‘壹’ 数据分析需要掌握些什么知识
我们先从整体上了解数据分析师要掌握的技能有哪些,然后再从具体职位类别来看,不同的职位具体要掌握的技能有哪些。
这样你就能根据自己的实际情况,有针对性的准备和学习。
一、数据分析的胜任力模型是什么?
从整体上来看,数据分析师需要掌握的能力有很多,从总体上可以分为以下几类,这些能力构成了数据分析师的能力模型。
1)理论基础,包括统计学
2)数据分析工具,常用的分析工具有 Excel,SQL,Python 等
3)可视化工具,常用的有 Excel,商业智能(Business Intelligence,BI)
4)业务知识,包括常用的指标、某行业的业务流程
5)数据分析思维,包括常用的分析方法
6)通用能力,包括 PPT、沟通能力
下面我们来详细看下每一种能力的要求。
理论基础:统计学
数据分析背后的理论基础是统计学。所以,掌握了统计学以后我们才能去看懂数据表达的意义是什么。举个例子,给你一家公司员工的工资,是平均值能代表这家公司的工资水平,还是中位数能代表?
如果没学过统计学,那么可能只认识这里的平均值,而不知道中位数这个知识。但是,如果你学过了统计学就会知道,中位数比平均值更能反映出数据的集中表现。
统计学的内容比较多,详细又可以分为两类内容:描述统计分析、推论统计分析。
什么是描述统计分析?
对大量信息进行归纳是处理数据时最基本的任务。中国约有 14 亿人,一张记录每位中国人的姓名和收入的电子表格包含了我们衡量这个国家经济健康状况所需的所有信息,通常我们也将多个数据集合在一起的东东叫“简称数据集”。但这张信息过量的表格其实相当于什么都没有告诉我们。这就是让人觉得讽刺的地方:经常是数据越多,事实越模糊。
因此,我们需要简化,将一系列复杂的数据减少为几个能够起到描述作用的数字,正如奥运会体操比赛中,我们将一套多难度组合的复杂动作浓缩为一个得分:9.8 分。
描述统计分析就是将一系列复杂的数据减少为几个能够起到描述作用的数字,用这些有代表性的数字来代表所有的数据。这样在面对一大堆数据时,你可在不知道所有数据的情况下就能知道数据的整体情况。
这就好比,我们通常一说起美女,能想到的是这样几个指标:长腿,大眼睛,脸蛋好看。虽然全国有那么多美女,你也没有见过全部的美女,但是你却能通过这样几个代表美女的指标就可以大概知道什么是美女。
同样的,描述统计学的关键点在于,找到几个关键的数字来描述数据的整体情况。那么,问题就来了,能担当起这样重要责任的数字有哪些呢?描述数据的整体情况,我们可以用 4 个指标来做,分别是:平均值、四分位数、标准差和标准分。例如,前面我们在拿到工资数据,就可以用“中位数”这样的数字来描述工资的整体情况。
所以,描述统计分析就是掌握 4 个指标:平均值,四分位数,标准差和标准分。
什么是推论统计分析?
推论统计分析就是通过样本来推断出总体。需要掌握的知识包括概率分布、中心极限定、如何用样本估计总体、置信区间、假设检验。例如,互联网常用的 AB 测试背后的原理就是假设检验,如果不掌握推论统计分析,那么连 AB 测试的结果也看不懂,更不用说完成一个 AB 测试实验。
2.数据分析工具
很多人看到现在 Python 很火,就不管自己的能力水平如何,就一头扎进学习 Python 的大潮,最后发现其实自己学不会,或者学完用不上。
这其实是不对的,真正工作里最常用的数据分析工具其实是 Excel,SQL。所以,如果你的零基础,不建议一上来就学 Python,而是先学会 Excel 分析数据,然后学会 SQL。
这样你学会了常用的分析工具,然后再学 Python 才是加分项。同时,这样学习的顺序还有一个好处,如果你是零基础没学过编程,一上来学 Python,大概率是学不会的。但是如果你学过用 Excel、SQL 处理数据,那么就具备了一定的基础,再学 Python,很多概念就会理解起来比较容易。
这就好比,一个婴儿不是一上来就学习跑步(Python),而是先把走路学会,具备了走路(Excel、SQL)的基础,再跑步就容易多了。
需要注意的是,除非是工作必须要求的,其他少部分公司用的工具其实不需要学习。比如有些公司要求其他编程语言,例如 R、SPSS、SAS 这些工具。
现在 Pyhon 已经是人工智能排名第一的编程语言了,大部分公司要求 Python,很少部分的公司要求其他的编程语言,所以学习市场要求最多的那个技能才能找到更多机会。如果你学习了少部分公司才要求的工具,那么意味着你找工作或者跳槽只能选择这些公司,而会错失其他大部分公司的求职机会,对你整个职业生涯不利。
TIOBE 编程语言排行榜是全球编程语言流行趋势的一个指标,每月更新,官网地址(https://www.tiobe.com/tiobe-index)。下图是 2021 年 2 月份排名前 10 的编程语言的变化图,其中橙色曲线是 Python,我们会发现 Python 的流行趋势越来越高。
3.可视化工具
常用的可视化工具包括 Excel、商业智能(BI)。
一般的可视化图表用 Excel 里的图表功能就可以实现,而且使用起来也方便。如果是要经常做报表,并且要求实现报表自动化,那么就需要用到商业智能(BI)工具。
那什么是商业智能(BI)呢?
微软官方给的定义是“使用用于自助服务和企业商业智能 (BI) 的统一、可扩展平台(该平台易于使用,可帮助获取更深入的数据见解),连接到任何数据并对数据进行可视化。 ”
毫无悬念,看这种官方定义就是看不懂。简单来说就是把数据导入商业智能(BI)工具中,就可以快速对数据可视化。例如下图就是把数据导入用商业智能(BI)工具中,通过可视化数据来分析。
IDC《2019 年下半年中国商业智能软件市场数据跟踪报告》显示,在中国商业智能软件子市场中,报表分析仍是目前市场最主要的需求,2019 年全年年市场份额占比为 79.0%。高级分析和预测分析市场份额占比 21.0%(下图)。
常用的商业智能(BI)工具有哪些呢?
