导航:首页 > 研究方法 > 研究方法及

研究方法及

发布时间:2022-01-07 12:24:48

‘壹’  主要研究方法

研究金属矿床成矿时代的常用方法有三种,一是矿石铅同位素年代学方法,二是蚀变矿物的同位素测年方法,三是据赋矿围岩、控矿构造及与矿化有关岩脉的时代间接推断矿脉形成时代。本书主要应用这三种不同的年代学方法确定矿床成矿时代,同时注意不同方法所得年龄的对比分析与相互验证。近年来发展起来的铼-锇同位素年代学方法能直接测定辉钼矿等矿石矿物的形成时代,然而这种方法在我国目前尚处在试用阶段,在燕山地区尚未全面展开该项测年工作。

一、普通铅同位素的演化模式与年龄计算公式

矿石铅同位素年代学方法是直接测定成矿时代的重要研究方法,被广泛用于世界各地的金属矿床。目前常用的铅同位素演化模式包括单阶段模式如Holms-Houtermans模式,二阶段模式如正常铅混合模式、瞬间增长模式与连续增长模式,多阶段模式如简单的三阶段铅混合模式等。但这些模式都存在严格的应用条件。单阶段模式只适合于封闭体系、无后期铅混染的少数几个整合矿床;简单的二、三阶段模式要求体系相对封闭,各阶段异常铅只能来自于单一的且铀、钍、铅同位素比值均一的源区,还要求体系在各阶段的铅同位素均匀分布。这些模式在一般的造山带与地盾、地台区,都能有效地用于确定矿床成矿时代。然而,燕山陆内造山带具有十分复杂的地质过程,矿质具有两种以上的复杂来源;成矿体系多属开放体系,铀-钍-铅同位素混合过程也颇为复杂,存在多种不同的情况;上述几个特殊的铅同位素模式不足以概括本区常见的开放体系铅的混合过程,以至于使本区已积累的近百组铅同位素资料长期以来得不到充分利用,求不出有地质意义的成矿时代。为此,笔者首先从理论上分析常见开放体系铅同位素混合过程,建立开放体系铅同位素演化模式,推导其年龄计算公式。这些模式在燕山地区成岩成矿时期的研究中,取得了良好的应用效果。

1.基本假设

(1)同一来源的206Pb、207Pb、208Pb、204Pb以相同的概率进入同一样品。不同铅同位素化学性质的相似性,使这一假设在各种地质过程中都能成立。

(2)同一时代地质体的N(238U)/N(204Pb)(即μ值)与N(235U)/N(204Pb)(v值)可以变化;铀的丢失与加入常造成这种结果。

(3)当铅混合时,铅同位素可来源于两种以上不同的铅源,包括正常铅铅源与放射成因异常铅铅源;同一铅源对不同样品的贡献可以不一样,即同一体系不同样品的铅同位素来自于任一源区的概率可以不一样。

(4)体系中的铅可以来自于一个至数个放射性成因铅源,将N(238U)/N(204Pb)=μi的源区叫μi源。

(5)铀、铅及其同位素在地幔中均匀分布。

(6)铅在最后一阶段混合后,保持其同位素比值,直至现代。

2.二阶段铅混合的系统模式

设样品来自于t1时形成正常铅的概率为α1,来自于T至t2时期形成的放射成因铅的概率为α2。t2混合时,设有m个μi源,样品中混合铅来自于μi源的概率为βi。t2混合之后,样品铅同位素组成可表示为:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

式中:

为第二阶段(t2)体系的铅同位素组成;

为第一阶段(t1)体系铅同位素组成,由H-H模式确定:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

a0、b0为T=4550Ma时地球的初始铅同位素组成;α1+α2=1,

;T为地球年龄。

模式Ⅰ当α1=1,α2=0时,由(3.1.1)、(3.1.2)式知,二阶段铅退化为单阶段铅。这时为正常铅,样品点在N(207Pb)/N(204Pb)—N(206Pb)/N(204Pb)坐标图中分布于一点。据(3.1.3)、(3.1.4)式得:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

