导航:首页 > 研究方法 > 基于散射光谱分析的方法有哪两种

基于散射光谱分析的方法有哪两种

发布时间:2023-04-05 10:39:53

如何进行红外吸收光谱定性分析

光谱分析是一种根据物质的光谱来鉴别物质及确定它的化学组成,结构或者相对含量的方法。按照分析原理,光谱技术主要分为吸收光谱,发射光谱和散射光谱三种。

按照被测位置的形态来分类,光谱技术主要有原子光谱和分子光谱两种。红外光谱属于分子光谱,有红外发射和红外吸收光谱两种,常用的一般为红外吸收光谱。

相关信息:

当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动(例如伸缩振动和变角振动)。分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。

分子的振动和转动的能量不是连续而是量子化的。但由于在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。所以分子的红外光谱属带状光谱。分子越大,红外谱带也越多。

❷ 属于光谱法的分析方法哪些

紫外/可见光谱分析法
红外光谱分析法
原子吸收光谱分析法
石墨炉原子吸收光谱分析法
冷原子荧光光谱分析法

❸ 光谱分析法

(一)紫外—可见光—近红外分光光度计

紫外—可见光—近红外分光光度计是对彩色宝石内所含致色杂质离子在不同波段选择性吸收而进行检测的仪器。其常用的检测范围为190~1100nm,最远可检测3000nm的区域。其原理是:利用一定频率的紫外—可见光照射被分析的物质,引起分子中价电子的跃迁,紫外—可见光被选择性地吸收了。一组随波长变化的吸收光谱,反映了试样的特征。在紫外可见光的范围内,对于一个特定的波长,吸收的程度正比于试样中该成分的浓度,因此测量光谱可对某些成分的含量进行定性分析,根据所测吸收光谱与已知浓度的标样的比较,可进行定量分析。

对不同产地同一品种的彩色宝石而言,内部所含的杂质离子可能存在差异,对这些宝石进行紫外—可见—近红外范围内的光谱测量,光谱中吸收峰位置的差异可将其特征离子区分开来,通过这些特征离子来判别其产地。此外,可见光吸收光谱还能直接反映致色因子的组成(包括缺陷、杂质等)。这里需要指出的是彩色宝石多数为中级晶族的矿物,具多色性,且有的品种很明显,在测量紫外—可见光吸收光谱时需要尽可能多测量几个不同的结晶方位,以便找出杂质离子与结晶方位的关系。如图2-9为马达加斯加安卓鲁绿蓝色与绿黄色蓝宝石垂直光轴(c轴)和平行光轴的典型吸收光谱,它表明晶体在垂直光轴方向上比平行光轴方向对可见光的吸收要强,主要吸收峰的位置差异也解释了蓝宝石的二色性特征。蓝宝石在280~880nm范围内包含Fe2+/Ti4+的吸收带,同时含有较强的Fe3+和较弱的T3+i的吸收带。铁和钛的不同价态在不同的结晶方位有异。其不同价态的谱峰强弱决定了蓝宝石多色性的颜色变化和强弱。

图2-9 马达加斯加安卓鲁绿蓝色(上)与绿黄色(下)蓝宝石垂直光轴(c轴)和平行光轴的吸收光谱

(二)傅立叶变换红外光谱仪

红外光谱属于分子光谱,与核磁共振光谱、质谱、紫外光谱一样,是确定分子组成和结构的有力工具。

人们习惯将红外光谱区间划分为三个区,即近红外区(11000~4000cm-1)、中红外区(4000~400cm-1)和远红外区(400~10cm-1),对于大多数的物质来说,中红外区的光谱包含的光谱信息最多。宝石学研究中常用到400~11000cm-1的中红外区和近红外区光谱。

宝石在红外光的照射下,引起晶格(分子)、络阴离子团和配位基的振动能级发生跃迁,并吸收相应的红外光而产生的光谱称为红外光谱。宝石材料在红外区的电磁波谱吸收主要是由于矿物成分中的络阴离子(基团)的振动而产生,每种基团都有其特征的频率范围,根据光谱吸收带的频率可以判断该矿物含有何种络阴离子或其他基团(如H2O),由吸收带的强度还可以判断基团的含量。如果一种矿物含有几种基团,则光谱上会出现若干相应的特征频率吸收带。

另外,矿物分子的振动与阳离子有关。络阴离子与不同阳离子连接的键不同,使络阴离子本身的键强或键长发生改变,从而导致振动频率发生变化,这种变化比较明显时,就可据此了解阳离子的种类及其相对含量。

固体样品的测试方法有常规透射光谱法、显微红外光谱法、漫反射光谱法、衰减全反射光谱法、光声光谱法、高压红外光谱法等。固体的常规透射光谱制样方法分为压片法、糊状法和薄膜法。