目前使用最多的商业智能(BI)工具是 Power BI、Tableau、帆软,选择其中任意一种学习就可以了。
4.业务知识
因为数据分析是用来解决具体行业问题的,需要从业务的角度出发,了解各个指标,以及每个指标之间的关系,还需要联系业务去理解数据。所以,工作中数据分析脱离不了业务,在分析中要找到导致问题发生的根本原因,而不只是单纯的统计数据。
因此需要具备某个行业的业务知识才能去理解这个行业里的术语、业务问题等。
业务知识包括某个行业的常用指标、业务流程。需要注意的是,不同行业的指标、业务流程是不一样的,所以需要学习的时候针对你的目标行业去学习准备。例如,下图分别是金融信贷行业、在线教育行业的业务流程。
金融信贷行业业务流程(来自书《数据分析思维》)
在线教育业务流程(来自书《数据分析思维》)
如果是刚入门,这块内容做到了解即可,等进入工作以后,再慢慢深入业务,积累业务经验。具体某个行业的常用指标、业务流程可以看书《数据分析思维》,这本书里涉及了 10 多个行业的指标、业务流程。
5.数据分析思维
在数据分析相关的职位里经常会写这么一条招聘要求“具备数据分析思维”。在工作或者面试中,会经常听到分析思维、分析思路、分析方法。这三个词语有什么关系呢?其实简单来说,它们都是指分析方法。
数据分析思维需要你掌握 10 种常用的分析方法。
数据分析 10 种常用的分析方法
如果你的分析目的是想将复杂问题变得简单,就可以使用逻辑树分析方法,例如经典的费米问题就可以用这个分析方法。
如果你的分析目的是做行业分析,那么就可以用 PEST 分析方法,例如你想要研究中国少儿编程行业。
如果你想从多个角度去思考问题,那么就可以用多维度拆解分析方法,例如找相亲对象,需要从多个角度去分析是否合适。
如果你想进行对比分析,就要用到对比分析方法,例如你朋友问自己胖吗,就是在对比。
如果你想找到问题发生的原因,那么就要用到假设检验分析方法,其实破案剧里警察就是用这个方法来破案的。
如果你想知道 A 和 B 有什么关系,就要用到相关分析方法,例如豆瓣在我们喜欢的电影下面推荐和这部分电影相关的电影。
如果你想对用户留存和流失分析,就要用到群组分析方法,例如微博用户留存分析。
如果你想对用户按价值分类,那么就要用到 RFM 分析方法,例如信用卡的会员服务,就是对用户按价值分类,对不同用户使用不同的营销策略,从而做到精细化运营。
如果你想分析用户的行为或者做产品运营,就要用到 AARRR 模型分析方法,例如对拼多多的用户进行分析。
如果你想分析用户的转化,就要用到漏斗分析方法,例如店铺本周销量下降,想知道是中间哪个业务环节出了问题。
6.通用能力
通用能力包括 PPT 制作分析报告、沟通能力。
在工作中,要经常做分析结果做成数据分析报告,然后展示给业务部门、上级领导、客户等,而这种展示数据分析报告的场景常用的工具就是 PPT,所以就要求你会用 PPT 制作数据分析报告,有较好的的文字、书面总结能力。
职业社交网站领英发布的《2018 新兴工作岗位报告》报告里说,最大的技能缺口是软技能,比如口头交流、领导力和时间管理等。这份报告中建议,职场人士需要在快速变化的工作环境中,学习并保持软技能,因为拥有这些技能的人才具备更大的职场优势。
其实,任何职位都需要沟通能力,但是,数据分析师对沟通能力的要求更高。因为,数据分析师解决的是实际的问题,需要跨部门沟通业务,做好的数据分析报告也要展示给各个部门、领导、客户,只有好的沟通能力,才能让你的分析结果得到用户的认可。 那么这些通用能力如何提升呢?最直接的方式,就是通过写文章来提升。
通过写作可以同时提升你下面 3 个能力:
1)逻辑能力
写作的本质其实是把一件事情讲清楚,而逻辑能力强的人写出来的内容,读起来更顺畅。
2)文字表达能力
数据分析师要经常做数据分析报告,和通过邮件汇报分析结果。这体现的其实就是文字表达能力,提高这个能力的办法就是不断去写作。
3)沟通能力
写作其实就是把想说的话通过文字和你的用户去沟通。另外,经常在社群里提问和解答他人的问题,也可以提高你的沟通能力。你会看到不同人提问的水平是不一样的,有的人可以完整的把一个问题描述清楚,有的人说完,其他人也不明白他的问题是什么。这其实就是体现了沟通能力。
二、不同职位的数据分析能力要求有什么不一样?
经过前面的分析,我们从整体上知道了数据分析师需要掌握的能力。但并不是说,这些能力全都掌握了你才能找到一份数据分析师的工作。因为不同的职位的要求不一样的。在《职业发展前景:数据分析师的晋升通道》章节我们知道了数据分析相关职位的分类。
我把胜任力模型中的这些能力对应到不同的职位,就可以清楚的看到对应职位的能力要求(下图)。
有一个误区,很多人以为只要掌握了分析工具,就掌握了数据分析,其实不是的。从图中,我们可以看出。各个数据分析职位都需要的能力是:业务知识、分析思维、PPT、沟通能力。这些能力才可以让你从一个只会舞弄工具的普通职场人变成真正解决业务问题的职场高手。
很多人以为数据分析师需要掌握很高大的工具,其实不是的。例如腾讯里有一个岗位叫“商业数据分析师”,这听起来很高大上。其实这个职位对应的就是上图初级数据分析师的能力要求,也就是理论基础(描述统计分析),分析工具(Excel),可视化工具(Excel)。
上图中黄色标出的是相对于前一职位多出来的能力。中级数据分析师在初级数据分析师要求的能力上增加了分析工具(SQL),可视化工具(商业智能 BI)。高级数据分析师在中级数据分析师要求的能力上增加了理论基础(推论统计分析),分析工具(Python)。
Excel、SQL、Python 要掌握到什么程度?