由(3.1.5)式与(3.1.3)、(3.1.4)式可计算成岩或成矿年龄t1与源区μ,v值。该模式相当于H-H模式(G.福尔,1983)。

模式Ⅱ0<αi<1,i=1,2;β1=1,βj=0(2≤j≤m),μ1=μ;这时(3.1.1),(3.1.2)式可简化为:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

由(3.1.6)、(3.1.7)式得:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

当αi对不同样品取值不一样时,样品点呈线性分布,直线斜率为R,如图3-1所示。样品点分布于增长曲线的弦上,等时线与增长曲线的两交点对应时代t1与t2相当于两次普通铅的形成时代。该模式相当于前述已有的正常铅与正常铅混合二阶段模式。当已知t1与t2之一时,可据R求出另一时代。

模式Ⅲ-1当i=1,2时,0<αi<1,0<βj<1(1≤j≤m),βj

(βj·μj)对不同样品不取恒定值,但αi对所有样品取恒定值。这时,由(3.1.1)、(3.1.2)式导出:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

(3.1.8)式中,

为混合铅同位素比值。这时样品点分布在一条直线上,直线斜率较大(图3-2),据(3.1.8)式能求出t2。当其它条件相同,而βj对所有样品取定值(1≤j≤m)时,由(3.1.1)、(3.1.2)式可知,样品点的铅同位素组成均匀分布,在坐标图中分布于一点;在这种情况下,难以求出t1或t2值。

模式Ⅲ-20<αi<1,i=1,2;0≤βj<1,1≤j≤m;α1对不同样品皆非恒定值,βj对不同样品非定值;这时,若

(βj·μj)趋于μ,则由(3.1.1)、(3.1.2)式导出:

图3-1模式Ⅱ图解

Fig.3-1Lead-isotope evolution of modelⅡ

图3-2模式Ⅲ-1图解

Fig.3-2Lead-isotope evlution of modelⅢ-1

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

由于

(βj·μj)趋于定值μ,所以X′t1与Y′t1近为定值。代入(3.1.9)、(3.1.10)式,得:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

这时,样品点呈线性分布,据直线斜率能求出t1与t2之一。

,则由(3.1.9)、(3.1.10)式可以看出,当μ′<0时,样品点靠近t1分布,甚至会落在t1左侧;当μ′≥0时,样品点靠近t2点分布,部分样品点会落在t2右侧。增长曲线如图3-3。当t1与t2相差较大时,该模式相当于连续增长模式;当t1与t2近似相同时,则等时线由弦而渐趋于切线,这时相当于瞬间增长模式。

模式Ⅲ-3当0<αi<1,0≤βj<1(i=1,2,1≤j≤m),βj、αj对不同样品皆非常数时,若样品的α1值仅取几个定值之一,当样品点足够多时,样品点呈图3-4所示分布状态,即分布于一组平行直线上。据直线斜率能求出t1或t2,斜率R可表示为:

图3-3模式Ⅲ-2图解

Fig.3-3The first lead-isotope evolution of model Ⅲ-2

图3-4模式Ⅲ-3图解之一

Fig.3-4The first lead-isotope evolution of model Ⅲ-3

(βj·μj)为定值时,

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

(βj·μj)不为定值时,

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

若αi对不同样品都不一样时,样品点呈星散状分布(图3-5),这时无法求出t1或t2的真实值。

图3-5模式Ⅲ-3图解之二

Fig.3-5The second lead-isotope evolution of model Ⅲ-3

3.三阶段铅混合的系统模式

设一阶段铅的分离时代为t1,二阶段铅的混合时代为t2,三阶段铅的混合时代为

为二阶段普通铅源i的同位素比值,

为t3体系中铅同位素比值;设有m个放射成因铅源μi,有n个普通铅源;t3时刻混合时,体系铅来自于普通铅i源的概率为εi,来自于放射成因铅的概率为εn+1;当εn+1>0时,μj源铅进入样品的概率为βj,则

=1,且

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

(3.1.12)、(3.1.13)式为一般情况下三阶段铅混合时的定量关系式。不同条件下,三阶段混合铅具有不同特征,对应于不同的铅演化图,下面分别予以讨论。

(1)ε1=1,εi=0,2≤i≤n+1,这时三阶段铅退化为二阶段铅。

(2)0<ε1<1;εi=0,2≤i≤n;0<εn+1<1,这时(3.1.12)、(3.1.13)式可写成:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

