的时候一般遵循由易到难的规律,先让学生慢慢地进入状态,再去慢慢地加大难度。

有些学生自以为水平很高,对那些简单的题目不屑一顾,所以干脆从最后一个题开始做,这种做法风险太大。

因为最后一个题一般来讲,难度都很大,你一旦在这个地方卡壳,不仅耽误了你的时间,而且会让你的心情受到很大的影响,甚至影响整场考试的发挥。

当然由易到难并不是说从第一题一直做到最后一个,以数学高考题为例,一般数学高考题有三个小高峰:第一个小高峰出现在选择题的最后一题,它的难度属于难题的层次;第二个小高峰是填空题的最后一题,也是比较难的;第三个小高峰出现在大题的最后一题。

我说由易到难,是说要把握住这三个小高峰。

高考数学答题技巧5:控制速度

平常有学生问我:“我在做题的时候多长时间做一个选择题,多长时间做一个填空题,才是比较合理的呢?” 我觉得这个不能一概而论,应该说你平常用什么样的速度做题,考试的时候就用什么样的速度,不要人为地告诉自己,考试的时候要加快速度。

其实你考试的时候,速度要是和平常训练的速度差距比较大的话,很可能因为你速度一加快,反而导致了质量的下降。

一场大型的考试,你会做的题目本身就那么多,如果你加快速度,结果把会做的题目做错,而你腾出的时间去做后边的难题,又长时间地解不出来,那么很可能造成会做的题目得不着分,不会做的题目根本不得分。

不要担心“做慢了,做不完”,把握住一点,一个学生的正常考试,如果始终在自己会做的题目上全神贯注的话,这场考试一定是正常发挥的,甚至是超水平发挥。

你一直投入到会做的题目中,按照你平常训练的速度,踏踏实实地往前推进。

即使你发现时间到了,后边还有题目可能会做但来不及了,我也不认为这是一个令你后悔的结果。

最后结果出来你会发现,你最后得到的分数往往会比你的实际水平要高。

所以考试的时候要控制速度,我觉得这是考试技巧的一个很重要的方面。

高考数学答题技巧6:抓住得分点

考数学时,有人考完以后说某个大题能得满分,结果却并非如此。

一个大题12分,结果呢他这儿扣点儿那儿扣点儿,最后只能得个八-九分。

学生还觉得挺委屈的,这个题明明会做,怎么被扣分了呢?其实是过程出问题了,数学解题的步骤是有分数的,而且这个分数还有比较明确的界定。

学生在考试的时候,一定注意这些学科评分的得分点。

比如让你求出一个椭圆的方程,你可能不会求,但你只要写上“解:设所求椭圆的方程为x2/a2+y2/b2=1”,就很可能得1分,这1分是不需要任何付出的。

你要解数学应用题的时候,你做完了,你得写上“答:以上结果是什么”,要是没有这句话就被扣分了。

数学高考答题事项

1.答选择题时,尽量用2B铅笔填涂,避免不要情况的发生;如果想更改高考数学答案,应使用绘图橡皮轻擦干净,注意不要擦破答题卡。禁止使用涂改液、修正带或透明胶带改错。

答题时要用0.5毫米黑色墨水签字笔作答,作图题可先用铅笔绘出,确认后,再用0.5毫米黑色墨水签字笔描清楚,这样可以较少失误情况的发生。

2.高考数学答题时应尽量按顺序作答,遇到不会的题要果断跳过,为后面的题留出充足的时间,到最后在回过头来看看有没有思路,因为这样做可以防止思路断片,影响后面的发挥。

(1)先填空题,再做解答题。

(2)先易后难。

3.高考数学涂卡时要按题号在指定的答题区域内作答,不能超出该题答题区域的黑色矩形边框,否则答案无效。另外,要注意高考数学答题规范,因为数学解答题的步骤较多,所以书写要规范,给阅卷老师一目了然的感觉,一眼就能看到采分点。切记解题过程中的公式尽量多列举一些。

4.关于高考数学填空题,要保证字迹工整清晰、字符书写正确、要养成良好的答题习惯,做到解题的规范性,需要从点滴做起,重在平时,坚持不懈,养成习惯,这是高考数学答题技巧的基础。

5.在高考数学答题过程要整洁美观、逻辑思路清晰、概念表达准确、答出关键语句和关键词。数学语言要准确完整。重视解题过程的语言表述,“会做”的题才能“得分”。对容易题要详写,过程复杂的试题要简写,答题时要会把握得分点。

数学考试技巧方法相关 文章 :