我们知道了数据分析师最常用的分析工具是 Excel、SQL、Python。那么问题就来了,这些分析工具具体掌握哪些内容呢?
‘贰’ 数据分析方法
常见的分析方法有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。
01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。
02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。
03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。
04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。
05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。
06) 趋势分析
比如人才流失率过去12个月的变化趋势。
07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。
‘叁’ 教你如何建立数据分析思维
在数据分析中,建立一个数据分析思维是一个至关重要的事情,但是建立一个数据分析思维不是一个简单的事情,需要不断的学习,不断的实践才能够验证这种思维是不是一个合适的数据分析思维,下面就给大家介绍一种经过实践过了的数据分析思维,希望能够给大家带来帮助。
如何建立数据分析思维呢?首先需要建立一个好的指标体系。了解和使用指标是数据分析思维的第一步,大家在建立数据分析的指标体系的时候应该能够意识到孤立的指标发挥不出数据的价值。和分析思维一样,指标也能结构化,也应该用结构化。上面提到的知识都是需要不同行业经验和业务知识去学习掌握,同时还要总结通用的技巧和注意事项。
建立一个好的指标体系之后,还需要明确指标的好坏,那么什么是好指标呢?什么是坏指标呢?行业人士说好指标应该是核心驱动指标。核心指标不只是写在周报的数字,而是整个运营团队、产品团队乃至研发团队都统一努力的目标。当然核心驱动指标和公司发展存在某种联系,是公司在一个阶段内的重点方向。记住是一个阶段,不同时期的核心驱动指标不一样。不同业务的核心驱动指标也不一样。
上述说的是好指标,那么坏指标有哪些呢?坏指标就是虚荣指标,它没有任何的实际意义。虚荣指标是没有意义的指标,往往看起来不错,其实并没有实际的意义。坏指标也是后验性指标,它往往只能反应已经发生的事情。坏指标同样也是复杂性指标,它能够将数据分析拖进一堆指标的陷阱中。
其次就是建立正确的指标结构。建立正确的指标结构和分析思维的金字塔结构一样,指标也有固有结构,呈现树状。指标结构的构建核心是以业务流程为思路,以结构为导向。从流程的角度搭建指标框架,可以全面的收集用户相关数据,这样可以毫无遗漏的保留出相关的数据。
以上的内容就是教给大家如何去建立自己的数据分析思维的方式了,大家在进行建立数据分析思维的时候一定要参考上面提到的步骤,首先就是建立一个好的指标体系,其次就是明确指标的好坏,最后就是建立正确的指标结构,希望这篇文章能够给大家带来帮助。
‘肆’ 全面教你如何建立数据分析的思维框架
全面教你如何建立数据分析的思维框架
目前,还有一些人不会建立数据分析的思维框架,那么今天课课家,就一步一步的教大家怎么建立,大神路过还请绕道,当然还可以交流一下。有需要的小伙伴,可以参考一下。
曾经有人问过我,什么是数据分析思维?如果分析思维是一种结构化的体现,那么数据分析思维在它的基础上再加一个准则:
不是我觉得,而是数据证明。
这是一道分水岭,“我觉得”是一种直觉化经验化的思维,工作不可能处处依赖自己的直觉,公司发展更不可能依赖于此。数据证明则是数据分析的最直接体现,它依托于数据导向型的思维,而不是技巧,前者是指导,后者只是应用。
作为个人,应该如何建立数据分析思维呢?
一、建立你的指标体系
在我们谈论指标之前,先将时间倒推几十年,现代管理学之父彼得·德鲁克说过一句很经典的话:
如果你不能衡量它,那么你就不能有效增长它。
所谓衡量,就是需要统一标准来定义和评价业务。这个标准就是指标。假设隔壁老王开了一家水果铺子,你问他每天生意怎么样,他可以回答卖的不错,很好,最近不景气。这些都是很虚的词,因为他认为卖的不错也许是卖了50个,而你认为的卖的不错,是卖了100。
这就是“我觉得”造成的认知陷阱。将案例放到公司时,会遇到更多的问题:若有一位运营和你说,产品表现不错,因为每天都有很多人评价和称赞,还给你看了几个截图。而另外一位运营说,产品有些问题,推的活动商品卖的不好,你应该相信谁呢?
其实谁都很难相信,这些众口异词的判断都是因为缺乏数据分析思维造成的。
老王想要描述生意,他应该使用销量,这就是他的指标,互联网想要描述产品,也应该使用活跃率、使用率、转化率等指标。
如果你不能用指标描述业务,那么你就不能有效增长它。
了解和使用指标是数据分析思维的第一步,接下来你需要建立指标体系,孤立的指标发挥不出数据的价值。和分析思维一样,指标也能结构化,也应该用结构化。
我们看一下互联网的产品,一个用户从开始使用到离开,都会经历这些环节步骤。电商app还是内容平台,都是雷同的。想一想,你会需要用到哪些指标?
而下面这张图,解释了什么是指标化,这就是有无数据分析思维的差异,也是典型的数据化运营,有空可以再深入讲这块。
标体系没有放之四海而皆准的模板,不同业务形态有不同的指标体系。移动APP和网站不一样,SaaS和电子商务不一样,低频消费和高频消费不一样。好比一款婚庆相关的APP,不需要考虑复购率指标;互联网金融,必须要风控指标;电子商务,卖家和买家的指标各不一样。
这些需要不同行业经验和业务知识去学习掌握,那有没有通用的技巧和注意事项呢?
二、明确好指标与坏指标
不是所有的指标都是好的。这是初出茅庐者常犯的错误。我们继续回到老王的水果铺子,来思考一下,销量这个指标究竟是不是好的?