图2-10 利用傅立叶变化红外光谱仪对宝石进行光谱测量

应该注意的是,红外吸收光谱与红外光入射样品的方向有关。理想状态下,红外光谱应该采取定向采集,这样可以控制由于采集方向不同而获得不同光谱的现象。由于刻面宝石通常难以满足这样的条件,因此,为了更准确地确定某一样品的产地,应尽可能从两到三个不同的方向进行光谱采集。

红外光谱为样品官能团在红外区域的特征吸收提供了一种测试方法。不同产地同一品种的彩色宝石其红外吸收峰的位置、形状或强度可能存在某些差异。图2-11中A为坦桑尼亚温扎红宝石的红外吸收光谱,在5000~1500cm-1波段可见3160cm-1明显的吸收峰,伴随有3350c-1m、3240cm-1和2420cm-1处的吸收;图2-11中B为莫桑比克红宝石的红外吸收光谱,在5000~1500cm-1波段中可见3695cm-1、3670cm-1、3650cm-1和3620cm-1的一组吸收峰。又如刚玉晶体中常含有粘土矿物包体,图2-12为最常见的几种粘土矿物(水铝石、绿泥石、高岭石、针铁矿)的典型红外光谱,由于这些矿物的吸收峰特征有差异,据此我们可以分析刚玉中包体的种类,从而找出其产地特征的红外鉴别指标。

图2-13 NGTC北京实验室使用拉曼散射光谱仪分析彩色宝石内的包体

❹ 原子发射光谱定量分析常用的方法有哪几种

原子发射光谱定量分析常用的方法有一种,原子发射光谱法(AES),是利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析的方法。
原子发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。
原子发射光谱法包括了三个主要的过程,即:
1、由光源提供能量使样品蒸发、形成气态原子、并进一步使气态原子激发而产生光辐射;
2、将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱;
3、用检测器检测光谱中谱线的波长和强度。

❺ 环境监测中,常见的光谱分析法有哪些

紫外/可见光谱分析法 红外光谱分析法 原子吸收光谱分析法 石墨炉原子吸收光谱分析法 冷原子荧光光谱分析法
通过分析光谱的特性来分析物质结构特征或含量的方法。包括对物质发射光谱、吸收光谱、荧光光谱分析等,也包括不同波长段如可见、红外、紫外、X射线光谱分析等

❻ 生药化学成分的分析方法有哪两个考试网

紫外-可见分光法和色谱法 。

紫外-可见分光光度法是在190~800nm波长范围内测定物质的吸光度,用于鉴别,杂质检查和定量测定的方法,色谱法又称色谱分析,色谱分析法,层析法,是一种分离和分析方法,在分析化学,有机化学,生物化学等领域有着非常广泛的应用。

光谱法:

光谱法是基于物质与电磁辐射作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射,吸收或散射辐射的波长和强度进行分析的方法。

光谱法可分为发射光谱法,吸收光谱法,散射光谱法,或分为原子光谱法和分子光谱法,或分为能级谱,电子,振动,转动光谱,电子自旋及核自旋谱等。

分光光度法是光谱法的重要组成部分,是通过测定被测物质在特定波长处或一定波长范围内的吸光度或发光强度,对该物质进行定性和定量分析的方法,常用的技术包括紫外-可见分光光度法,红外分光光度法,荧光分光光度法和原子吸收分光光度法等。

❼ 光谱分析法有哪些类型

光谱分析法的类型包括:

1、可见及紫外分光光度法

分光光度法的理论基础是朗伯-比尔(Lamber-Beer)定律。

Lamber-Beer定律:A=k·b·c

A为吸光度

k—吸光系数

b—光径,单位:cm

c—溶液浓度,单位:g/L

3、荧光分析法(发射光谱分析法)

利用荧光强度进行分析的方法或山,称为荧光法衫唯中。在荧光分析中,待测物质分子成为激发态时所吸收的光称为激发光,处于激发态的分子回到基态时所产生的荧光称为发射光。荧光分析法测定的是受光激发后所发射的荧光强弱。

阅读全文

与基于散射光谱分析的方法有哪两种相关的资料

热点内容
餐巾杯花折叠方法图片 浏览:820
检索专利正确方法 浏览:160
传动轴安装方法 浏览:993
耳鼻喉内窥镜使用方法 浏览:512
康复认知训练方法和技巧 浏览:150
42减8破十法计算方法 浏览:136
圆五等分最简单的方法 浏览:91
霍尔传感器不带磁性检测方法 浏览:465
消毒压力锅的使用方法 浏览:830
碘伏泡脚有什么好方法 浏览:316
300模拟量计算方法 浏览:265
肩颈痛肩周炎的锻炼方法 浏览:606
干野生灵芝的食用方法 浏览:552
全身肌肉锻炼方法视频 浏览:422
哪里有系统的织毛衣方法 浏览:905
如何快速学会法语的方法 浏览:362
电视机话筒安装方法 浏览:535
黑凉粉制作方法和步骤 浏览:454
去角质正确方法 浏览:408
直播摄像头卡顿的原因及解决方法 浏览:657