导航:首页 > 研究方法 > 赖氨酸内切酶分析方法

赖氨酸内切酶分析方法

发布时间:2023-04-05 15:06:02

Ⅰ 蛋白质中活性赖氨酸的评价实验

给你拷了个方法过来,可参考一下:

赖氨酸(lysine, Lys)作为猪的第一限制性氨基酸,从20世纪50年代开始一直是动物营养学研究的热点之一。Lys在动物饲料中用量大、成本较高,因此必须精确地确定动物最佳生长发育的最低需要量。另一方面许多原料经过加热、加压、磨粉、碱处理或贮存时间过长,均可导致Lys的є-氨基与其它物质发生反应,形成脱氧酮糖化合物,该物质虽能被动物吸收,但无营养价值(Eichner 等, 1994),从而导致部分Lys不能被动物利用。只有准确评价Lys的有效率,才能合理利用Lys,从而避免蛋白质资源的缺乏和浪费,减少动物对氮的排放和环境污染。准确测定饲料和回肠末端食糜活性Lys含量,将有利于动物对Lys需要量的研究。
1 活性Lys(Reactive lysine)的定义
Lys的基本结构为丙胺酸(如图1),丙胺酸的β-碳原子上带有一个丙胺基,ε-氨基比α-氨基具有较高的pKa(多肽为10.5),从而使得Lys侧链的亲核性下降。特殊环境作用能够降低Lys侧链的pKa,使之变得活跃。活性Lys是指Lys上的є-氨基能与其他物质发生反应的Lys,可利用Lys是指食入的Lys能够被动物吸收并可用于蛋白质合成的Lys,可消化氨基酸是指食入的Lys经消化后被吸收的Lys,从实用角度,可以把可消化Lys和可利用Lys同等对待,但活性Lys与可消化Lys或可利用Lys有着本质的区别。
图1 赖氨酸的基本结构
2 活性Lys的测定方法
饲料活性Lys的测定方法有多种,每一种方法都有各自的优缺点,许多研究者对各种方法分别进行了论述(见表1)。
2.1 1-F-2,4-二硝基苯法(FDNB法)
Carpenter(1960)用FDNB法连接Lys残基,酸水解之后用分光光度计测定DNP-Lys含量,当样品含有碳水化合物时,会生成一些不稳定的化合物,导致过高估计活性Lys含量(Matheson,1968)。Holm(1971)在碳水化合物水解时,试图使用色谱法从受到干涉的氨基酸和其他化合物中分离出DNP-Lys。Peterson和Warthesen(1979]使用高效液相色谱来分析活性Lys,检测波长为436 nm,C18毛细柱,20%乙氰和80% 0.01M醋酸盐缓冲液(pH 4.0)作为流动相,该法首先应用在分析二硝基苯基化棉籽蛋白的水解产物。Catherine等(1997)[11]应用上述方法未能很好地测定DNP-Lys,并得出DNP-Lys紫外线最大吸收峰在364 nm,而不是在436 nm,并对此分析方法做了改进,用20%乙氰和80%0.01M邻苯二甲酸氢钾缓冲剂(pH3.9)混合物作为流动相,在此条件下,DNP-Lys和其它化合物能很好地得到分离。Qin等(1998)报道,用FDNB法测定中国大豆和阿根廷大豆活性Lys,加热到100℃和118 ℃时,FDNB-活性Lys变化规律不明显,但当加热到136℃,两种大豆中活性Lys含量随加热时间的延长而降低。近年来,很多学者用高效液相色谱法测定以谷物为主的婴儿食物、婴儿配方食品和其他食品DNP-Lys含量,但是没有进一步与动物试验结果进行比较(castillo等,1997;Alala-Hurtado等,1999;Fernandez-Artigas等1999;Hermandez等,2001)。

2.2 胍基反应法 (Guanidination)
胍基反应法是Mauron和Bujard(1964)建立一种活性Lys分析方法,这种方法根据ε-氨基在碱性条件下与邻-甲基脲胍基反应形成同型精氨酸,经过水解后同型精氨酸可以用离子交换层析法测定,该测定方法尽管反应时间较长(几天)、温度控制严格(室温),但分析结果可靠,因此现在还普遍使用。Mao等(1993)用葡萄糖或碱处理大豆活性Lys,结果表明,与总Lys分析比较,葡萄糖处理组总Lys含量下降17%~40%,活性Lys含量下降78%~85%。用胍基反应证实了热碱处理损害活性Lys更为真实, 其原因是在酸水解时重新除去一些被反应的Lys(如美拉德反应起始物果糖-Lys)。Imbeah 等(1996)在酪蛋白和大豆粉中得到胍基反应的最佳反应条件,得到可溶奶蛋白Lys转化率为100%,大豆稍低于80%。 Ravindran(1996)等研究了饲料原料胍基反应,以确定内源氨基酸的分泌量,主要集中棉籽蛋白最佳转化的研究,64% Lys转化为同型精氨酸。Moughan(1996) 在上述相同的试验条件下,用胍基反应法与FDNB法测定了热处理酪蛋白/乳糖混合物中活性Lys含量;Rutherfurd(1997 a)用胍基反应法和FDNB法对血粉、小麦粉、肉骨粉、豆粉、棉子粉活性Lys含量进行比较。两者结果表明,胍基反应法测出活性Lys含量等于或高于用FDNB法(见表2)。因此,Rutherfurd(1997a, b)、Moughan(1996)指出该方法在消化试验中能更加精确地确定Lys消化率,因为在分析粗原料和食糜Lys时,没有减去蛋白质水解前所破坏的Lys。从表3可见,在血粉、豆粉、肉骨粉、干燥玉米、热脱脂乳粉以及棉籽粕中,常规氨基酸分析法测定回肠真消化率明显低于可消化Lys含量。

2.3 荧光计分析法(OPA法)
Goodno等 (1981)设计了一种荧光计分析法,用邻苯二甲醛(OPA)来估价蛋白质活性Lys。Vigo等(1992报道美拉德反应前后,不同富含碳水化合物奶产品,其活性Lys含量可用OPA分光光度计法进行测定(表4),从FDNB法测得的数据可以看出,透析前活性Lys明显低于透析后,无透析样品损失了活性Lys,可能是由于糖含量较高。当有糖存在时,FDNB法测量活性Lys会过低。从OPA法测得的结果来看,透析与不透析的差异不明显。所以在有高水平糖存在时,用OPA法分析饲料或食物活性Lys应该是可行的。