最近物价上涨,老王顺应调高了水果价格,又不敢涨的提高,虽然水果销量没有大变化,但老王发现一个月下来没赚多少,私房钱都不够存。
老王这个月的各类水果销量有2000,但最后还是亏本了,仔细研究后发现,虽然销量高,但是水果库存也高,每个月都有几百单位的水果滞销最后过期亏本。
这两个例子都能说明只看销量是一件多不靠谱的事情。销量是一个衡量指标,但不是好指标。老王这种个体经营户,应该以水果铺子的利润为核心要素。
好指标应该是核心驱动指标。虽然指标很重要,但是有些指标需要更重要。就像销量和利润,用户数和活跃用户数,后者都比前者重要。
核心指标不只是写在周报的数字,而是整个运营团队、产品团队乃至研发团队都统一努力的目标。
核心驱动指标和公司发展关联,是公司在一个阶段内的重点方向。记住是一个阶段,不同时期的核心驱动指标不一样。不同业务的核心驱动指标也不一样。
互联网公司常见的核心指标是用户数和活跃率,用户数代表市场的体量和占有,活跃率代表产品的健康度,但这是发展阶段的核心指标。在产品1.0期间,我们应把注意力放到打磨产品上,在大推广前提高产品质量,这时留存率是一个核心指标。而在有一定用户基数的产品后期,商业化比活跃重要,我们会关注钱相关的指标,比如广告点击率、利润率等。
核心驱动指标一般是公司整体的目标,若从个人的岗位职责看,也可以找到自己的核心指标。比如内容运营可以关注阅读数和阅读时长。
核心驱动指标一定能给公司和个人带来最大优势和利益,记得二八法则么?20%的指标一定能带来80%的效果,这20%的指标就是核心。
另外一方面,好的指标还有一个特性,它应该是比率或者比例。
拿活跃用户数说明就懂了,我们活跃用户有10万,这能说明什么呢?这说明不了什么。如果产品本身有千万级别的注册用户,那么10万用户说明非常不健康,产品在衰退期。如果产品只拥有四五十万用户,那么说明产品的粘性很高。
正因为单纯的活跃用户数没有多大意义,所以运营和产品会更关注活跃率。这个指标就是一个比率,将活跃用户数除以总用户数所得。所以在设立指标时,我们都尽量想它能不能是比率。
认识和看待事物
这类常见的提问方式包括了一个知名人物或历史事件如何评价?如何看待一个产品?你对某个事物是如何理解的?如何看待或分析一种行为或热点等?
对于看待或分析事物类的思维,则是我们前面一篇思维的逻辑里面讲到的很多内容,即事物本身应该结合外部环境+时间线+事物核心维度进行全面的分析,事物的外在交互关系,事物的内部结构和衔接,事物本身动态展现的行为特征等。这些首先分析清楚,即对事物本身有一个全面和客观的认识。
这类思维的一个核心即辩证思维,在这里我不太喜欢用批评性思维这个词,辩证思i维更加体现了这类思维的重点是全面,客观,以数据说话同时减少主观偏颇看法。对于这类问题你不一定要去表面自己的主观感受,而更加重要的是把事实和道理讲清楚,有理有据。
在真正分析清楚后,后续才过渡到这类问题的演进,即如何评估或评价一个事物,其前提仍然是分析清楚客观数据,但是数据本身不是评价或评估指标,因此一谈到评估自然会想到需要建立或参考一个评估体系。一个历史帝王有政治,经济,外交,军事和民生各种评价体系。对一辆车可能有动力,舒适性,油耗,操控等各种评价体系。一个产品本身有功能满足度,易用性,性能,价格等各种评价体系等。对于任何评估,则首先是找到现成可用的科学评价体系,然后将对事物分析后的数据映射到具体的评价体系上,即任何评估指标值的得出一定有事物本身内在数据和运作机制进行支撑的。
这些都想清楚后,即这类思维的重点是事物的分解和集成分析,事物的行为或活动分析,事物相关的内外环境因素分析,事物本身的关键属性维度分析和评估体系确定,事物各关键指标特性间的相互制约和促进力分析(类似系统思维中的正负循环)等。
坏指标有哪些呢?
其一是虚荣指标,它没有任何的实际意义。
产品在应用商店有几十万的曝光量,有意义吗?没有,我需要的是实际下载。下载了意义大吗?也不大,我希望用户注册成功。曝光量和下载量都是虚荣指标,只是虚荣程度不一样。
新媒体都追求微信公众号阅读数,如果靠阅读数做广告,那么阅读数有意义,如果靠图文卖商品,那么更应该关注转化率和商品销量,毕竟一个夸张的标题就能带来很高的阅读量,此时的阅读量是虚荣指标。可惜很多老板还是孜孜不倦的追求10W+,哪怕刷量。
虚荣指标是没有意义的指标,往往它会很好看,能够粉饰运营和产品的工作绩效,但我们要避免使用。
第二个坏指标是后验性指标,它往往只能反应已经发生的事情。
比如我有一个流失用户的定义:三个月没有打开APP就算做流失。那么运营每天统计的流失用户数,都是很久没有打开过的,以时效性看,已经发生很久了,也很难通过措施挽回。我知道曾经因为某个不好的运营手段伤害了用户,可是还有用吗?
活动运营的ROI(投资回报率)也是后验性指标,一个活动付出成本后才能知道其收益。可是成本已经支出,活动的好与坏也注定了。活动周期长,还能有调整余地。活动短期的话,这指标只能用作复盘,但不能驱动业务。
第三个坏指标是复杂性指标,它将数据分析陷于一堆指标造成的陷阱中。
指标能细分和拆解,比如活跃率可以细分成日活跃率、周活跃率、月活跃率、老用户活跃率等。数据分析应该根据具体的情况选择指标,如果是天气类工具,可以选择日活跃率,如果是社交APP,可以选择周活跃率,更低频的产品则是月活跃率。
每个产品都有适合它的几个指标,不要一股脑的装一堆指标上去,当你准备了二三十个指标用于分析,会发现无从下手。
三、建立正确的指标结构
既然指标太多太复杂不好,那么应该如何正确的选择指标呢?
