导航:首页 > 研究方法 > 射线衍射分析方法及应用题库

射线衍射分析方法及应用题库

发布时间:2023-04-03 21:12:14

㈠ X射线的衍射方法有

X射线衍射的方法
X射线衍射的方法有很多。
按使用的样品可分为:单晶法和多晶粉末法;
按记录检测方法可分有:照相法和衍射谱仪(计算器)法。
最基本的X射线衍射方法有三种:平板照相法、旋晶法和多晶粉末法。
1、平板照相法(平面底片法)
2、园筒底片法(又叫回转照相法或旋晶法)
(1)、回转照相法
(2)、魏森堡(Weissenberg)照相法
(3)、多晶粉末德拜-谢乐照相法
(4)、多晶粉末衍射仪法
(5)、其它X射线衍射仪
a、计算机自动控制的四圆单晶衍射仪
b、转靶X射线衍射仪
c、面探测器X射线衍射仪
d、同步辐射衍射分析

㈡ X衍射分析基础

11.3.1.1 样品制备

粉晶X射线衍射样品的制备会直接影响衍射效果。因此,制备合乎要求的样品是粉晶X射线衍射仪分析技术中的重要环节。X射线衍射分析的样品主要有粉末样品、块状样品、薄膜样品、纤维样品等。样品不同、分析目的不同(定性分析或定量分析),则样品制备方法也不相同,如图11.4所示。

图11.5 粉晶衍射图

衍射图中的内容如下:①横坐标为衍射角度,用2θ表示,单位为(°);②纵坐标为强度标值,用I表示,单位为cps(计数/秒);③峰顶标值为面网间距,用d表示,单位为Å(1 Å=10-10m);④基线BL;⑤背景B为基线与横坐标之间的距离,单位为cps;⑥半高宽为峰高的1/2处,此值可用来表示某些晶体的结晶度;⑦衍射强度为去背景后的峰高h,单位为cps,也可用相对强度表示,峰值最大为100,其余按比例换算,一般用积分面积(h×w)表示衍射强度;⑧峰背比(h/B),此值越大越好。

在粉晶衍射图中任何一个衍射峰都是由峰位、强度、半高宽、峰形和对称性五个基本要素组成。峰位即衍射峰的最大强度位置;衍射强度是指衍射峰最大值的高度;半高宽是峰高的1/2处的宽度;峰形为衍射峰的形态;对称性是指衍射峰的对称特点。这五个基本要素都具有其自身的物理学意义,衍射峰的位置是晶体中符合布拉格条件的面网的衍射;衍射强度与物相的成分和结构以及物相在混合物中的含量有关;半高宽及峰形是晶粒大小与畸变的函数;衍射峰的对称性与光源聚敛性、样品吸收性、仪器机械装置等因素及其他衍射峰或物相存在有关。

要获得一张好的衍射图谱,除需要选择性能优良的仪器、保证测量精度及调试状况良好外,采用合适的制样方法,选择最佳的实验参数都很重要。除此之外,晶体本身的纯度、结构以及结晶状况对衍射图也有影响。

在粉晶X射线衍射实验中,有时会发现衍射图的异常现象。衍射图的异常不仅与衍射仪等设备有关,还与晶体本身结构有关。常见的衍射图异常现象及原因见表11.2。

表11.2 粉晶衍射线的异常现象及其原因

㈢ 实验七 X射线衍射物相分析

X射线衍射技术是研究铁矿石物相的常用技术。X射线衍射物相分析是通过对试样进行X射线衍射,分析其衍射图谱,获得试样的成分、材料内部原子或分子的结构或形态等信息的研究手段。

铁矿石的衍射图谱一般由两部分组成,主物相为铁氧化物,微量物相为脉石(酸性铝、硅氧化物及碱性钙、镁氧化物等)。磁铁矿的主要物相通常情况只有Fe3O4,有时会有少量Fe2O3(磁铁矿长期风化部分被氧化成赤铁矿)。此外,磁铁矿中常有相当数量的Ti4+以类质同象代替Fe3O4中的Fe3+,还伴随有Mg2+和V3+等相应地代替Fe3O4中的Fe3+和Fe2+,形成一些矿物亚种,这些矿物亚种的衍射峰与Fe3O4重叠,需要借助成分分析结果进行精确的物相鉴定。赤铁矿的主要物相为Fe2O3,且通常会有少量的mFe2O3·nH2O。褐铁矿的主要物相为Fe2O3与mFe2O3·nH2O,褐铁矿吸附性强,常含有较多泥质,在化学成分上表现为Al、Si含量较高。天然铁矿石中一般不会出现氧化亚铁相。