※样品1 未加热, 样品2 60°C加热20小时, 样品3 100°C加热1小时, 样品4 120°C加热45分钟; 表中数据为平均±标准差。
与其它化学方法比较,用OPA法估计奶产品活性Lys有以下几个优点:1)糖不会干涉;2)分析样品量少;3)操作简单;4)没有严格的处理,如蛋白质水解、加热或溶剂萃取,可以在短时间内完成。
2.4 化学计量染色法
Ibolya和Margit (1985)使用化学计量染色法确定大豆蛋白活性Lys含量,根据蛋白质自由碱性基团与1-苯-2萘酚-6, 8二磺酸(OG)反应来确定。蛋白质游离的部分碱性基团(组氨酸、精氨酸和Lys)来确定总氮含量,部分碱性基团通过美拉德反应来确定总氮变化。根据两个分子结构不同而作出的假设,OG颜色敏感性只有AO-12(十二烷基二甲基氧化铵)的一半。因为OG含氮载体能够结合两个氨基,而AO-12只能结合一个氨基。染料与蛋白质比通常小于1, AO-12测定活性Lys是直接根据它的染色能力。
染色法是测量蛋白质热反应最方便的方法,具有便宜、省时省力、不需要水解蛋白质等优点。3 小结
FDNB法、胍基反应法、荧光计分析法和化学计量染色法四种方法各有优缺点。在实际生产中,为了检测活性Lys的结果更加准确,应根据不同饲料原料选择不同的方法。通过测定饲料和回肠食糜活性Lys含量,我们能够精确估计饲料成本,更有效地选择饲料原料,从而为配制高效日粮提供理论依据,进一步改善日粮蛋白质的利用效率,为节约蛋白质资源开辟新的道路。
参考文献
1 Swaisgood, HE and Catignani, GL. Digestibility of modified milk proteins: nutritional implications. J. Dairy Sci. 1985, 68, 2782-90.
2 Carpenter, KJ.. The estimation of the available lysine in animal protein foods. J. Biochem. 1960, 77, 604-10.

Ⅱ 用电位滴定法测定盐酸赖氨酸的含量时,所用的电极是什么

电位滴定法与永停滴定法
附录Ⅶ A 电位滴定法与永停滴定法

电位滴定法与永停滴定法是容量分析中用以确定终点或选择核对指示剂变色域的方
法。选用适当的电极系统可以作氧化还原法、中和法(水溶液或非水溶液)、沉淀法、
重氮化法或水分测定法等的终点指示。
电位滴定法选用2支不同的电极。1支为指示电极,其电极电势随溶液中被分析成分
的离子浓度的变化而变化;另1支为参比电极,其电极电势固定不变。在到达滴定终点时,
因被分析成分的离子浓度急剧变化而引起指示电极的电势突减或突增,此转折点称为突
跃点。
永停滴定法采用2支相同的铂电极,当在电极间加一低电压(例如50mV)时,若电极在
溶液中极化,则在未到滴定终点前,仅有很小或无电流通过;但当到达终点时,滴定液
略有过剩,使电极去极化,溶液中即有电流通过,电流计指针突然偏转,不再回复。反
之,若电极由去极化变为极化,则电流计指针从有偏转回到零点,也不再变动。
仪器装置 电位滴定可用电位滴定仪、酸度计或电位差计,永停滴定可用永停滴定
仪或按图示装置。
电流计的灵敏度除另有规定外,测定水分时用10<-6>A/格,重氮化法用10<-9>A/格。
所用电极可按下表选择。
————————┬——————————┬——————————————
方 法 │ 电 极 系 统 │ 说 明
————————┼——————————┼——————————————
水溶液氧化还原法│ 铂-饱和甘汞 │铂电极用加有少量三氯化铁的硝
│ │酸或用铬酸清洁液浸洗
————————┼——————————┼——————————————
水溶液中和法 │玻璃-饱和甘汞 │
————————┼——————————┼——————————————
非水溶液中和法 │玻璃-饱和甘汞 │饱和甘汞电极套管内装氯化钾的
│ │饱和无水甲醇溶液。玻璃电极用
│ │过后应即清洗并浸在水中保存
————————┼——————————┼——————————————
水溶液银量法 │ 银-玻璃 │银电极可用稀硝酸迅速浸洗
├——————————┼——————————————
│银-硝酸钾盐桥-饱和甘│
│汞 │
————————┼——————————┼——————————————
-C≡CH中氢置换法│玻璃-硝酸钾盐桥-饱和│
│甘汞 │
————————┼——————————┼——————————————
硝酸汞电位滴定法│铂-汞-硫酸亚汞 │铂电极可用10%(g/ml)硫代硫酸
│ │钠溶液浸泡后用水清洗。汞-硫
│ │酸亚汞电极可用稀硝酸浸泡后用
│ │水清洗。
————————┼——————————┼——————————————
永停法 │铂-铂 │铂电极用加有少量三氯化铁的硝
│ │酸或用铬酸清洁液浸洗
————————┴——————————┴——————————————
滴定法 (1)电位滴定法 将盛有供试品溶液的烧杯置电磁搅拌器上,浸入电极,
搅拌,并自滴定管中分次滴加滴定液;开始时可每次加入较多的量,搅拌,记录电位;
至将近终点前,则应每次加入少量,搅拌,记录电位;至突跃点已过,仍应继续滴加几
次滴定液,并记录电位。
滴定终点的确定 用坐标纸以电位(E)为纵坐标,以滴定液体积(V)为横坐标,
绘制E-V曲线,以此曲线的陡然上升或下降部分的中心为滴定终点。或以△E/△V(即
相邻两次的电位差和加入滴定液的体积差之比)为纵坐标,以滴定液体积(V)为横坐标,
绘制(△E/△V)-V曲线,与△E/△V的极大值对应的体积即为滴定终点。也可采用二
阶导数确定终点。根据求得的△E/△V值,计算相邻数值间的差值,即为△<2>E/△V<
2>,绘制(△<2>E/△V<2>)-V曲线,曲线过零时的体积即为滴定终点。
如系供指示剂变色域的选择核对,滴定前加入指示剂,观察终点前至终点后的颜色
变化,以选定该品种终点时的指示剂颜色。
(2)永停滴定法 用作重氮化法的终点指示时,调节R<[1]>使加于电极上的电压约为
50mV。取供试品适量,精密称定,置烧杯中,除另有规定外,可加水40ml与盐酸溶液(1
→2)15ml,而后置电磁搅拌器上,搅拌使溶解,再加溴化钾2g,插入铂-铂电极后,将
滴定管的尖端插入液面下约2/3处,用亚硝酸钠滴定液(0.1mol/L或0.05mol/L)迅速滴定,
随滴随搅拌,至近终点时,将滴定管的尖端提出液面,用少量水淋洗尖端,洗液并入溶
液中,继续缓缓滴定,至电流计指针突然偏转,并不再回复,即为滴定终点。
用作水分测定的终点指示时,可调节R<[1]>使电流计的初始电流为5~10μA,待滴
定到电流突增至50~150μA,并持续数分钟不退回,即为滴定终点。