和分析思维的金字塔结构一样,指标也有固有结构,呈现树状。指标结构的构建核心是以业务流程为思路,以结构为导向。
假设你是内容运营,需要对现有的业务做一个分析,提高内容相关数据,你会怎么做呢?
我们把金字塔思维转换一下,就成了数据分析方法了。
从内容运营的流程开始,它是:内容收集—内容编辑发布—用户浏览—用户点击—用户阅读—用户评论或转发—继续下一篇浏览。
这是一个标准的流程,每个流程都有指标可以建立。内容收集可以建立热点指数,看哪一篇内容比较火。用户浏览用户点击则是标准的PV和UV统计,用户阅读是阅读时长。
从流程的角度搭建指标框架,可以全面的囊括用户相关数据,无有遗漏。
这套框架列举的指标,依旧要遵循指标原则:需要有核心驱动指标。移除虚荣指标,适当的进行删减,不要为添加指标而添加指标。
四、了解维度分析法
当你有了指标,可以着手进行分析,数据分析大体可以分三类:
利用维度分析数据
使用统计学知识如数据分布假设检验
使用机器学习
我们先了解一下维度分析法。
维度是描述对象的参数,在具体分析中,我们可以把它认为是分析事物的角度。销量是一种角度、活跃率是一种角度,时间也是一种角度,所以它们都能算维度。
当我们有了维度后,就能够通过不同的维度组合,形成数据模型。数据模型不是一个高深的概念,它就是一个数据立方体。
上图就是三个维度组成的数据模型/数据立方体。分别是产品类型、时间、地区。我们既能获得电子产品在上海地区的2010二季度的销量,也能知道书籍在江苏地区的2010一季度销量。
数据模型将复杂的数据以结构化的形式有序的组织起来。我们之前谈到的指标,都可以作为维度使用。下面是范例:
将用户类型、活跃度、时间三个维度组合,观察不同用户群体在产品上的使用情况,是否A群体使用的时长更明显?
将商品类型、订单金额、地区三个维度组合,观察不同地区的不同商品是否存在销量差异?
数据模型可以从不同的角度和层面来观察数据,这样提高了分析的灵活性,满足不同的分析需求、这个过程叫做OLAP(联机分析处理)。当然它涉及到更复杂的数据建模和数据仓库等,我们不用详细知道。
数据模型还有几种常见的技巧、叫做钻取、上卷、切片。
选取就是将维度继续细分。比如浙江省细分成杭州市、温州市、宁波市等,2010年一季度变成1月、2月、3月。上卷则是钻取的相反概念,将维度聚合,比如浙江、上海、江苏聚合成浙江沪维度。切片是选中特定的维度,比如只选上海维度、或者只选2010年一季度维度。因为数据立方体是多维的,但我们观察和比较数据只能在二维、即表格中进行。
上图的树状结构代表钻取(source和time的细分),然后通过对Route的air切片获得具体数据。
聪明的你可能已经想到,我们常用的数据透视表就是一种维度分析,将需要分析的维度放到行列组合进行求和、计数、平均值等计算。放一张曾经用到的案例图片:用城市维度和工作年限维度,计算平均工资。
除了Excel、BI、R、Python都能用维度分析法。BI是相对最简便的。
谈到维度法,想要强调的是分析的核心思维之一:对比,不同维度的对比,这大概是对新人快速提高的最佳捷径之一。比如过去和现在的时间趋势对比,比如不同地区维度的对比,比如产品类型的区别对比,比如不同用户的群体对比。单一的数据没有分析意义,只有多个数据组合才能发挥出数据的最大价值。
我想要分析公司的利润,利润 = 销售额 – 成本。那么找出销售额涉及的指标/维度,比如产品类型、地区、用户群体等,通过不断的组合和拆解,找出有问题或者表现良好的原因。成本也是同理。
这就是正确的数据分析思维。总结一下吧:我们通过业务建立和筛选出指标,将指标作为维度,利用维度进行分析。
很多人会问,指标和维度有什么区别?
维度是说明和观察事物的角度,指标是衡量数据的标准。维度是一个更大的范围,不只是数据,比如时间维度和城市维度,我们就无法用指标表示,而指标(留存率、跳出率、浏览时间等)却可以成为维度。通俗理解:维度>指标。
到这里,大家已经有一个数据分析的思维框架了。之所以是框架,因为还缺少具体的技巧,比如如何验证某一个维度是影响数据的关键,比如如何用机器学习提高业务,这些涉及到数据和统计学知识,以后再讲解。
这里我想强调,数据分析并不是一个结果,只是过程。还记得“如果你不能衡量它,那么你就不能有效增长它”这句话吗?数据分析的最终目的就是增长业务。如果数据分析需要绩效指标,一定不会是分析的对错,而是最终数据提升的结果。
数据分析是需要反馈的,当我分析出某项要素左右业务结果,那么就去验证它。告诉运营和产品人员,看看改进后的数据怎么样,一切以结果为准。如果结果并没有改善,那么就应该反思分析过程了。
这也是数据分析的要素,结果作导向。分析若只是当一份报告呈现上去,后续没有任何跟进、改进的措施,那么数据分析等与零。
业务指导数据,数据驱动业务。这才是不二法门。
‘伍’ 数据分析思维之对比分析法(一)
数据分析中有很多数据分析的方法,通过这些方法我们能够直接分析出数据中隐藏的有价值的信息,从而得到一个准确的结果。而数据分析方法中,对比分析法是一个十分常用的方法,在这篇文章中我们就详细的为大家介绍一下对比分析法的相关知识。
对比分析法是指将两个或两个以上的数据进行比较,分析它们的差异,从而揭示这些数据所代表的事物发展变化情况和规律性。特点是简单、直观、量化。
既然要使用对比法,我们一定要明白使用对比分析方法的原则.