1.实验目的

(1)了解X射线衍射仪的结构原理及其使用。

(2)掌握采用X射线衍射仪进行物相分析的制样方法。

(3)熟悉使用X射线物相分析的基本方法。

2.原理

(1)X射线衍射仪结构原理

X射线衍射仪是由X射线发生器系统、测角仪系统、X射线衍射强度测量记录系统、衍射仪控制与衍射数据采集分析系统四大部分所组成。

X射线发生器是衍射仪的X光源,其配用衍射分析专用的X光管,具有一套自动调节和自动稳定X光管工作高压、管电流的电路和各种保护电路等。

测角仪系统是X射线衍射仪的核心,用来精确测量衍射角,其是由计算机控制的两个互相独立的步进电机驱动样品台轴(θ轴)与检测器转臂旋转轴(2θ轴),依预定的程序进行扫描工作的,另外还配有光学狭缝系统、驱动电源等电气部分,其光路布置如图10-7-1所示,入射线1和2投射至两个顺次为A、B的晶面上时,各方向的散射线仅有1′和2′满足衍射条件,由此产生的1A1′和2B2′之间的光程差为CBD=CB+BD,若晶面间距为d,则

CBD=2ABsinθ=2dsinθ

若这些X射线谱的波长相同,其光程差必然是波长的整数倍,即2dsinθ=nλ。其中n为反射级,此式也称为布拉格方程。从方程可以看出,sinθ的绝对值只能≤1,故nA/2d必须≤1。当n=1时,A必须等于或小于2d时方能产生衍射,反射级n不能大于2d/A,故对不同波长的X射线进行分析时,要选择相应d值的晶体。

图10-7-1 晶体衍射光路图

X射线衍射强度测量记录系统是由X射线检测器、脉冲幅度分析器、计数率计及x-y函数记录仪组成。衍射仪控制与衍射数据采集分析系统是通过一个配有“衍射仪操作系统”的计算机软件来完成的。

(2)X射线物相分析的基本原理

每一种结晶物质都具有各自独特的晶体结构和化学组成,因其具有其特定的原子种类、原子排列方式和点阵参数及晶胞大小等。在一定波长的X射线照射下,晶体中不同晶面发生各自的衍射,进而对应其特定的衍射图样。如果实验中存在两种或两种以上的晶体物质时,每种晶体物质的衍射图样不变,各衍射图样互不干扰、相互独立,仅是试样中所含的晶体物质的衍射花样机械叠加,不仅如此,衍射图样也可表明物相中元素的化学结合态、方式和点阵参数及晶胞大小等。

晶体的不同特征可用各个反射晶面的间距d和反射线的相对强度I/I0来表征,其中面网间距d可由衍射花样中各衍射线的位置2θ来决定,即d=λ/(2sinθ)。面网间距与晶胞的性状和大小有关,而相对强度与质点的种类及其在晶胞中的位置有关。由此可知,任何一种结晶物质的衍射数据d和I/I0是其晶体结构的必然反映,因而,可据此来鉴定结晶物质的物相,d~I数据组就是最基本的判据。

(3)利用PDF衍射卡片进行物相分析

每种物质都有其特征衍射图谱,即衍射图谱具有一定的d值和相对强度I/I0。当未知样品为多相混合物时,每一相均具有特定的一组衍射峰,其相互叠加形成混合物的衍射图谱。因此当样品中含有一定量的某种相分时,则其衍射图中的某些d值与相对强度I/I0,必定与这种相分所特有的一组d值与相对强度全部或至少仍有的强峰相符合。因此描述每张衍射图的d值和相对强度I/I0值,可鉴定出混合物中存在的各个物相。

单相物质的衍射图谱中的d值和相对强度I/I0制成PDF数据卡片。将测得的样品衍射图的d值和相对强度I/I0与PDF卡片一一比较,若某种物质的d值和I/I0与某一卡片全部都能对上,则可初步确定该样品中含有此种物质(或相分),之后再将样品中余下的线条与别的卡片对比,这样便可逐次地鉴定样品中所含的各种相分。

3.样品的制备

取适量样品,在玛瑙研钵中研磨和过筛,当物料粒度为-200目时,即当手摸无颗粒感时,试样粒度大小为符合要求。用“压片法”来制作试片,先将样品粉末尽可能均匀地撒入样品槽中,再用小的玻璃片轻轻摊匀堆好、压紧,最后用玻璃片把多余凸出的粉末削去,使样品形成一个十分平整的平面试片。把准备好的样品框放入衍射仪的测试架上,并关好衍射仪的保护门。

4.样品的测试

开启冷却水和仪器电源。启动计算机,在仪器稳定2min左右后,进入软件系统。设置测量参数,如扫描模式、初始角度、终止角度、步长、扫描速度等。开始对试样进行测试和数据存储。使用软件对所测曲线进行分析和数据处理(2θ、d值、半峰宽、强度数据等),并将结果储存于文档中,操作完成后,退出分析系统,并关闭计算机。关闭仪器电源,冷却水应继续工作20min后方可关闭。最后关闭所有电源,并做好仪器使用记录的填写。