Ⅲ 测定蛋白质中氨基酸含量的主要步骤有哪些为什么一般分析报告显示17种氨基酸成分

一般来说人体必须的17种氨基酸,也较为重视

氨基酸的定性测定
一、氨基酸的一般显色反应
本节介绍三种显色反应:茚三酮法、吲哚醌法和邻苯二甲醛法。前二种是经典的常用显
色法,后一种是近年来发展起来的荧光显色法,具有灵敏度高的特点。
1. 茚三酮法
显色方法有下列数种:
①常用法:将点有样品的层析或电泳完毕的滤纸充分除尽溶剂,用 5g/L 茚三酮无水丙
酮溶液喷雾,充分吹干,置65℃烘箱中约30min(温度不宜过高,避免空气中氨,以免背
景泛红色),氨基酸斑点呈紫红色。
为了使各种氨基酸呈现不同颜色,可用下列方法:
②用 0.4g 茚三酮,10g 酚和90g 正丁醇的混合液显色。
③用 1g/L 茚三酮无水丙酮溶液显色完毕后,再用盐酸蒸汽熏1min。
④用 1g 茚三酮,600mL 无水乙醇,200mL 冰醋酸及80mL2,4,6-三甲基吡啶混合液80
℃染色5~10min。
为了使显色稳定,可用下列方法:
⑤配制含醋酸镉 2g 加蒸馏水200mL 及冰醋酸40mL 的贮存液。将上述贮存液加200mL
丙酮及2g 茚三酮,即为显色液。点有样品的滤纸上浸有此显色液后,放置于盛有一小杯浓
硫酸的密闭玻璃容器中,25℃,18h,或较高温度下适当缩短时间。背景色浅,氨基酸斑点
也比较稳定。
⑥用含 2g/LCoCl2(或CuSO4)的4g/L 茚三酮异丙酮溶液显色时,氨基酸斑点呈红色,也
可在茚三酮显色后喷以含钴、镉或铜等无机离子的异丙醇溶液,斑点自蓝紫色变成红色。
2.吲哚醌法
(1)原理
各种氨基酸与吲哚醌试剂能显示不同颜色,因此可借此辩认氨基酸。氨对吲哚醌显色没
有妨碍,但其灵敏度较茚三酮法稍差,显色不稳定,颜色只有在绝对干燥的环境中才能保存。
(2)试剂
①显色剂:1g 吲哚醌溶于100mL 乙醇及10mL 冰醋酸中(若冰醋酸用量减少则灵敏度
稍差)。
②底色褪色剂:在 100mL 200g/L 碳酸钠溶液中加入60g 硅酸钠(Na2SiO3•9H2O)在水
浴(60~70℃)中加热搅拌直至完全溶解,待溶液比较清澈为止。在溶解过程中,有时硅酸
钠会结成凝胶,此时只需继续搅拌即可溶解。配制时若硅酸钠用量多则褪色较快,但背景容
易变黄,硅酸钠用得少(40g),虽裉色较慢,但背景较为洁白。
显色步骤
层析或电泳后滤纸烘干后,仔细喷上或涂上显色剂,用电吹风迅速吹干,待醋酸气味不
太刺鼻时移置100℃烘箱烘5~15min,直至显色为止(温度不要太高,以免引起减色)注
意观察所显出的颜色,然后均匀地涂上底色褪色剂,纸的背景即由黄色变为绛红而后逐渐变
浅,待黄色背景几乎褪尽时,迅速用电吹风吹干,并随时观察颜色的变化。例如苏氨酸在褪
色前为浅红带褐色,褪色后则呈橙黄色或黄色:脯氨酸在褪色前为蓝色,吹干时很快褪成无
色。室温较低时,底色褪色很慢,此时可将褪色剂加温到30~40℃。温度过高也不宜,因
氨基酸斑点的褪色速度也同时加快,应该避免。
其他显色步骤:显色剂为 1g 吲哚醌,1.3g 醋酸锌溶解于70~80mL 热异丙醇中,冷却
后加1mL 吡啶。或者1g 吲哚醌,1.5g 醋酸锌溶解于95mL 热异丙醇中,加3mL 水,冷却
后加1mL 冰醋酸。点有样品的滤纸仔细喷以显色剂后,80~85℃放置10min,背景可用水
迅速浸洗去而不使氨基酸斑点退去
由于吲哚醌试剂配制方法不同,对同一种氨基酸所显颜色往往也有差异。
3.邻苯二甲醛法
邻苯二甲醛法是目前纸上层析、硅胶薄层层析荧光显色氨基酸最灵敏的方法之一,也可
用于氨基酸溶液定量,并推广应用于乙内酰苯硫脲氨基酸、多肽和蛋白质的检出和定量。根
据文献报道,氨基酸纸上层析灵敏度达0.5μmoL,在硅胶薄层层析上为0.05~0.2μmoL。
这里介绍在纸上层析显现氨基酸方法。(荧光胺是另一种常用的荧光试剂,由于荧光胺来源
比较困难,这里未作介绍)
(1)原理
邻苯二甲醛在 2-巯基乙醇存在下,在碱性溶液中与氨基酸作用产生荧光化合物,最适
的激发光和发射光波长分别为340nm 和455nm。
各种氨基酸显现的荧光强度不同,其相对荧光强度由大到小大致顺序如下:天门冬氨酸,
异亮氨酸,甲硫氨酸,精氨酸,组氨酸,亮氨酸,丝氨酸,缬氨酸,谷氨酸,苏氨酸,甘氨
酸,色氨酸,丙氨酸,苯丙氨酸,赖氨酸,酪氨酸,NH3,脯氨酸和半胱氨酸。
(2)试剂
邻苯二甲醛显色液:取0.1g 邻苯二甲醛,0.1mg 巯基乙醇,1mL 三乙胺,加丙酮+石油
醚(60℃~90℃)(1+1)的混合溶剂至100mL。放置0.5h 后使用。
显色步骤
将含有氨基酸样品的滤纸浸入邻苯二甲醛显色液中 1min,冷风吹干,在温度18℃以下,
湿度50%~90%之间显色0.5h,于紫外灯下观察荧光点。
说明
在滤纸上显现氨基酸时,邻苯二甲醛浓度以 0.1%为宜。显色时必须有一定的湿度,以
便氨基酸溶解,提高分子碰撞机率,并使极性基团解离,促进反应趋于完全。湿度太低,显
不出荧光。温度对显现的荧光延时有显着影响,温度高荧光延时短,温度低荧光延时长。
二、个别氨基酸的显色反应
利用个别氨基酸与某些试剂具有特殊的显色反应定性氨基酸。可应用于纸层析和纸电
泳显色,也可单独应用。方法很多,仅将常用的方法介绍如下:
1.精氨酸的显色——坂口(Sakaguchi)反应
(1)第一种方法
试剂:①5g 尿素溶解于100mL0.1g/Lα-萘酚乙醇中。使用前,每100mL 加约5g KOH。
②0.7mL 溴水溶解于100mL 5%NaOH 中。
显色步骤:在点有样品的滤纸上喷试剂①后,在空气中吹几分种,再喷试剂②。精氨
酸或含精氨酸的多肽显红色。此试剂对含精氨酸的蛋白质也适用。
(2)第二种方法:
试剂:①1g/L 8-羟基喹啉的丙酮溶液。②0.02mL 溴水溶解于100mL 0.5mol/LnaOH 溶