★ 数学必考题型解题技巧方法

★ 高考数学考试技巧

★ 学好数学的方法与技巧

★ 高考数学常用答题技巧及考试技巧

★ 高考数学考试的答题技巧和方法

★ 高中数学考试技巧分析及学习方法

★ 小学数学学习方法及考试技巧

★ 初三数学考试总结方法和技巧

★ 快速学好小学数学的技巧方法

‘肆’ 数学考试解题方法有哪些

数学是许多小伙伴头痛的老颂科目之一,那么学习数学的方法有哪些呢。以下是由我为大家整理的“数学考试解题方法伍含镇有哪些”,仅供参考,欢迎大家阅读。

数学解题方法有哪些

分析法与综合法

分析法和综合法源于分析和综合,是思维方向相反的两种思考方法,在解题过程中具有十分重要的作用。

在数学中,又把分析看作从结果追溯到产生这一结果的原因的一种思维方法,而综合被看成是从原因推导到由原因产生的结果的另一种思维方法。通常把前者称为分析法,后者称为综合法。

具体的说,分析法是从题目的等证结论或需求问题出发,一步一步的探索下去,最后达到题设的已知条件;综合法则是从题目的已知条件出发,经过逐步的逻辑推理,最后达到待证的结论或需求问题。

数学模型法

数学模型法,是指把所考察的实际问题,进行数学抽象,构造相应的数学模型,通过对数学模型的研究,使实际问题得以解决的一种数学方法。

试验法

解答数学题,需要多方面的信息。数学中的各种试验,常常能给人以有益的信息,为分析问题和解决问题提供必要的依据。

用试验法处理数学问题时,必须从问题的实际情形出发,结合有关的数学知识,恰当选择试验的对象和范围;在制定试验方案时,要全面考虑试验的各种可能情形,不能有所遗漏;在实施试验方案时,要讲究试验技巧,充分利用各次试验所提供的信息,以缩小试验范围,减少试验次数,尽快找出原题的解答。

拓展阅读:数学学习的方法

1、转化方法

转化,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、更清晰。

2、逻辑方法

逻辑是一切思考的基础。逻辑思维,是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。

3、逆向方法

逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。

4、对应方法

对应思维是在数量关系之间(包括量差、量倍、量率)建立一种直接联系的思维方法。比较常见的是一般对应(如两个量或多个量的和差倍之间的对应腔粗关系)和量率对应。

‘伍’ 求解答(大学数学方法论)