5.常见铁矿石的X射线衍射图谱

天然铁矿石组成物质结晶性好,组成物相少,因此衍射谱图中衍射峰峰型尖锐,重叠峰极少,主物相鉴别容易,脉石相的确定可参考化学成分分析结果。图10-7-2~图10-7-4分别为磁铁矿、赤铁矿与褐铁矿的典型X射线衍射图谱[《铁矿与返矿及氧化铁皮的鉴别规程》(SN/T 3102—2012)]。图10-7-2中磁铁矿的主要组成物质为镁磁铁矿石(Magnesioferrite,Mg0.64Fe2.36O4),未检测到脉石相;图10-7-3中赤铁矿的主要组成物质为赤铁矿(Hematite,Fe2O3),同时含有少量的针铁矿(Goethite,FeO(OH)),脉石相为石英(SiO2);图10-7-4中褐铁矿的主要组成物质为针铁矿(FeO(OH))与赤铁矿(Fe2O3),脉石相为高岭土(Al2Si2O5(OH)4)与石英(SiO2)。

图10-7-2 某进口磁铁矿的X射线衍射图谱

图10-7-3 某进口赤铁矿的X射线衍射图谱

图10-7-4 某进口褐铁矿的X射线衍射图谱

6.注意事项

(1)严格遵守实验室规章制度,爱护仪器,做到轻拿轻放,以免仪器元器件受到损伤。

(2)制样时用力要均匀,不可力度过大,以免形成粉粒定向排列。

(3)样品一定要刮平,且与样品架表面高度一致,否则引起测量角度和对应d值偏差。

㈣ X-射线衍射分析法测试什么.......