液中。
显色步骤:将点有样品的滤纸烘干后,喷上试剂①,吹干后,再喷试剂②。精氨酸或
其他胍类物质显桔红色。
2.胱氨酸和半胱氨酸的显色
试剂:①1.5g 亚硝基铁氰化钠(Na2Fe(CN)5NO2•5H2O)溶于5mL 2mol/L H2SO 4 溶液
中,加95mL 甲醇。此时会有沉淀产生,可保存一个月以上。使用时在每100mL 上述溶液
中加10mL 28%氨水,过滤除去沉淀,清液仅能保持一天左右。②2g 氰化钠溶于5mL 水中,
然后加95mL 甲醇。此时有沉淀产生,使用时只需摇匀即可。
显色步骤:半胱氨酸的显色:在滤纸上喷以试剂①的清液,5min 后半胱氨酸显红色。
胱氨酸的显色:先将滤纸浸入试剂②,迅速取出,稍等片刻再喷试剂甲的清液,5min 后胱
氨酸显红色。也可以把试剂②配制的浓度增加一倍,在显色前混和,再喷到滤纸上。
3.甘氨酸的显色
试剂;0.1g 邻苯二甲醛溶于100mL 77%乙醇中。
显色步骤:点有样品的滤纸喷上试剂,甘氨酸显墨绿色,在汞灯(365nm)下显巧克力
棕色。吲哚醌显色后,再用此试剂仍有效。以甘氨酸为N 端的小肽也能显色,但其N 端被
保护后,以及其他氨基酸均不显色。
4.脯氨酸的显色
试剂:1g 吲哚醌和1.5g 醋酸锌,1mL 醋酸,5mL 蒸馏水混和,再加入95mL 异丙醇。
新鲜配制。
显色步骤:层析滤纸除尽溶剂,喷上以上试剂,80℃~85℃烘箱内放置30min,脯氨酸
显蓝色,再以30℃温水漂洗除去多余的试剂后,背景为白色或浅黄色。
也可剪下脯氨酸斑点,在试管中加入5mL 水饱和酚,在黑暗中洗脱15min,间歇振摇,
于610nm 测定其吸光度。从已知标准曲线即可求得样品内脯氨酸含量,测定范围5~20μg。
5.丝氨酸和羟赖氨酸的显色
试剂:①0.035mol/L 过碘酸钠(748mgNaIO4 溶于数毫升甲醇中,加2 滴6mol/L 盐酸,
再用甲醇稀释至100mL)。②15g 醋酸铵加0.3mL 冰醋酸,加1mL 乙酰丙酮,用甲醇稀释到
100mL。
显色步骤:点有样品的滤纸吹干,先喷试剂①,近干后再喷试剂②,室温放置 2h,紫
外灯下照射0.5h,丝氨酸和羟赖氨酸呈黄色斑点,在紫外线下都有荧光。
6.羟脯氨酸的显色
试剂:①1g 吲哚醌溶于100mL 乙醇及10mL 冰醋酸。②1g 对二甲胺苯甲醛溶于100mL
的丙酮浓盐酸(9+1)混合液中。(此试剂不稳定,隔数日后溶液颜色增深发黑,灵敏度降
低,故用时新鲜少量配制。
显色步骤:将待鉴定的溶液点于小方块纸上,干后先点上试剂①,热风吹干。这时纯
羟脯氨酸呈墨绿色,纯脯氨酸呈深蓝色(极灵敏),对其他氨基酸呈程度不同的紫红色(不
太灵敏);然后再点上试剂②吹干,如溶液中含有羟脯氨酸即转变为玫瑰红色,而其他氨基
酸与吲哚醌所生成的颜色则褪去。
7.色氨酸的显色
(1)第一种方法
试剂:1g 对二甲氨基苯甲醛加90mL 丙酮,10mL 浓盐酸。新鲜配制。
显色步骤:点有样品的滤纸干燥后,喷上以上试剂,在室温下放置几分钟后,色氨酸
显蓝色或紫红色。茚三酮显色后,仍可使用本法。
(2)第二种方法:
试剂:10mL 35%甲醛加10mL25%盐酸,20mL 无水乙醇。
显色步骤:点有样品的滤纸喷上以上试剂后,100℃烘5min,色氨酸在长波长紫外光下
呈现荧光(黄-橙-带绿色)。
8.酪氨酸的显色
试剂:①0.1%α-亚硝基β-萘酚的95%乙醇溶液。②10%硝酸水溶液。
显色步骤:点有样品的滤纸喷上试剂①后,吹干,再喷试剂②,然后在100℃烘3min,
酪氨酸或含酪氨酸的多肽在浅灰绿色的背景上显红色,0.5h 后转变为桔红色,其后渐退去。
灵敏度1~2μg 酪氨酸。茚三酮显色后,再用此试剂处理,仍能显色,茚三酮所显出的紫红
色斑点变成红色。
9.酪氨酸和组氨酸的显色——pauly 反应
试剂:①4.5g 对氨基苯磺酸与45mL 12mol/L 盐酸共热溶解,以蒸馏水稀释至500mL。
用时取出30mL,在0℃与等体积的5%亚硝酸钠水溶液相混合。(室温放置太长会失效)
②10%碳酸钠水溶液。
显色步骤:点有样品的滤纸上喷试剂①,片刻后再喷试剂②。组氨酸及含组氨酸的多
肽显桔红色;酪氨酸及含酪氨酸的多肽显浅红色。
第六节 氨基酸定量测定
一、氨基酸的一般定量测定
(一)甲醛滴定法
1.原理
氨基酸具有酸性的-COOH 基和碱性的-NH2 基。它们相互作用而使氨基酸成为中性的内
盐。当加入甲醛溶液时,-NH2 基与甲醛结合,从而使其碱性消失。这样就可以用标准强碱
溶液来滴定-COOH 基,并用间接的方法测定氨基酸总量。反应式(有三种不同的推论)如
下:
2.方法特点及应用
此法简单易行、快速方便,与亚硝酸氮气容量法分析结果相近。在发酵工业中常用此
法测定发酵液中氨基氮含量的变化,来了解可被微生物利用的氮源的量及利用情况,并以此
作为控制发酵生产的指标之一。脯氨酸与甲醛作用时产生不稳定的化合物,使结果偏低;酪
氨酸含有酚羧基,滴定时也会消耗一些碱而致使结果偏高;溶液中若有铵存在也可与甲醛反
应,往往使结果偏高。
3.操作方法
吸取含氨基酸约 20mg 的样品溶液于100mL 容量瓶中,加水至标线,混匀后吸取20.0mL
置于200mL 烧杯中,加水60mL,开动磁力搅拌器,用0.05mol/L 氢氧化钠标准溶液滴定至
酸度计指示pH8.2,记录消耗氢氧化钠标准溶液mL 数,供计算总酸含量。
加入10.0mL 甲醛溶液,混匀。再用上述氢氧化钠标准溶液继续滴定至pH9.2,记录消
耗氢氧化钠标准溶液毫升数。
同时取 80mL 蒸馏水置于另一200mL 洁净烧瓶中,先用氢氧化钠标准溶液调至pH8.2,
(此时不计碱消耗量),再加入10.0mL 中性甲醛溶液,用0.05mol/L 氢氧化钠标准溶液滴定
至pH9.2,作为试剂空白试验。
4.结果计算
氨基酸态氮质量分数(%)=