对象相似,比如说北京的GDP和美国的GDP相比较就是不符合的
两个对象做对比的时候,一定要满足指标逻辑一致,比如说男性的身高和女性的年龄来当作对比,这样反而没有意义的.
对比分析法在生活和工作的各种场景中广泛应用,如个人发展的进步与否,业务能力是否提高,企业的销售目标能否完成,企业与主要竞争对手的差距等等,具体的分析标准有以下三个维度。
即选择不同时间的指标作为对比标准。与上一年的同期进行对比称为同比,主要考虑季节周期和淡旺季的影响。与前一时期的对比称为环比。了解相邻时间周期是进步了或是退步了,以便及时分析原因。
即在同一个时间周期内选择不同空间指标数据进行比较。
a.与相似空间比较 ,如与同级单位、部门、地区对比,找出自身与同级别部门的差距或优势,分析自身的发展方向。
b与优势空间比较 ,如与优秀企业、标杆部门、行业领袖进行对比,了解自身的发展在行业内所处的位置,有哪些不足,确立发展目标。
通过上面不同地区的对比,很明显的看出2018年双11销售额主要分布广东、江苏、浙江三个省份;2018年中旬快递业务量也是主要分布在广东、江苏、浙江三个省份.
与计划标准对比即与计划数、定额数、目标数对比。如与全年计划目标、活动计划目标对比,通过对比了解自身的发展进度和完成率,分析目标完成的预期和策略是否需要调整。
我们拿"我国历年城乡恩格尔系数"图来举例,能够直观的看到两条线,一个是59%的绝对贫困线,一个是39%的富裕线;通过城乡恩格尔系数和上面两条线对比,很清楚的能够反应出2013年以后,城乡综合已经进入富裕标准中.
通过对分析指标的量化比较,清晰直观地反映事物发展的变化和差距,认识自身所处的水平,为进一步决策提供依据,
参考资料
如何做对比分析(比较分析)?
‘陆’ 数据分析(一)——数据分析思维
上篇文章我们初步介绍了 数据分析的概要 ,大概 从数据分析现在的应用现状 、 数据分析的概念 、 数据分析的分析方法 、 为什么要学习数据分析 以及 数据分析的结构层次 等几方面给大家介绍了数据分析,让大家初步对数据分析有一个大概的了解。这篇文章具体的给大家介绍数据分析中最为核心的技术之一—— 数据分析思维 的相关内容。
作为新手数据分析师或数据运营,在面对数据异常的时候,好多小伙伴都会出现:“好像是A引起的” ,“好像也和B渠道有关”,“也可能是竞争对手C做了竞争动作”等主观臆测。面对数据报表,也不知道应该从产品维度、时间维度、地域维度还是渠道维度去拆分。很显然,这样的思维是乱的,所以做数据分析很重要的一点是: 要具备结构化的分析思维 。接下来给大家介绍数据分析的三种核心思维——结构化、公式化、业务化。
在日常的生活中,当我们针对一个问题进行分析时,分析的思路总是一团乱麻?分析到一半就进行不下去了,或者分析完了也得不出一个结论,效率是极其低下的。具体的如图所示:
但是对于一个专业的数据分析师来说,他会针对一个问题进行系统的剖析,很快就会形成一种由点到线、由线到面、由面到体的一种思维过程,很快就会得出一个很好的结论,效率及其高的。具体思维过程如图所示:
针对这个案例,如果我们在没有介绍结构化之前,大部分工作人员的分析过程如下所示:
通过应用以上的结构化的过程,以上案例的原因分析过程的思维导图如图所示:
结构化很方便,并且很容易应用在实际的数据分析中,然而,结构化分析也会存在一定的问题。接下来,给大家介绍另外一种数据分析思维的方法——公式法。
正如以上所说结构化有一些弊端,包括:改宏不够数据,而且难免有发散的缺点。针对这个缺陷,数据分析思维的另外一种方式——公式法应用而生。公式法可以 上下互为计算 、且 左右呈关联 ,另外公式法最为核心的就是: 一切结构皆可优化 直到最小不可分割。具体的公式法包括:
具体的思维导图如图所示:
我们之前提到过,公式法在分析过程中主要包括+、-、x、÷,那么我们在实际分析问题中,分别在情况下应用这四种符号呢?各种符号的具体应用如下:
我们通过应用上面介绍的公式法来分析上面提到的案例,过程如下:
这就是我们常用毕昌的公式法,通过我们之前介绍的结构化、公式法可以解决一些我们经常用到的一些问题,但是还有一些问题通过这两种分析方法解决不了。因此,需要还需要另外的一种数据分析方法——业务化。接下来,给大家详细介绍业务化。
我们首先引入以下一个案例:
拿到这个问题,我们的思维大概是从这手歼扒几个点进行分析的:
如果,我们这样分析、考虑一个问题,可能会存在一定的问题:我们没有将 单车的损耗因素 考虑进去,这或许会对我们后期投放的决策有很大的影响。如果我们有了业务化的思维,我们就不会有这个错误。业务的思维对于数据分析师来说是至关重要的,这里大概做一介绍,下篇文章我们会详细介绍数据分析的业务相关的内容。
从上面的介绍可以看出:如果我们分析问题仅仅是通过结构化+公式化,那么我们就会感觉道理懂了很多,但离分析水平大成,总还差了那么一些。不知道原因在哪里?因此对于缺乏业务话的数据分析师来说,他们仅仅是为分析而分析,却没有深入理解业务,这也就是我们经常说的不接地气,好的数据分析思维,本身应该也是具备业务思维。
每当你分析一个问题时候,你应该反思你的分析贴不贴合业务,即:
我们再看一个案例
正常来说,我们一般分析的原因如下:
如果我们用用结构化思考+公式化将其问题拆解,获得的最终分析论点。很多时候,这个分析论点是 现象 。数据是某个结果的体现,但 不代表原因 。如果我们是数据分析师,我会设立哪些指标。另外,就是换位思考,假如我是参不其中的人,我会怎么考虑或者会有哪些行为?其实,我们用业务化的方式分析数据就是将结构化思维通过公式法将其转变为结构化数据,最后通过业务化的方法将其转变为结构化业务数据。具体过程如下:
这是个人通过学习做的一张思维导图,仅供参考,大家还可以完善:
通过上面介绍的三种核心思维方法,这只是框架型的指引。实际应用中也应该借劣思维的技巧工具,达到四两拨千金的效果。并且,它们应该足够简单和有效。接下来,给大家介绍几种常用的分析方法: 象限法 、 假设法 、 对比法 、 二八法 、 指数法 、 多维法 、 漏斗法 。
其实,我们日常生活中,象限法用的还是挺多的,我们首先看一张图来对象限法有一个大概的印象。
多维法在日常的分析中应用的还是挺多的。以下就是一个多维法的应用:
我们在用多维法进行数据分析时,可以从以下角度进行分析:
多维法一般包括 钻取 、 上卷 、 切片 、 切块 、 旋转 等各种方法,具体如图所示:
在介绍假设法之前,首先引入一个案例:
我相信的大家的回答会有很多,但是最恰当的回答是:虽然非洲这个地方我并不熟悉,但众所周知非洲的情况,那么现在我得考虑炎热的情况…。其实很多时候,数据分析是没有数据可明确参考的:比如新进入一个市场,公司开拓某样产品。老板让你预测一年后的销量,戒者产品的数据基础非常糟糕,你根本拿不到数据。这就需要我们用假设法。
假设有这么一个案例需要你分析其原因:
其实,我们可以 假设活动是有效的 。然后进行以下的分析:
我们对这个问题进一步深入:
其实假设法核心: 是一种启发思考驱劢的思维 ,另外其优点在于当没有直观数据或者线索能分析时,以假设先行的方式进行推断,这是一个论证的过程。这种方法更多是一种思考方弅,假设—验证—判断。但是,在用假设法的时候我们必须要注意:不止可以假设前提,也能假设概率或者比例,一切都能假设,只要自圆其说即可。接下来给大家介绍指数法。
指数法在日常生活中应用很广泛的,比如:
很多时候,我们有数据,但不知道怎么应用。就是因为缺乏了一个有效性的方向。这个方向可以成为目标指数。通过将数据加工成指数,达到聚焦的目的。其中的指数法主要包括: 线性加权 、 反比例 、 log法 。很多时候,这几种方法主要应用于Excel做数据分析的时候。
其实,指数法的核心是: 一种目标驱动的思维 。其优点是:目标驱动力强,直观、简洁、有效。对业务有一定的指导作用。一旦设立指数,不易频繁变动。另外其中的应用在于:与假设法不同的是:假设法是缺乏有效的数据,指数法是无法利用数据而将其加工成可利用的。当我们要用指数法的时候必须要注意的是:指数法没统一的标准,很多指数更依赖经验的加工。接下来,给大家介绍二八法。
其实二八法是不常用的,让我们看一下二八法:
其实二八法的核心是: 一种只抓重点的思维 。其中的优点有:和业务紧密相关,和KPI更紧密相关。几乎花费最少的精力就能达到不错的效果,性价比很优。应用很广,主要包括:二八法则存在于几乎所有的领域,所以这种分析思维没有局限。但是当我们在用二八法中必须要注意的是:在条件允许的情况下,数据分析依旧不能放弃全局,否则会让思路变得狭隘。接下来,给大家介绍对比法。
有一位数据分析师曾经说过:“好的数据指标,一定是比例戒者比率。好的数据分析,一定会用到对比。”,这也说明对比法在数据分析中的重要性。接下来,我们给出一个案例:
我们在给出一个案例:
对比法将以上的分析做一个思维导图如下:
漏斗法是我们经常用的数据分析法,以下就是漏斗法的分析结果:
数据分析中的一个典型的案例: 啤酒与尿布 。那么,为什么啤和尿布放在一起呢?
我们在日常生活中都有数据分析的案例。比如:
总之,我们应该在实际生活中去练习数据分析的思维。
从上篇 文章 开始,我们开始了介绍数据分析,本篇文章主要是为大家介绍了数据分析思维,主要给大家介绍了数据分析的三种核心思维方式:结构化、公式化以及业务化。另外还介绍了几种核心的思维分析技巧,主要包括:象限法、多维法、对比法、假设法、指数法、二八法、对比法以及漏斗法。最后还介绍了在业务中如何锻炼自己的数据分析思维。下一篇文章会给大家介绍数据分析中的业务。生命不息,奋斗不止,我们每天努力,好好学习,不断提高自己的能力,相信自己一定会学有所获。加油!!!
‘柒’ 数据分析师常用的思维分析方式是什么
1. 对比思维
对比这两个字大家肯定都不陌生,比如买东西我们会货比三家,其实生活中处处有对比。
比如说,小芳一直成绩优异,但是末次考试发挥失常,数学只考了40分,班主任找到小芳谈话,问她说:“你最近怎么回事,上次你数学考了80分,全班前十,这次怎么考的这么差?你看看你的同桌,这次都考了73分。”
从这个小故事中可以看出,对比一般有两种方式,横向对比和纵向对比。横向对比也就是与同类对比,比如班主任拿小芳的成绩跟她同桌的成绩做对比。纵向对比是指同一类型不同时间的对比,比如班主任拿小芳这次的成绩和上次的成绩做对比。
2. 细分思维
细分思维很多人可能乍一听不太明白,其实生活中很多小事都体现了细分思维。就比如我们人体是由九大系统构成的,系统又是由器官构成的,器官是由组织构成的、细胞又构成了组织,层层细分。
再拿刚刚的例子来说,还是我们的小芳同学,还是刚刚那场考试,班主任让小芳对自己这考试的总成绩做一个总结,小芳拿着成绩单仔细研究,发现这次总成绩不是很好,但是仔细一看,发现除了数学成绩只考了40分以外,其他科目的成绩都名列前茅,数学成绩拉低了小芳的整体成绩。
在这里我们就是把整体考试成绩细分为具体的科目来总结归因。在数据分析的工作中,细分的纬度主要包括时间、地区、渠道、产品、员工、客户等。杜邦分析法、麦肯锡的 MECE 分析法本质上都属于细分思维。
3. 溯源思维
前两个思维能够对应一部分数据分析工作要求,但是如果有一些数据不能用前两种思维来处理怎么办呢?