一、
X射线衍射原理及应用介绍
特征X射线及其衍射 X射线是一种波长很短(约为20~0.06 nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离(10^(-8)cm)相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将会发生衍射;衍射波叠加的结果使射线的强度在某些方向上增强、而在其它方向上减弱;分析在照相底片上获得的衍射花样,便可确定晶体结构。这一预见随后为实验所验证。1913年英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的着名公式——布拉格定律:
2d sinθ=nλ,式中,λ为X射线的波长,衍射的级数n为任何正整数。
当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一具有d点阵平面间距的原子面上时,在满足布拉格方程时,会在反射方向上获得一组因叠加而加强的衍射线。
X-射线衍射分析法应用:
1、当X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布拉格条件的反射面得到反射。测出θ后,利用布拉格公式即可确定点阵平面间距d、晶胞大小和晶胞类型;
2、利用X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法的理论基础,测定衍射线的强度,就可进一步确定晶胞内原子的排布。
3、而在测定单晶取向的劳厄法中所用单晶样品保持固定不变动(即θ不变),以辐射线束的波长λ作为变量来保证晶体中一切晶面都满足布拉格条件,故选用连续X射线束。再把结构已知晶体(称为分析晶体)用来作测定,则在获得其衍射线方向θ后,便可计算X射线的波长λ,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。
4、X射线衍射在金属学中的应用
X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是体心立方结构,β-Fe并不是一种新相;而铁中的α—→γ相转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究;对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。目前 X射线衍射(包括X射线散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。
在金属中的主要应用有以下方面:
(1)物相分析 是X射线衍射在金属中用得最多的方面,又分为定性分析和定量分析。定性分析是把对待测材料测得的点阵平面间距及衍射强度与标准物相的衍射数据进行比较,以确定材料中存在的物相;定量分析则根据衍射花样的强度,确定待测材料中各相的比例含量。
(2)精密测定点阵参数 常用于相图的固态溶解度曲线的绘制。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可获得单位晶胞原子数,从而可确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。
(3)取向分析 包括测定单晶取向和多晶的结构(如择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。
(4)晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。
(5)宏观应力的测定 宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测定点阵平面在不同方向上的间距的改变,可计算出残留应力的大小和方向。
(6)对晶体结构不完整性的研究 包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。
(7)合金相变 包括脱溶、有序无序转变、母相新相的晶体学关系,等等。
(8)结构分析 对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。
(9)液态金属和非晶态金属 研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。
(10)特殊状态下的分析 在高温、低温和瞬时的动态分析。
此外,小角度散射用于研究电子浓度不均匀区的形状和大小,X射线形貌术用于研究近完整晶体中的缺陷如位错线等,也得到了重视。
X射线分析的新发展
金属X射线分析由于设备和技术的普及已逐步变成金属研究和材料测试的常规方法。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。
5、X射线物相分析
X射线照射晶体物相产生一套特定的粉未衍射图谱或数据D-I值。其中D-I与晶胞形状和大小有关,相对强度I/I0,与质点的种类和位置有关。
与人的手指纹相似,每种晶体物相都有自己独特的XPD谱。不同物相物质即使混在一起,它们各自的特征衍射信息也会独立出现,互不干扰。据此可以把任意纯净的或混合的晶体样品进行定性或定量分析。
(1) X射线物相定性分析
粉未X射线物相定性分析无须知晓物质晶格常数和晶体结构,只须把实测数据与(粉未衍射标准联合会)发行的PDF卡片上的标准值核对,就可进行鉴定。
当然这是对那些被测试研究收集到卡片集中的晶相物质而言的,卡片记载的解析结果都可引用。
《粉末衍射卡片集》是目前收集最丰富的多晶体衍射数据集,包括无机化合物,有机化合物,矿物质,金属和合金等。1969年美国材料测试协会与英、法、加等多国相关协会联合组成粉末衍射标准联合会,收集整理、编辑出版PDF卡片,每年达到无机相各一组,每组1500-2000张不等.1967年前后,多晶粉未衍射谱的电子计示示机检索程序和数据库相继推出.日本理学公司衍射射仪即安装6个检索程序(1)含947个相的程序;(2)含2716个相的常用相程序;(3)含3549个相的矿物程序;(4)含6000个相的金属和合金程序;(5)含31799个相的无机相程序(6)含11378个相的有机相程序.每张片尾记录一个物相。
(2)多相物质定性分析
测XRD谱,得d值及相对强度后查索引,得卡片号码后查到卡片,在±1%误差范围内若解全部数据符合,则可判断该物质就是卡片所载物相,其晶体结构及有关性能也由卡片而知。这是单一物相定性分析。
多相混合物质的XRD谱是各物相XRD谱的迭加,某一相的谱线位置和强度不因其它物相的存在而改变,除非两相间物质吸收系数差异较大会互相影响到衍射强度。固熔体的XRD谱则以主晶相的XRD为主。
已知物相组分的多相混合物,或者先尝试假设各物相组分,它们的XRD谱解析相对要容易得多。分别查出这些单一物相的已知标准衍射数据,d值和强度,将它们综合到一起,就可以得到核实其有无。如钢铁中的δ相(马氏体或铁素体)γ相(奥氏体)和碳化物多相。
完全未知的多相混合物,应设法从复相数据中先查核确定一相,再对余下的数据进行查对。每查出一相就减少一定难度,直至全部解决。当然对于完全未知多相样品可以了解其来源、用途、物性等推测其组分;通过测试其原子吸收光谱、原子发射光谱,IR、化学分析、X射线荧光分析等测定其物相的化学成分,推测可能存在的物相。查索到时,知道组分名称的用字顺索引查,使用d值索引前,要先将全部衍射强度归一化,然后分别用一强线、二强线各种组合、三强线各种组合…联合查找直至查出第一主相。标记其d值,I/I1值。把多余的d值,I/I1值再重新归一化,包括与第一主相d值相同的多余强度值。继续查找确定第二主相,直至全部物相逐一被查找出来并核对正确无误。遇到没被PDF卡收录的物相时,需按未知物相程序解析指认。
物相定性分析中追求数据吻合程度时,(1)d值比I/I1值更重要,更优先。因为d测试精度高,重现性好;而强度受纯度(影响分辨率)、结晶度(影响峰形)样品细微度(同Q值时吸收不同),辐射源波长(同d值,角因子不同)、样品制备方法(有无择优取向等)、测试方法(照相法或衍射仪法)等因素影响,不易固定。(2)低角度衍射线比高角度线重要。对不同晶体而言低角度线不易重迭,而高角度线易重迭或被干扰。(3)强线比弱线重要。尤其要重视强度较大的大d值线。

(3) X射线物相定量分析
基本原理和分析
在X射线物相定性分析基础上的定量分析是根据样品中某一物相的衍射线积分强度正变化于其含量。不能严格正比例的原因是样品也产生吸收。对经过吸收校正后的的衍射线强度进行计算可确定物相的含量。这种物相定量分析是其它方法,如元素分析、成分组分分析等所不能替代的。
6、结晶度的XRD测定
7、高分子结晶体的X射线衍射研究