式中:V1——样品稀释液在加入甲醛后滴定至终点(pH9.2)所消耗氢氧化钠标准溶液
的体积,mL;
V2——空白试验加入甲醛后滴定至终点所消耗的氢氧化钠标准溶液的体积,mL;
c——氢氧化钠标准溶液的浓度,mol/L;
m——测定用样品溶液相当于样品的质量,g;
0.014——氮的毫摩尔质量,g/mmoL。
5.说明
①本法准确快速,可用于各类样品游离氨基酸含量测定。②浑浊和色深样液可不经处
理而直接测定。
(二)茚三酮比色法
1.原理
氨基酸在碱性溶液中能与茚三酮作用,生成蓝紫色化合物(除脯氨酸外均有此反应),
可用吸光光度法测定。
该蓝紫色化合物的颜色深浅与氨基酸含量成正比,其最大吸收波长为 570nm,故据此
可以测定样品中氨基酸含量。
2.操作方法
(1)标准曲线绘制
准确吸取 200μg /mL 的氨基酸标准溶液0.0、0.5、1.0、1.5、2.0、2.5、3.0mL(相当于
0、100、200、300、400、500、600μg 氨基酸),分别置于25mL 容量瓶或比色管中,各加
水补充至容积为4.0mL,然后加入茚三酮溶液(20g/L)和磷酸盐缓冲溶液(pH 为8.04)各
1mL,混合均匀,于水浴上加热15min,取出迅速冷至室温,加水至标线,摇匀。静置15min
后,在570nm 波长下,以试剂空白为参比液测定其余各溶液的吸光度A。以氨基酸的微克
数为横坐标,吸光度A 为纵坐标,绘制标准曲线。
(2)样品测定
吸取澄清的样品溶液 1~4mL,按标准曲线制作步骤,在相同条件下测定吸光度A 值,
用测得的A 值在标准曲线上可查得对应的氨基酸微克数。
3.结果计算
氨基酸含量(mg/100g)=
式中:c——从标准曲线上查得的氨基酸的质量数,μg;
m——测定的样品溶液相当于样品的质量,g。
4.说明及注意事项
①通常采用的样品处理方法为:准确称取粉碎样品 5~10g 或吸取样液样品5~10mL,
置于烧杯中,加入50mL 蒸馏水和5g 左右活性炭,加热煮沸,过滤,用30~40mL 热水洗
涤活性炭,收集滤液于100mL 容量瓶中,加水至标线,摇匀备测。
②茚三酮受阳光、空气、温度、湿度等影响而被氧化呈淡红色或深红色,使用前须进行
纯化,具体操作可参阅黄伟坤等编着《食品检验与分析》。
(三)非水溶液滴定法
1.原理
氨基酸的非水溶液滴定法是氨基酸在冰醋酸中用高氯酸的标准溶液滴定其含量。根据酸
碱的质子学说:一切能给出质子的物质为酸,能接受质子的物质为碱;弱碱在酸性溶剂中碱
性显得更强,而弱酸在碱性溶剂中酸性显得更强,因此本来在水溶液中不能滴定的弱碱或弱
酸,如果选择适当的溶剂使其强度增加,则可以顺利地滴定。氨基酸有氨基和羧基,在水中
呈现中性,而在冰醋酸中就能接受质子显示出碱性,因此可以用高氯酸等强酸进行滴定。
本法适合于氨基酸成品的含量测定。允许测定的范围是几十毫克的氨基酸
2.测定
(1)直接法(适用于能溶解于冰醋酸的氨基酸):精确称取氨基酸样品50mg 左右,溶解
于20mL 冰醋酸中,加2 滴甲基紫指示剂,用0.100mol/L 高氯酸标准液滴定(用10mL 体积
的微量滴定管),终点为紫色刚消失,呈现蓝色。空白管为不含氨基酸的冰醋酸液,滴定至
同样终点颜色。
(2)回滴法(适用于不易溶解于冰醋酸而能溶解于高氯酸的氨基酸):精确称取氨基酸样
品30~40mg 左右,溶解于5mL0.1mol/L 高氯酸标准溶液中,加2 滴甲基紫指示剂,剩余的
酸以醋酸钠溶液滴定,颜色变化由黄,经过绿、蓝至初次出现不褪的紫色为终点。
3.说明
(1)能溶解于冰醋酸的氨基酸,可以用直接法测定的有:丙氨酸、精氨酸、甘氨酸、组
氨酸、亮氨酸、甲硫氨酸、苯丙氨酸、色氨酸、缬氨酸、异亮氨酸和苏氨酸。不易溶解于冰
醋酸,但能溶解于高氯酸可以回滴法测定的有:赖氨酸、丝氨酸、胱氨酸和半胱氨酸。
(2)谷氨酸和天冬氨酸在高氯酸溶液中也不能溶解,可以将样品溶解于2mL 甲酸中,再
加20mL 冰醋酸,直接用标准的高氯酸溶液滴定。
(四)邻苯二甲醛法(OPT 法)
1.原理
邻苯二甲醛在 2-巯基乙醇存在下,于碱性溶液中与氨基酸作用产生荧光化合物,最适
的激发光和发射光波长分别为340 和455nm。可能产物为:
各种氨基酸显现的荧光强度不同,其相对荧光强度由大到小大致顺序如下:天门冬氨酸,
异亮氨酸,甲硫氨酸,精氨酸,组氨酸,亮氨酸,丝氨酸,缬氨酸,谷氨酸,苏氨酸,甘氨
酸,色氨酸,丙氨酸,苯丙氨酸,赖氨酸,酪氨酸,NH3,脯氨酸,和半胱氨酸。
本法可用于测定游离氨基酸的含量。灵敏度较茚三酮法约高 100 倍以上,可测到0.1~
1×10-4mol 氨基酸。如用于血清中α-氨基氮的测定,每次血清用量只需5~10μL。与另一
种荧光试剂(萤光胺)一样,空白无荧光,只有与氨基酸结合才产生荧光。缺点是与脯氨酸
不产生荧光,邻苯二甲醛与半胱氨酸荧光值太低。荧光胺已有用于氨基酸自动分析定量分析,
但由于试剂昂贵及个别氨基酸反应不满意,目前还未普遍应用。
(五)三硝基苯磺酸法
三硝基苯磺酸(TNBS)是定量测定氨基酸的重要试剂之一。TNBS 在偏碱性的条件下
与氨基酸反应,先形成中间络合物,如下式所示:
中间络合物在光谱上有二个吸收值相近的高峰,分别位于355nm 和420nm 附近。然
而溶液一旦酸化,中间络合物转化成三硝基苯-氨基酸(TNP-氨基酸),420nm 处的吸收值
显着下降,而350nm 附近的吸收峰则移至340nm 处。
利用 TNBS 与氨基酸反应的这一特性,可在420nm 处(偏碱性溶液中)或在340nm
(偏酸性溶液中)对氨基酸进行定量测定。下表列出各种氨基酸与TNBS 反应后在不同条
件下测定的吸光度。在340nm 处,各氨基酸的吸收度大致相近,而在420nm 处的吸光度
因氨基酸种类而异;在加入适量SO3
2-时,吸收值升高。