那我们就可以用到另一种溯源思维。俗话说追根溯源,很多时候我们要想知道事物背后的逻辑原因,最好的方法可能是去探究事物发生的原因,来帮助我们分析。
继续拿小芳举例,她放学回家把成绩单交给妈妈,妈妈通过对比、细分的思维方法知道了小芳这次考试的大概情况,也知道是数学失利了。但是小芳的数学一向是强项,妈妈还是无法理解为什么会在这里出问题,于是妈妈找来小芳谈心,详细了解了考试时的情况,才发现是因为小芳考数学的那天中午吃坏了肚子,下午的数学考试刚好发作,疼痛难忍,以至于很多本来会做的题目都做错了。妈妈也理解了小芳,并且向小芳表达了歉意,也会更注重小芳的饮食问题。
上面的例子里,小芳的妈妈无法从表面的数据上分析出事情发生的原因,于是采用了溯源思维,找到了真正的原因。如果数据分析师在工作中也能利用好溯源思维,那么对数据的敏感和业务的理解也能逐步加深。
4. 相关思维
上面几种思维是比较常用的思维方式,下面我们就来说说相关思维,这也是数据分析的核心思维能力。
很多人可能都知道着名的啤酒与尿布的故事,在业界是一个相关分析的经典案例。故事背景是20世纪90年代的美国沃尔玛超市,当时沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。
沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:跟尿布一起购买最多的商品竟是啤酒。
经过大量实际调查和分析,揭示了一个隐藏在“尿布与啤酒”后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的妻子们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。
如果数据分析师能够熟练灵活的将相关分析运用到工作中,就能从仅仅知道数据分析的结果是什么进阶到知道呈现这个结果的原因是为什么。
5. 假设思维
之前的思维模式都是建立在我们有大量的已知数据可以进行分析论证的时候,那么如果我们还没有足够的数据量或者证据来验证这件事,我们应该怎么办呢?这种时候就可以用到我们的假设思维。先对大胆进行假设,然后再小心求证,最后去想办法验证假设是否成立。
比如,小芳想吃荔枝,于是下楼去买,跟卖荔枝的阿姨之间有这样一段对话:
小芳:“阿姨,你这荔枝甜不甜?”
阿姨:“甜啊,我这有切好的,你先尝一尝试试。”
小芳:“好,那我尝一个。”
小芳拿来一个荔枝,尝了一口:“嗯,不错,确实挺甜的,给我称两斤吧。”
上面这个看似简单的小故事,其实就隐藏了简单的假设检验。首先,小芳提出假设:荔枝是甜的;其次,随机抽取一个样本;然后,检验是否是甜的;最后,作出判断,确认荔枝真的是甜的,所以就购买了。
在数据分析中,假设思维的专业术语叫假设检验,一般包括四个步骤,即:提出假设、抽取样本、检验假设、作出判断。数据分析师可以充分利用这一思维模式。
6. 逆向思维
逆向思维这个词大家一定都不陌生,很多着名企业家的演讲中就常常提到这个词,他们都提倡打破常规的思维模式,从相反的方向来思考问题。
下面我们邀请小芳同学再次登场。
有一次,小芳去买辣椒,跟阿姨之间又有一段对话。
小芳:“阿姨,你这辣椒多少钱一斤?”
阿姨:“一块五。”
小芳挑了 3 个放到秤盘:“阿姨,帮我称一下。”
阿姨:“一斤半,两 块 2 毛。”
小芳去掉其中最大的辣椒:“做汤不用那么多。”
摊主:“一斤二两,一块6毛。”
小芳拿起刚刚去掉的那个最大的辣椒,付了 6毛钱,笑着跟阿姨说了再见。
你看,运用逆向思维,有时可能会起到意想不到的效果。
7. 演绎思维
演绎思维相对于前面的几种思维方式可能不是那么好理解。
演绎思维的方向是由一般到个别,大家要记住这一点,后面我们还会提到。也就是说,演绎的前提是一般性的抽象知识,而结论是个别性的具体知识。演绎的主要形式是由大前提、小前提、结论三部分组成的三段论。
以物理学上一个常识为例。
大前提:金属能导电。
小前提:银铁是金属。
结论:银能导电。
从这个例子中可以看出,大前提是已知的一般原理(金属能导电),小前提是研究的特殊场合(铁是金属),结论是将特殊场合归到一般原理之下得出的新知识(银能导电)。
8. 归纳思维
归纳思维的方向与演绎正好相反,归纳的过程是从个别到一般。
还是以金属能导电为例。
前提:金能导电,银能导电,铜能导电,铝能导电。
结论:金属能导电。
数据分析的过程,往往是先接触到个别事物,而后进行归纳总结,推及一般,再进行演绎推理,从一般推及个别,如此循环往复,不断积累经验。
总结
本文总结了数据分析的 8 种思维,分别是对比、细分、溯源、相关、假设、逆向、演绎、归纳。作为一名数据分析师,如果在工作中能充分运用好这些思维,是对个人能力极大地提升,就能够在工作中创造更多的个人价值。
‘捌’ 求《数据分析方法培训》全文免费下载百度网盘资源,谢谢~
《数据分析方法培训》网络网盘pdf最新全集下载:
链接: https://pan..com/s/1a25OgSpybxai2SPQYfMseA
‘玖’ 《人才数据分析指南:理念方法与实战技巧》pdf下载在线阅读全文,求百度网盘云资源
《人才数氏拆据分析指南:理念方法与实战技巧》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1lWxNI7YRXsa-L2obc8CxGw