二、 X射线衍射分析能解决的问题:
X射线波长与晶体中的原子间距属于同一数量级,应用X射线在晶态和非晶态物质中的衍射和散射效应,所获得的衍射角2θ和衍射强度I构成的衍射谱(衍射花样)记录了试样物质的结构特征。对于晶体将显示各晶面族的X衍射峰的位置、按布拉格公式计算出的晶面间距d值、峰强、峰宽、峰的位移和峰形变化等信息。充分利用这些信息并演化增加各种附件、计算机软件、各种测量方法,就可作以下分析工作:
1、物质识别剖析、物相结构鉴定衍射花样是物质的“指纹”。 迄今为止全世界科学家已认识并编制的七万多种纯物质标准衍射“指纹”(编制成国际衍射数据中心ICDD卡),存在仪器计算机中或出版成册,通过和实验图谱分析比较,就可识别物质或物相。还可了解其结构和物性参数、制备条件、参考文献等。
X射线衍射分析给出的结果直接是物质的名称、状态和化学式,是元素之间的结合形式或所含元素的存在形式(单质、固溶体、化合物)。化合物中,负离子半径大,决定着结构骨架。因此,对于化学分析难以检测又常参与结合的O、H、C、N、Cl、S、F等元素或官能团构成的物质的判定,这种方法有独到之处。通常的固态物质可挠过元素分析直接剖析得到结果。对于化学式相同结构性质不同的各种同素异构体的分析是其它方法无法比拟的。X射线衍射属无损检测,作完能回收,也是一大优点。
2、混合物的定量分析 X衍射方法对试样的纯度没有什么要求,混合物中各种物相的衍射峰在同一张图上都能呈现出来。其含量检出线约在1 2%。通常在图谱解析中完成后,可由计算机拟合出各物相组分的半定量结果。深入的定量研究需视具体情况而定,分内标、外标、基体清洗法等方法,针对物质类型进行选用。有的已建立了行业标准,如钢中的残余奥氏体、粘土矿物定量分析方法等。
3、结晶状态的描述表征和晶体结构参数的测定随生成条件和制备工艺的不同,固态物质或材料有可能形成无定形非晶、半结晶、纳米晶和微米晶、取向多晶直到大块单晶。利用计算机数据处理程序,对于非晶可用XRD原子径向分布函数法测定其短程结构;半结晶可测定其结晶度;纳米晶因衍射峰宽化可用谢乐公式计算出纳米晶粒平均尺寸;微米级或更大尺寸的晶粒研成微米级粉末后进行实验可作更多的工作,如未知晶系和晶格参数的确定、固溶度、晶格畸变及应力分析等;对于取向多晶、准单晶直到大块单晶可用RO XRD法鉴别,评价准单晶的质量,测量晶体取向及单晶的三维取向,指导切割加工。
4、揭示实验规律,解释材料器件特性,研究反应机理,探讨制备工艺X衍射是研究物质结构的基本手段,其应用渗透到与物质认识和分析有关的各个领域。针对所研究的问题,排除干扰,精化实验,通过对比,寻找差别,从结构上揭示影响性质的敏感参量的规律是研究者和衍射工作者共同追求的目标。 钢中碳元素的存在状态是影响钢性能的重要因素。铁素体、奥氏体、渗碳体相分析,各种热处理工艺下,钢号的名义碳量在其相结构中的分配关系,铁素体内的含碳量测定等对于解释材料的性能和相变机理,确定热处理工艺以及发挥材料的最大效能具有重要的意义。 电子材料、功能材料和各种新材料及器件的开发研制,需要衍射分析配合到始终。连续改变配方和制备工艺总结出的实验规律对确定制备工艺具有重要的指导意义。例如我们发现镍基软磁材料的居里点和配方中各种不同原子半径合金元素的填入造成其晶格常数的变化具有一定的线性关系,从而可指导开发出一系列温控器件。 人的感官鉴别有限,化学鉴别手段繁杂或不确定性,使得化学合成和材料制备越来越依赖于仪器分析。从原料的“确认”,到反应物的分析,反应的中间过程及机理研究,有无杂相或优先生长的竞争相,如何抑制,如何精化工艺,以及质量的控制和最终产物的表征都离不开X衍射分析。矿物学、岩石学、土壤学是应用X衍射分析最早的学科。矿物的难溶性和所含元素的多样性,硅酸盐矿物的复杂性使得单纯依靠化学元素分析不能完全解决问题。但从结构分析角度却能比较清楚地鉴别分类,理出头绪。石油钻井各断层粘土矿物伊利石 蒙脱石等的连续转变规律对于了解地下岩层构造起了重要的指示作用。针对层状结构的土壤分析对农业普查提供了基础资料。非金属材料的开发对陶瓷、建材、电力、化工等行业起着重要的作用。由于X衍射对文物鉴定的便利和非破坏性,使得这种方法越来越受到考古和文物保护工作者的青睐。青铜器和铁器长期锈蚀的标本为研究腐蚀机理提供了借鉴。石油管材、化工及热电厂管道的锈蚀及防护需要X衍射分析。此外,商品检验、环境保护、公安破案、药物生产等都需要衍射分析手段支持。在我们的实践中,遇到了各种揭迷解惑的问题。曾发现打着某种化学式的化工商品竞是没有反应的原料混合物,而元素分析结果相同。不耐高温的仿造物冒充石棉垫造成了汽车发动机的损坏。将冰洲石误为冰晶石采购几卡车运回准备投料生产。事先把多孔的蛇纹石和香料花粉包在一起,尔后分离,造出发现“香料石”矿骗局。如此等等。这些事例说明倡导普及X衍射分析手段是多么重要。X衍射仪加上小角散射、极图织构、应力分析及高低温附件,还可作更多的工作。单晶四圆衍射仪还可以进行未知结构分析等。