本法允许的测定范围是 0.05~0.4μmol 氨基酸。
表 10-3 各种氨基酸与TNBS 反应后在不同条件下测定的吸光度
氨基酸种类 碱性溶液① 酸性溶液加 SO3
①取不同含量氨基酸液1mL,加4%NaHCO3 1mL,0.1%TNBS 1mL,于40℃反应2h,用水补充至4mL,
在420nm 处测定。制作氨基酸浓度—吸光度坐标图,从曲线中求得各氨基酸于1μmol 时的吸光度。
②条件同上,但在与TNBS 反应时加0.01mol/L Na2SO3 1mL,最后总体积也是4mL,同样在420nm 处
测定。
③条件同①,但与 TNBS 反应后加1mol/L HCl 1mL 酸化,在340nm 处测定。
(六)乙酰丙酮和甲醛荧光法
1.原理
氨基酸与乙酰丙酮和甲醛反应,生成 N-取代基2,6-二甲基-3,5-二乙酰基1,4-二氢吡啶,
产生黄-绿色荧光,可用荧光分析法检测。主要反应如下:
乙酰丙酮 甲醛 氨基酸 荧光物质
2.试剂
混合试剂:取1mol/L 乙酸钠溶液10mL,加入乙酰丙酮溶液0.4mL 和30%甲醛溶液1mL,
用水稀释至30mL。
3.测定
取氨基酸液 1mL,加入混合试剂1mL,用棉花塞满试管口,避光于100℃下加热10min,
冷却,加水2mL,然后测定荧光值。
表 10-4 各种氨基酸的发射波长和检测范围
化合物(激发波长405nm) 发射波长(nm) 检测范围(mg/L)
甘氨酸 485 2~10
苯丙氨酸 490 8~40
丝氨酸 485 5~25
半胱氨酸(盐酸盐) 500 20~100
谷氨酸 485 20~100
与标准相比较求出样品中的氨基酸含量。
二、个别氨基酸的定量测定
(一)赖氨酸的测定
1.原理
用铜离子阻碍游离氨基酸的α-氨基,使赖氨酸的ε-氨基可以自由地与1-氟-2,4 二硝基
苯(FDNB)反应,生成ε-DNP-赖氨酸。经酸化和用二乙基醚提取,在波长390nm 处有吸收峰,
从而求出样品中游离赖氨酸的含量.
2.试剂
(1)氯化铜液:称28.0g 无水氯化铜,用水稀释至1000mL。
(2)磷酸三钠溶液:称68.5g 无水磷酸钠,用水稀释至1000mL。
(3)硼酸盐缓冲液(pH9.1~9.2):称54.64g 带有10 结晶水的四硼酸钠,用水稀释至
1000mL 。
(4)磷酸铜悬浮液:搅拌情况下,把氯化铜液200mL,缓慢倒入400 mL 的磷酸三钠溶液
中,把悬浮液以2000r/min 速度离心5min ,用硼酸盐缓冲液再悬浮沉淀物,洗涤离心3 次,
把最后的沉淀物悬浮在硼酸盐缓冲液中,并用缓冲液稀释至1L。
(5)1-氟-2,4 二硝基苯(FDNB)溶液:吸取FDNB10mL 用甲醇稀释至100mL。
(6)赖氨酸-HCl 标准溶液:称取一定量赖氨酸-HCl,用水配成200mg/L 的工作标准液。
(7)100g/L 丙氨酸溶液。
3.测定
(1)称取通过40 目筛的均匀试样1.00g,置于100mL 烧瓶中。另吸取赖氨酸-HCl 标准工
作液5mL(相当1mg 赖氨酸-HCl),连同试剂空白同时进行试验。
(2)向各烧瓶中加入25mL 磷酸铜悬浮液,然后再加10%丙氨酸1.0mL,振摇15min。吸
取10%FDNB 溶液0.5mL.置于各处理烧瓶中,将烧瓶置沸水中加热15min。
(3)取出烧瓶,立即加入1mol/LHCl 溶液25mL,并不断摇动使之酸化和分散均匀。
(4)烧瓶中的溶液冷却至室温,用水稀释至100mL.取约40mL 悬浮液进行离心。
(5)用25mL 二乙基醚提取上清液3 次,除去醚。并将溶液收集于有刻度试管中,于65℃
水浴中加热15min,以除去残留的醚。并记录溶液的毫升数。
(6)吸取上述各处理液10mL,分别与95%乙醇溶液10mL 混合,用滤纸过滤。
(7)用试剂空白液凋零,测定样液A390nm,与赖氨酸-HCl 标准液对照,求出样品中赖氨
酸-HCl 的含量。
本法在 0~40mg/L 赖氨酸溶液范围内呈良好线性关系。
4.说明
(1)添加一定量的中性氨基酸如丙氨酸,增加总氨基酸的浓度,有助于赖氨酸-HCl 浓度
具有良好的线性关系。
(2)用醚提取酸性溶液,可将所有中性或酸性的DNP-氨基酸衍生物除去,并把FDWB
的产物破坏,否则这些产物在390nm 处存在干扰。
(二)色氨酸的测定
1.原理
样品中的蛋白质经碱水解后,游离的色氨酸与甲醛和含铁离子的三氯乙酸溶液作用,生
成哈尔满化合物(norharman),具有特征荧光值,可以进行定量测定。
2.试剂
(1)0.3mmol/L 三氯化铁-三氯乙酸溶液:称取三氯化铁(FeCl3•6H2O)41mg,加入10%三
氯乙酸溶液溶解并定溶至500mL。
(2)2%甲醛:量取甲醛溶液(36%~38%)5.5mL,加水至100mL。
(3)色氨酸标准溶液:称取10mg 色氨酸,用0.1mol/LNaOH 溶液溶解并定容至100mL,
置棕色瓶中备用,使用时用水稀释成1mg/L 的标准溶液.
3.测定
称取样品粉末 100~200mg 于离心管中,加入4mL 乙醚,摇匀后过夜,以3000r/min 速
度离心。将乙醚提取液移入试管内,并用乙醚洗涤残渣3 次,收集乙醚液于试管中,于40℃
水浴除去醚。残留物中加入6.25mol/L N aOH 4mL,火焰封口,于110℃水解16~24h。水
解液用4mol/L HCl 溶液调节至pH6~8 后,用水定容至50mL,过滤备用。
吸取滤液 0.2mL,加入2%甲醛0.2mL 和0.3mmol/L 三氯化铁-三氯乙酸混合液2mL,
摇匀后于100℃水浴中加热1h,取出,冷却后用水定容至10mL。在激发波长为365nm,发
射波长449nm 条件下,测定样品的荧光强度,与色氨酸标样作对照,求出样品中色氨酸含
量。
本法在 0~10mg/L 色氨酸溶液范围内呈良好线性关系。