初中数学公式大全
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
实用工具:常用数学公式

公式分类 公式表达式

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h

‘陆’ 如何应对初中数学期中和期末考试的复习

数学是研究现实世界的空间形式和数量关系的科学。数学学习方法指导是教育者通过一定的教育途径对学习者进行学习方法的传授、诱导、诊治,使学习者掌握科学的学习方法并灵活运用于学习之中,逐步形成较强的自学能力的方法,实践证明忽视了“学”,“教”就失去了针对性。“授之于鱼,不如授之以渔”,只有重视对学生的学法指导,不断激发学习动机和兴趣才能全面提高学生的素质,为学生的可持续发展提供有力的支持。数学学习方法指导是一个由非智力因素、学习方法、学习习惯、学习能力多元组成的统一整体,经过一个学期的艰苦学习,如何在期末对所学知识进行梳理、复习,考出理想的数学成绩,这是大家关心的问题。
首先列举一下在数学学习中经常出现的几穗腊激个问题:
1、对知识点的理解停留在一知半解的层次上;
2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力;
3、解题时,小错误太多,始终不能完整的解决问题;
4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节猜袜奏;
5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点;
如何解决呢?
一、平时就注意指导学生学会复习巩固,提高对知识迁移的能力 1、
学生课后往往容易急于完成书面作业,忽视必要的巩固、记忆、复习。以致出现照例题模仿、套公式解题的现象,造成为交作业而做作业,起不到作业的练习巩固、深化理解知识的应有作用。为此在这个环节的学法指导上要求学生每天先阅读教材,结合笔记记录的重点、难点,回顾课堂讲授的知识、方法,同时记忆公式、定理。然后独立完成作业,解题后
再反思。在作业书写方面也应注意“写法”指导,要求学生书写格式要规范、条理要清楚。特别是低年级学生做到这点很困难。指导时应教会学生(1)如何将文字语言转化为符号语言;
(2)如何将推理思考过程用文字书写表达;(3)正确地由条件画出图形。这里教师的示范作用极为重要,开始可有意让学生模仿、训练,逐步使学生养成良好的书写习惯,这对今后的学习和工作都十分重要。
2、细心地发掘概念和公式,很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
3、总结相似的类型题目,这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。“总结归纳”是将题目越
做越少的最好办法。
4、收集自己的典型错误和不会的题目
同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。做题就局正像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。
5、就不懂的问题,积极提问、讨论
发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。
讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。“勤学”是基础,“好问”是关键。
6、注重实战(考试)经验的培养
自己平时做作业可以给自己限定时间,逐步提高效率。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。
二、复习时让学生明确期末复习的作用
1、使知识系统化、条理化、形成知识网。
2、对所学的知识点查漏补缺,克服不足,避免错点。
3、系统复习以掌握各种概念、性质、方法以及他们之间的联系
4、通过典型题的训练,提高自己驾驭数学的知识,解决实际问题的能力。
三、整体建构,把握重点
在进行复习时,学生容易依赖老师,习惯教师带着复习总结。要培养学生学会自己总结的方法。在具体指导时可给出复习总结的方法和途径。首先看书、看笔记、看习题,通过看,回忆、熟悉所学内容,整体建构整本书以及每个单元相关的知识点,标出重点、难点,列出各知识点之间的关系,画出知识树或知识梳理框架图。在先前经验的基础上主动建构,把先前学到的知识重组、转换、变式、联系。
任何一次大型的数学考试,不仅要注意知识点的覆盖率,更注重对重点知识进行重点考察。例如,七年级数学中的平行线的性质和判定、三角形的三边、三角的关系,外角和内角的关系,二元一次方程组的解法及应用,一元一次不等式(组)的解法及应用,还有平方
根、立方根;八年级数学中的分式的意义、运算,分式方程,反比例函数的图像、性质及实际应用,勾股定理及逆定理的应用,平行四边形、特殊的平行四边形、梯形的应用,数据的波动等都属于必考的范畴,因此,同学们要熟练掌握这部分内容。有目的、有重点、有选择地解一些各种档次、类型的习题,题目一定要精。通过解题再反馈,发现问题、解决问题。最后归纳出体现所学知识的各种题型及解题方法,从而提高学生对知识迁移的能力。
四、夯实基础,扫清盲点
在复习的过程中,同学们不仅要对重点知识进行重点复习,对那些不常用的非重点知识,也要给予足够的重视。以七年级数学为例,像平移、镶嵌、实数的分类等边缘知识点很容易被一些同学忽视。复习时,首先要弄清这些知识点。例如:平移是把一个图形整体沿某一方向移动一定的距离。其次要弄懂典型例题。再如,多边形镶嵌的条件是(1)拼接在同一个点的各个角的和恰好等于3600。(2)相邻的多边形有公共边。
例题:①用形状和大小完全相同的一些三角形(或四边形)能否覆盖平面?(结论是能)。②用正三角形、正四边形、正五边形、正六边形中的一种或两种可以进行平面镶嵌的是(正三角形、正四边形、正六边形)。
五、注重技巧,突破难点
大型的数学考试,试题不仅要面向全体学生,又要有利于提高考试的区分度,因此,难题是必不可少的。所谓的难题,即可以是读起来不易理解的文字应用题,也可以是综合性很强的几何、代数综合题。要想突破难关,平时就要对教材上的难点注意理解透彻。 例题:把一些书分给一些学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。这些书有多少本?学生有多少人?
解:设学生有x人
则: 3x+8-5(x-1)≥0
3x+8-5(x-1)<3
本题中“那么最后一人就分不到3本”容易误解为分到一本或两本,在这里提请同学们注意这其中也包括没分到的情况。复习时,对教材中诸如此类的问题一定要加以重视。
突破难题的最重要一点是加强分析(审题)和理解(已知量和未知量的关系)能力的培养。
知识归根结底是学生学会的,不是老师教会的,老师教给学生的知识是有限的,让学生掌握正确的学习数学的方法,树立起自信心,必胜心,养成良好的学习习惯,形成良好的思维品质,学生会积极主动的参与到学习中去,并且善于发现问题,善于与他人合作交流、共同探讨。相信他们在期末数学的考试中会取得优异的成绩。

阅读全文

与数学方法论与解题研究期末考试相关的资料

热点内容
摔跤徒手训练方法 浏览:531
简单做蒸鸡蛋糕的方法 浏览:463
红魔晶使用方法 浏览:720
白内障主要治疗方法 浏览:810
84去霉斑最简单方法 浏览:458
花生芽苗菜的种植方法 浏览:538
阳光板大棚安装方法 浏览:337
玉石腰带扣的使用方法 浏览:350
整数拆数的计算方法 浏览:516
花洒头开关漏水怎么处理方法 浏览:912
苏打洗衣服的方法技巧 浏览:499
高三学生如何正确的学习方法 浏览:407
用专政的方法解决矛盾 浏览:855
3714的计算方法 浏览:147
日本蛇毒眼膜使用方法 浏览:112
女生尖叫训练方法 浏览:150
家里烤面包的制作方法和步骤 浏览:927
小米5s运营商在哪里设置方法 浏览:71
用简单的方法找到市场筹码集中区 浏览:624
中介借钥匙解决方法 浏览:975