三、如果使用的是单晶样品,其应用:
晶体结构的测定对学科的发展、物体性能的解释、新产品的生产和研究等方面都有很大的作用,其应用面很宽,不能尽述,略谈几点如下:
(一).晶体结构的成功测定,在晶体学学科的发展上起了决定的作用。因为他将晶体具有周期性结构这一推测得到了证实,使晶体的许多特性得到了解释:如晶体能自发长成多面体外形(自范性),如立方体的食盐、六角形的水晶等,又如晶体各种物理性质(光性,导热性等)的各向异性和对称性等等。晶体学的发展有了坚实的基础。
(二).矿物学中曾有不少矿物的元素构成很接近,但他们的性质相差很远(如石墨和金刚石都是碳,还如一些硅酸盐),而有的矿物其物理或化学性质相近,但其元素组成又很不相同(如云母类矿物等),使人困惑。晶体结构的测定使性能的异同从结构上得到了合理的解释。如石墨因是层状结构,层间结合力差,故较软,而金刚石为共价键形成的骨架结构,故结合力强,无薄弱环节, 成为最硬的材料。
(三).人类和疾病作斗争,总离不开药物。原始的药物是天然产物,动植物或矿物。以后随着科学的发展,开展了从天然产物中提取有效成分的方法,而有效成分晶体结构的测定进一步将从天然产物中提取的方法改变为人工合成,使有可能大量制造,提高了产量、降低了成本、造福于人类。这种基于结构,设计出合成路线,工业制造的方法在染料,香料等许多工业部门都是广泛使用的。 (四)近年,基于病毒结构、人体内各种大分子结构的测定及人体感染疾病途径的了解,搞清了某些疾病感染及发展的结构匹配需要。人类已经根据这些结构知识设计结构上匹配的、合适的药物,来事先保护病毒和人体的结合点,或阻断病毒的自身繁衍,从而避免感染或控制其繁衍,而不使疾病发展, 这就是所谓的基于结构的、合理的药物设计。