Ⅳ 蛋白质质谱分析具体流程

质谱技术在蛋白质组学中的应用
王海龙杨静祁振国岳秀兰
(包头医学院生物化学与分子生物学教研室,内蒙古包头014010;赤峰市第一医院’)
中图分类号(}so3 文献标识码A 文章编号1006—740X(2006)02—0231一o3
蛋白质组学是后基因组时代的一个新领域,它通
过在蛋白质水平上对细胞或机体基因表达的整体蛋白
质的定量研究,来揭示生命的过程和解释基因表达控
制的机理⋯ 。蛋白质组学分为表达蛋白质组学(Ex·
pression Proteomies)和细胞图谱蛋白质组学(Cell Map
Pmteomies),前者指细胞和组织表达的蛋白质的定量
图谱,它依赖二维凝胶电泳图谱和图像分析,它能在整
体蛋白质水平上研究细胞的通路,以及疾病、药物和其
它生物刺激所引起的紊乱,因此它可能发现疾病标志
和阐明生物通路;后者是指通过纯化细胞器或蛋白质
复合物,用质谱鉴定蛋白质组分,确定蛋白质和蛋白质
相互作用的亚细胞位置 】。9O年代以来随着人类基
因组计划的实施,引发了生物信息学(Bioinformaties)
的发展,使蛋白质分析发生了革命性的变化。现在将
高分辨2一维电泳、高灵敏度的生物质谱和快速增长
的蛋白质和DNA数据库三者结合起来,为高通量的蛋
白质组学(High throughout Proteomies)铺平了道路 。
这里主要介绍质谱技术在蛋白质组学中的应用。
收稿日期:2006-03-02
作者简介:王海龙(1951一),男。大学,副教授。
l 质谱技术的发展历史
1.1 质谱的开发历史要追溯到2O世纪初,Thomson
创制的抛物线质谱装置,1919年Aston制成了第一台
速度聚焦型质谱仪,成为了质谱发展史上的里程碑。
最初的质谱仪主要用来测定元素或同位素的原子量,
随着离子光学理论的发展,质谱仪不断改进,其应用范
围也在不断扩大,到2O世纪5O年代后期已广泛地应
用于无机化合物和有机化合物的测定。现今质谱分析
的足迹已遍布各个学科的技术领域,在固体物理、冶
金、电子、航天、原子能、地球和宇宙化学、生物化学及
生命科学等领域均有着广阔的应用。质谱技术在生命
科学领域的应用更为质谱的发展注入了新的活力,形
成了独特的生物质谱技术。
1.2 基本原理质谱(Mass Spectrometry)是带电原
子、分子或分子碎片按质量的大小顺序排列的图像。
质谱仪是一类能使物质离化成离子并通过适当的电
场、磁场将它们按空间位置、时间先后或者轨道稳定与
否实现质量比分离,并检测强度后进行物质分析的仪
器。质谱仪主要由分析系统、电学系统和真空系统组
成 。
用于分析的样品分子在离子源中离化成具有不同
质量的单电荷分子和碎片离子,这些单电荷离子在加
1 J 1 J 1"J 1掩J
rL rL r L r L
维普资讯 http://www.cqvip.com
232 包头医学院学报 第22卷
速电场中获得相同动能并形成一束离子,进入由电场
和磁场组成的分析器,离子束中速度较慢的离子通过
电场后偏转大,速度快的偏转小;在磁场中离子发生角
速度矢量相反的偏转,即速度慢的离子依然偏转大,速
度快的偏转小;当两个场的偏转作用彼此补偿时,它们
的轨道便相交于一点。与此同时,在磁场中还能发生
质量的分离,这样就使具有同一质量比而速度不同的
离子聚焦在同一点上,不同质量比的离子聚焦在不同
的点上,其焦面接近于平面,在此处用检测系统进行检
测即可得到不同质量比的谱线,即质谱。通过质谱分
析,我们可以获得分析样品的分子量、分子式、分子中
同位素构成和分子结构等多方面的信息 J。
2 质谱技术种类
2.1 电喷雾质谱技术(Electrospray ionization Mass
Spectrometry,ESI—MS) 是在毛细管的出口处施加一
高电压,所产生的高电场使从毛细管流出的液体雾化
成细小的带电液滴,随着溶剂蒸发,液滴表面的电荷强
度逐渐增大,最后液滴崩解为大量带一个或多个电荷
的离子,致使分析物以单电荷或多电荷离子的形式进
入气相⋯ 。电喷雾离子化的特点是产生高电荷离子
而不是碎片离子,使质量电荷比降低到多数质量分析
仪器都可以检测的范围,因而大大扩展了分子量的分
析范围,离子的真实分子质量也可以根据质荷比及电
荷数算出。电喷雾质谱的优势就是它可以方便地与多
种分离技术联合使用 j。
2.2 基质辅助激光解吸附质谱技术(Matrix Assisted
Laser Desorption/Ionization,MALDI) 基本原理是将
分析物分散在基质分子中并形成晶体,当用激光照射
晶体时由于基质分子经辐射所吸收的能量,导致能量
蓄积并迅速产热,从而使基质晶体升华,致使基质和分
析物膨胀并进入气相。MALDI所产生的质谱图多为
单电荷离子,因而质谱图中的离子与多肽和蛋白质的
质量有一一对应关系。MALDI产生的离子常用飞行
时间检测器来检测,理论上讲,只要飞行管的长度足
够,检测器可检测分子的质量数是没有上限的,因此质
谱很合适对蛋白质、多肽、核酸和多糖等大分子的研
究。
2.3 快原子轰击质谱技术(Fast Atom Bomebardment
Mass Spectrometry,FABMS) 一种软电离技术,是用快
速隋性原子射击存在于底物中的样品,使样品离子溅
出进入分析器,这种软电离技术适于极性强、热不稳定
的化合物的分析,特别适于多肽和蛋白质的分析研究。
FABMS只能提供有关离子的精确质量,从而可以确定
样品的元素组成和分子式。而FABMS—MS串联技术
的应用可以提供样品较为详细的分子结构信息,从而
使其在生物医学分析中迅速发展起来 ]。
2.4 同位素质谱技术是一种开发和应用比较早的
技术,被广泛地应用于各个领域,但它在医学领域的应
用只是近近几年的事。由于某些病原菌具有分解特定
化合物的能力,该化合物又易于用同位素标示,人们就
想到用同位素质谱的方法检测其代谢物中同位素的含
量以达到检测该病原菌的目的,同时也为同位素质谱
在医学领域的应用开辟了一条思路。
3 电泳分离后凝胶上蛋白质的质谱鉴定
电泳分离后凝胶上的蛋白质,先用适当的蛋白内
切酶酶切成肽段,再用质谱鉴定。现有四种制样方法:
3.1 凝胶内酶切凝胶内酶切的灵敏度高,是当前广
泛采用的样品制备方法。最常用的蛋白内切酶是胰蛋
白酶。它在蛋白质主链精氨酸和赖氨酸的C一端进行
切割。文献中有多种凝胶内酶切的方法,这里介绍改
进后的Wilm的方法。
将电泳后凝胶上的蛋白质斑点以最小的体积切
下,并将凝胶块切成约lmm 小颗粒,转入小离心管
内,加入约5O 的lOOmmol/L碳酸氢铵溶液洗胶粒
5min,弃去碳酸氢铵液,加入50pJ乙腈使凝胶脱水1O
一15min。若胶粒未完全脱水再用乙腈脱水~次,弃去
乙腈液。将离心管置入真空离心蒸发浓缩器内,微加
热15rain使胶粒完全干燥。将50pJ新鲜配制的
10mmoVL DTY韵100mmol/L碳酸氢铵溶液加入离心
管内,使胶粒水化。在56℃加热30rain还原样品,弃
去DTr溶液,加入乙腈放置15min,再在Speed Vac微
加热干燥15rain,加入5O l 55mmol/L碘乙酰胺的
100mmol/L碳酸氢铵溶液,烷基化半胱氨酸残基上的
巯基。室温暗室中放置20 min,弃去上清夜,加入
50pJ乙腈放置15min,在Speed Vac内干燥。加入2O l
胰蛋白酶溶液在4℃放置45—60min使胶粒再水化,
加入1O一2o 碳酸氢铵溶液覆盖胶粒,37cI=保温1小
时后,放置过夜,所得溶液供质谱分析用。
3.2 电洗脱后在溶液中酶解 电洗脱是电泳后从凝
胶上回收蛋白质的经典方法。通常蛋白质量多于0.
O01 mmol。将含SDS的凝胶与MALDI TOF MS分析结
合,可分析亚mmol的蛋白质。Schuh macher等用无
SDS pH2.5的乙酸铵作洗脱缓冲液,电洗脱系统的极
性相反,蛋白质SDS复合物在原位解离,游离的蛋白
质迁移至阴极,用标准蛋白样品实验,回收率达25%
~ 56% [引