【上述没有详细编辑,如有重叠希望谅解】

㈤ X射线衍射分析的应用实例

1、金属样品如块状、板状、圆拄状要求磨成一个平面,面积不小于10X10毫米,如果面积太小可以用几块粘贴一起。
2、对于片状、圆拄状样品会存在严重的择优取向,衍射强度异常。因此要求测试时合 理选择响应的方向平面。
3、对于测量金属样品的微观应力(晶格畸变),测量残余奥氏体,要求样品不能简单粗磨,要求制备成金相样品,并进行普通抛光或电解抛光,消除表面应变层。
4、粉末样品要求磨成320目的粒度,约40微米。粒度粗大衍射强度低,峰形不好,分辨率低。要了解样品的物理化学性质,如是否易燃,易潮解,易腐蚀、有毒、易挥发。
5、粉末样品要求在3克左右,如果太少也需5毫克。
6、样品可以是金属、非金属、有机、无机材料粉末。 物相分析
晶体的X射线衍射图像实质上是晶体微观结构的一种精细复杂的变换,每种晶体的结构与其X射线衍射图之间都有着一一对应的关系,其特征X射线衍射图谱不会因为它种物质混聚在一起而产生变化,这就是X射线衍射物相分析方法的依据。制备各种标准单相物质的衍射花样并使之规范化,将待分析物质的衍射花样与之对照,从而确定物质的组成相,就成为物相定性分析的基本方法。鉴定出各个相后,根据各相花样的强度正比于改组分存在的量(需要做吸收校正者除外),就可对各种组分进行定量分析。目前常用衍射仪法得到衍射图谱,用“粉末衍射标准联合会(JCPDS)”负责编辑出版的“粉末衍射卡片(PDF卡片)”进行物相分析。
目前,物相分析存在的问题主要有:⑴ 待测物图样中的最强线条可能并非某单一相的最强线,而是两个或两个以上相的某些次强或三强线叠加的结果。这时若以该线作为某相的最强线将找不到任何对应的卡片。⑵ 在众多卡片中找出满足条件的卡片,十分复杂而繁锁。虽然可以利用计算机辅助检索,但仍难以令人满意。⑶ 定量分析过程中,配制试样、绘制定标曲线或者K值测定及计算,都是复杂而艰巨的工作。为此,有人提出了可能的解决办法,认为 从相反的角度出发,根据标准数据(PDF卡片)利用计算机对定性分析的初步结果进行多相拟合显示,绘出衍射角与衍射强度的模拟衍射曲线。通过调整每一物相所占的比例,与衍射仪扫描所得的衍射图谱相比较,就可以更准确地得到定性和定量分析的结果,从而免去了一些定性分析和整个定量分析的实验和计算过程。
点阵常数的精确测定
点阵常数是晶体物质的基本结构参数,测定点阵常数在研究固态相变、确定固溶体类型、测定固溶体溶解度曲线、测定热膨胀系数等方面都得到了应用。点阵常数的测定是通过X射线衍射线的位置(θ )的测定而获得的,通过测定衍射花样中每一条衍射线的位置均可得出一个点阵常数值。
点阵常数测定中的精确度涉及两个独立的问题,即波长的精度和布拉格角的测量精度。波长的问题主要是X射线谱学家的责任,衍射工作者的任务是要在波长分布与衍射线分布之间建立一一对应的关系。知道每根反射线的密勒指数后就可以根据不同的晶系用相应的公式计算点阵常数。晶面间距测量的精度随θ 角的增加而增加, θ越大得到的点阵常数值越精确,因而点阵常数测定时应选用高角度衍射线。误差一般采用图解外推法和最小二乘法来消除,点阵常数测定的精确度极限处在1×10-5附近。
应力的测定
X射线测定应力以衍射花样特征的变化作为应变的量度。宏观应力均匀分布在物体中较大范围内,产生的均匀应变表现为该范围内方向相同的各晶粒中同名晶面间距变化相同,导致衍射线向某方向位移,这就是X射线测量宏观应力的基础;微观应力在各晶粒间甚至一个晶粒内各部分间彼此不同,产生的不均匀应变表现为某些区域晶面间距增加、某些区域晶面间距减少,结果使衍射线向不同方向位移,使其衍射线漫散宽化,这是X射线测量微观应力的基础。超微观应力在应变区内使原子偏离平衡位置,导致衍射线强度减弱,故可以通过X射线强度的变化测定超微观应力。测定应力一般用衍射仪法。
X射线测定应力具有非破坏性,可测小范围局部应力,可测表层应力,可区别应力类型、测量时无需使材料处于无应力状态等优点,但其测量精确度受组织结构的影响较大,X射线也难以测定动态瞬时应力。
晶粒尺寸和点阵畸变的测定
若多晶材料的晶粒无畸变、足够大,理论上其粉末衍射花样的谱线应特别锋利,但在实际实验中,这种谱线无法看到。这是因为仪器因素和物理因素等的综合影响,使纯衍射谱线增宽了。纯谱线的形状和宽度由试样的平均晶粒尺寸、尺寸分布以及晶体点阵中的主要缺陷决定,故对线形作适当分析,原则上可以得到上述影响因素的性质和尺度等方面的信息。
在晶粒尺寸和点阵畸变测定过程中,需要做的工作有两个:⑴ 从实验线形中得出纯衍射线形,最普遍的方法是傅里叶变换法和重复连续卷积法。⑵ 从衍射花样适当的谱线中得出晶粒尺寸和缺陷的信息。这个步骤主要是找出各种使谱线变宽的因素,并且分离这些因素对宽度的影响,从而计算出所需要的结果。主要方法有傅里叶法、线形方差法和积分宽度法。
单晶取向和多晶织构测定
单晶取向的测定就是找出晶体样品中晶体学取向与样品外坐标系的位向关系。虽然可以用光学方法等物理方法确定单晶取向,但X衍射法不仅可以精确地单晶定向,同时还能得到晶体内部微观结构的信息。一般用劳埃法单晶定向,其根据是底片上劳埃斑点转换的极射赤面投影与样品外坐标轴的极射赤面投影之间的位置关系。透射劳埃法只适用于厚度小且吸收系数小的样品;背射劳埃法就无需特别制备样品,样品厚度大小等也不受限制,因而多用此方法 。
多晶材料中晶粒取向沿一定方位偏聚的现象称为织构,常见的织构有丝织构和板织构两种类型。为反映织构的概貌和确定织构指数,有三种方法描述织构:极图、反极图和三维取向函数,这三种方法适用于不同的情况。对于丝织构,要知道其极图形式,只要求出求其丝轴指数即可,照相法和衍射仪法是可用的方法。板织构的极点分布比较复杂,需要两个指数来表示,且多用衍射仪进行测定。

㈥ x射线衍射图谱怎么分析

X射线粉末衍射图谱和数据,怎样分析?
例如,一个XRD谱图数据如下:
2-Theta d(Å) BG Height Height% Area Area% FWHM XS(Å)
13.583 6.5135 8 110 33.0 26.8 38.2 0.207 639
19.136 4.6342 4 24 7.2 5.4 7.7 0.191 689
20.160 4.4010 5 39 11.7 9.9 14.1 0.216 514
20.741 4.2791 4 142 42.6 34.4 49.0 0.206 560
23.099 3.8472 4 65 19.5 17.7 25.3 0.232 441
23.558 3.7733 5 115 34.5 26.7 38.0 0.197 586
26.641 3.3432 7 79 23.7 21.5 30.7 0.232 431
27.238 3.2714 6 333 100.0 70.1 100.0 0.179 678
31.159 2.8680 5 143 42.9 36.0 51.4 0.214 474
-------------------------------------
关于“怎样根据X射线衍射图测算其相数”的回答如下:

SCAN:3.0/85.0/0.02/0.15(sec),Cu(40kV,30mA),I(cps)=339,
扫描:从3.0度/到85.0度/步长0.02度/用时0.15(sec),X射线Cu(40kV,30mA),I(cps)=339,最强峰强I1=339(每秒计数counts per sec)

PEAK:21-pts/Parabolic 峰数:21个/抛物线型
Filter,Threshold=3.0,Cutoff=0.1%,BG=3/1.0,Peak-top=summit 滤波,阈值=3.0,截止限=0.1%,峰顶=峰顶点
NOTE:intensity=CPS,2t(0)=0.0(deg),wavelength to compute d-spacing=1.54056Å(CU/K-alpha1) 注:强度=每秒计数,2t(0)=0.0(deg度),用于计算晶格间距d的波长=1.54056Å(CU/K-alpha1铜靶/K-alpha 1线)

布拉格定律公式:
2d sin θ = nλ,式中,λ为X射线的波长,λ=1.54056Å,衍射的级数n为任何正整数,这里一般取一级衍射峰,n=1。
当X射线以掠射角θ(入射角的余角,又称为布拉格角)入射到你的晶体或部分晶体样品的某一具有d点阵平面间距的原子面上时,就能满足布拉格方程,从而测得了这组X射线粉末衍射图(数据资料)。
你计算时,注意:
第一列数据,是2θ 角,要除以2才是用到公式中的θ 。
第二列数据,的d,单位是Å,
第三列数据,BG,可能是背景的缩写;
第四列数据,峰高,闪烁计数器的计数值;
第五列数据,相对峰高(%),是把最强峰作为归一标准的相对强度值;
第六列数据,峰面积;
第七列数据,相对峰面积(%);
第八列数据,FWHM-Full width at half maximum (脉冲)峰半高宽;一般用于计算的峰强度使用高度就可以了,这是把峰都看成是常规峰。但这一项 FWHM 如果存在特异峰信息,在解析时会带来特殊的意义。
第九列数据,XS(Å),XS是晶粒度(Å)。

我的还有的一些回答和此有关,可以参考:

如何分析X射线粉末衍射图谱和数据?:http://..com/question/126659189.html?fr=qrl&cid=984&index=3&fr2=query;
运用XRD分析结果进行晶相鉴定:http://..com/question/123478742;
x射线衍射的原理及其可以解决的问题(应用):http://..com/question/122264851;

一、谱图横坐标2θ,从而知道掠射角θ(入射角的余角,又称为布拉格角)。然后就可以求得谱线对应的晶面-晶面间距d值;最后可获得晶体的长宽高晶胞几何尺寸。
http://..com/question/156881338.html
http://..com/question/122433124.html
http://..com/question/126659189.html

二、谱图的谱线强度(纵标);如果是照片、感光底片的话,那就是光斑的亮度。
影响衍射强度各因子的物理意义及其计算方法
衍射线的强度能反映晶体内微观结构信息,因此进行衍射强度分析的过程也是完成晶体结构判断的过程;衍射强度分析是衍射分析基本理论的重要组成部分。

三、所有横标、纵标信息、强度信息、谱线分布、谱线组合、全体搭配信息,通俗地讲就是衍射花样,是XRD的重要信息,从中可能、也可以导向对谱图进行解析、归属谱线到晶面、推导出晶体的晶系、晶胞参数、晶型等等!

四、从解析XRD谱中,可以计算得到一系列d值。以一系列d值和相对强度作为依据,去查找PDF卡片索引,可能找到别人作为标准多晶物质的XRD卡片,那么,如果认定你的样品就是PDF卡片上的那个多晶物质,卡片上的大多数数据如:晶系、空间群、晶胞数据(a0,b0,c0;α,β,γ)、密度D(x)、晶胞体积V、每个XRD谱衍射峰归属到晶体晶面的衍射指标化指数,...,等等,都可以被用来用以表征你的多晶物质。

阅读全文

与射线衍射分析方法及应用题库相关的资料

热点内容
餐巾杯花折叠方法图片 浏览:820
检索专利正确方法 浏览:160
传动轴安装方法 浏览:993
耳鼻喉内窥镜使用方法 浏览:512
康复认知训练方法和技巧 浏览:150
42减8破十法计算方法 浏览:136
圆五等分最简单的方法 浏览:91
霍尔传感器不带磁性检测方法 浏览:465
消毒压力锅的使用方法 浏览:830
碘伏泡脚有什么好方法 浏览:316
300模拟量计算方法 浏览:265
肩颈痛肩周炎的锻炼方法 浏览:606
干野生灵芝的食用方法 浏览:552
全身肌肉锻炼方法视频 浏览:422
哪里有系统的织毛衣方法 浏览:905
如何快速学会法语的方法 浏览:362
电视机话筒安装方法 浏览:535
黑凉粉制作方法和步骤 浏览:454
去角质正确方法 浏览:408
直播摄像头卡顿的原因及解决方法 浏览:657