3.3 膜上酶切膜上酶切的方法已不常用于质谱分
析,因为它的灵敏度低于凝胶内酶切。电转移时不是
维普资讯 http://www.cqvip.com
第2期 王海龙,等.质谱技术在蛋白质组学中的应用 233
所有的蛋白质都能有效转移,而且在印迹过程中蛋白
质可能丢失。另外从PVDF膜上提取酶切后多肽时效
率不高,提取时加Triton 100可以增加多肽的提取效
率,但去污剂干扰质谱鉴定 J。
3.4 印迹过程中酶切 1999年Bins等报道将固定有
胰蛋白酶的膜,置于凝胶和PVDF膜之间在印迹过程
中使蛋白质样品发生酶切,为了蛋白质完全酶切,印迹
过程需要特殊设计。印迹后的膜用基体溶液浸透后可
用MALDI TOF MS直接分析。该法的主要特点是印迹
过程中平行进行酶切,其灵敏度不如标准方法 J。
4 用肽质量指纹谱鉴定蛋白质
蛋白质组学中最有意义的突破是用生物质谱鉴定
电泳后凝胶上的蛋白质。质谱技术已取代了生物化学
中经典的Edman降解技术¨。。,这是由于质谱技术能
进行高通量的分析,能分析蛋白质混合物,而且灵敏。
肽质量指纹谱方法最初由Henzel及其同事提
出¨ ,很快成为高通量蛋白质鉴定的选用方法。分析
时用MALDI TOF MS测定凝胶内酶切后多肽混合物的
质量,获得肽质量指纹图谱。蛋白质酶切后生成多肽
混合物,可以在蛋白质序列数据库内进行理论预测,并
对质谱实测多肽混合物与理论预测的数据进行比较,
质谱实测到足够肽段的质量与数据库中一个蛋白质理
论预测肽段质量匹配,蛋白质可明确鉴定_1 。
随着科学技术的进步,质谱也得到了快速发展,特
别是与生物技术的结合,开创了质谱应用的新领域。
质谱已成为生命科学研究中非常重要的工具。其研究
成果也将大大推动人类基因组的研究,并将使人类对
生命的本质,其发生发展过程的认识达到一个前所未
有新高度。
参考文献
[1] 钱小红,盛龙生.生物质谱技术与方法[M].北京:科学
出版社,2003:17.
[2] B.N帕拉马克尼.电喷雾质谱应用技术[M].北京:化学
工业出版社,2005:215.
[3] 利布来尔.蛋白质组学导论[M].北京:科学出版社。
2005:163.
[4] 桑志红.电喷雾电离质谱及其在蛋白质化学研究中的应
用[J].国外医学.药学分册,2000,27(1):38.
[5] Miller GM,Byrd SE,Kuznieky RI.Nature Insight:Funetional
Genomies[J].Nature,2000,405:819.
[6] 张学敏,魏开华,杨松成.生物质谱和蛋白质组技术的应
用策略[J].分析测试学报,2002,21(增):9.
[7] Weaver RF.Molecular Biology[M].Columbus:McGraw—
Hil1.2001:231.
[8] 魏开华,杨松成.转印到膜上的蛋白质的质谱分析[J].质
谱学报,2004:20(3):89.
[9] 夏家辉.医学遗传学[M].北京:人民卫生出版社,2004:
241.
[10] Benfey PN,Protopapas AD.Genomies[M].New Jersey:
Prenties Hall。2004:202.
[11] 冯作化.医学分子生物学[M].北京:人民卫生出版社,
2001:189.
[12] 查锡良.医学分子生物学[M]。北京:人民卫生出版社,
2003:263.

阅读全文

与赖氨酸内切酶分析方法相关的资料

热点内容
红石电路密室教学方法 浏览:403
地下水灭蚁灵的检测方法 浏览:715
纤维长度测量方法 浏览:455
草席上的油渍怎么去除最快方法 浏览:706
碘131治疗甲亢方法 浏览:415
通草与作用及食用方法 浏览:285
结巴的治疗方法 浏览:497
电脑虚拟值在哪里设置方法 浏览:841
真假红樱子鉴别方法 浏览:597
改善大腿后侧凉的锻炼方法 浏览:301
527加99用简便方法怎么算 浏览:637
鲜鱼的保存方法图片 浏览:265
左边牙疼怎么办最快速止痛方法 浏览:554
听笛子最简单的方法 浏览:584
5除以29的竖式计算方法 浏览:854
水瓜丝的功效与作用及食用方法 浏览:353
小学生画棉花书签的简单方法 浏览:262
如何抓斑鸠方法视频 浏览:224
锅外层掉漆了怎么处理方法 浏览:808
秒热水器安装方法视频秒 浏览:325