模式Ⅳ当β1=1,βj=0,2≤j≤m时,(3.1.14)与(3.1.15)式可写成:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

若放射性铅与普通铅在T到t2期间有相同的演化过程和成分,即

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

这时相当于G.福尔提出的简单三阶段模式;且样品点或呈线性分布(图3-6),或分布于一点。据等时线斜率R能求出t2与t3之一:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

模式Ⅴ-1当所有样品的ε1、Xt2、Yt2取相同值时,则ε1·Xt2、ε1·Yt2为常量。若βj对所有样品取相同值,0≤βj≤1,1≤j≤m;这时三阶段样品铅同位素构成一点。据(3.1.14)、(3.1.15)式,有

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

只有当ε1及Xt2、Yt2都已知时,才能求出t3;一般情况下,若上述三参数未知,则无法计算出真实年龄t3

模式Ⅴ-2当ε1及Xt2、Yt2为常量,而不同样品βj不同时,1≤j≤m,若

不为恒定值,则据(3.1.14)、(3.1.15)式,可推导出:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

这时,样品点呈线性分布(图3-7),直线斜率一般较大。据R能求出t3

图3-6混合铅模式Ⅳ图解

Fig.3-6Lead-isotope evolution of model Ⅳ

图3-7模式Ⅴ-2图解

Fig.3-7Lead-isotope evolution of model V-2

模式Ⅵ当所有样品点的Xt2、Yt2恒定时,若0≤βj≤1,1≤j≤m,βj非常数;而Xt2

,则据(3.1.14)、(3.1.15)式,可导出:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

近为常量。据(3.1.16)、(3.1.17)式可导出:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

这时,样品点呈线性分布,分布特征类似于模式Ⅲ-2,如图3-8所示。

模式Ⅶ当Xt2、Yt2恒定,ε1、β,对不同样品取不同值时,若

不恒定,且ε1仅有几个可能的值,则混合铅样品点分布于几条平行直线上,直线斜率

据之能求出t3,否则,样品点呈星散状分布。混合铅演化如图3-9所示。

图3-8模式Ⅵ图解

Fig.3-8Lead-isotope evolution of model Ⅵ

(3)当不同样品的Xt2、Yt2不同,0≤εi<1,1≤i≤n+1时,有下列模式:

模式Ⅷ若Xt2、Yt2呈线性分布,不同样品点εi相同(1≤i≤n),0≤βj<1(1≤j≤m);则有几种可能性:

模式Ⅷ-1若βj恒定,1≤j≤m,则(3.1.12)、(3.1.13)式可写成:

图3-9模式Ⅶ图解

Fig.3-9Lead-isotope evolution of model Ⅶ

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

由于βi为常量,对所有1≤j≤m都成立,所以

c与d皆为常数;样品点仍呈线性分布,其斜率与二阶段等时线相同,如图3-10示。据R能求出t1与t2之一,而求不出t3

图3-10模式Ⅷ-1图解

Fig.3-10Lead-isotope evolution of modelⅧ-1

模式Ⅷ-2若

相同,但βj不同时,则任一(Xt2,Yt2)点都对应一条三阶段等时线,所有样品点沿两组平行直线分布(图3-11),r1一般大于r2

,据之能求出t2与t3之一;r1为二阶段等时线斜率,据之能求出t1与t2之一。只有当样品点足够多时,才有可能据该模式求出t1、t2或t3,否则,r1与r2难以确定,无法计算年龄。

图3-11模式Ⅷ-2图解

Fig.3-11Lead-isotope evolution of modelⅧ-2

模式Ⅸ若(Xt2,Yt2)呈线性分布,不同样品εj值相同,βj值不同,

亦因样品不同而不同,这时(3.1.12)、(3.1.13)式中

为常数,由(3.1.12)、(3.1.13)式可导出:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

这时样品点沿两组斜率较大的平行直线分布。当样品点足够多而能求出r1,与r2时,则可据此求出t1、t2或t3

模式X若(Xt2,Yt2)呈线性分布,但εi,βj对不同样品不取恒定值时,则据(3.1.12)、(3.1.13)式,样品点呈星散状分布,或呈线性沿两组平行直线分布。后一种分布状状只有当εi对不同样品点仅取几组确定值时才能出现,据平行直线的斜率能求出t3,斜率r2为:

非定值时

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

恒定值时

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

模式Ⅺ当(Xt2,Yt2)不呈线性分布,而呈星散状分布时,则三阶段铅样品点仍呈星散状分布,这时无法求出t3与t2的真实值。

模式Ⅻ当(Xt2,Yt2)分布于数条平行直线上,而βj、εj恒定时,由(3.1.12)、(3.1.13)式可得出样品点的(Xt3,Yt3)仍呈线性分布,斜率与二阶段等时线相同(图3-12);据斜率r1可求出t1或t2,详见模式Ⅲ-3,但无法求出t3

模式ⅩⅢ当(Xt2,Yt2)呈线性分布于数条平行直线上(其斜率为r1),若ε1恒定,βj对不同样品取值不尽相同,则由(3.1.12)、(3.1.13)式可导出:当样品点足够多时,样品点分布于一个菱形区域内,类似于图3-11所示的三阶段铅样品点的分布状态;据两组直线斜率r1、r2能求出t1、t2或t3,r2表达式为:

非常数时

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

为常数时

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

以上从理论上分析了开放体系多种情况下铅同位素的演化模式。可以看出,混合铅样品点呈同一或类似分布状态时,可对应一个至数个不同的地质过程。因此在应用铅同位素研究地质问题时,应尽量取足够多的样品;在样品点足够多的前提下,结合其它地质与地球化学资料进行综合分析,以便合理地解释铅同位素的演化,求出成岩、成矿时代。这些模式在燕山地区成岩成矿时期研究中,取得了较好的应用效果。

图3-12模式Ⅻ图解

Fig.3-12Lead-isotope evolution of modelⅫ

二、其它研究方法简介

1.据矿石蚀变矿物的K-Ar法、Rb-Sr等时线法、裂变径迹法确定成矿时代

上一章已述,燕山地区大部分类型的矿化都伴有强烈的蚀变,蚀变阶段性与矿化阶段性存在良好对应关系,两者形成时间相近。因此,蚀变矿物的同位素年龄能代表成矿时代。

蚀变矿物绢云母、白云母、钾长石等适合于K-Ar法年龄测定,白云母、绢云母的K-Ar法年龄能较好地反映同期矿化时代。

近矿蚀变矿物绢云母、白云母等的单矿物Rb-Sr等时线法年龄也能准确地反映成矿时代,是确定矿床形成时代的良好方法。

蚀变矿物的裂变径迹法年龄常较实际成矿时代偏小,其上限能大致代表成矿时间(杨应平,1985,硕士论文)。

2.据赋矿围岩时代与矿区岩脉时代间接推断成矿时代

当有充分的资料说明矿化与围岩成岩作用存在成因联系时,围岩时代能代表成矿时代下限。表3-1说明燕山地区中生代赋矿岩体时代与矿化时代的一致性。

当矿区内存在大量岩脉时,根据岩脉时代及岩脉与矿体相互穿切关系,也能较好地推断成矿时代。

表3-1岩体与其中金矿时代对比表

3.据同成矿期控矿构造的成生、活动时间推断成矿时代

任何控矿构造都属于某一个或某些构造体系,皆有一定的形成与活动时期;因此据同成矿期控矿构造的时代能定性推断部分矿床的成矿时代。古构造筛分有助于这方面的研究工作。

‘贰’ 研究内容与研究方法

一、研究过程及研究范围

河南省省辖18个城市广泛分布第四纪松散地层,其浅层土体以及赋存的浅层地下水中低品位的地热能资源丰富。为合理开发利用城市浅层地热能资源,河南省地质调查院于2006年向河南省国土资源厅立项申请开展“河南省重点城市浅层地热能评价与开发利用研究”项目,得到河南省国土资源厅批准,并列为“河南省国土资源厅地质矿产科技攻关项目”(科研项目编号02号),2007年初编写了项目设计书,于2007年3月通过河南省国土资源厅审核,于2009年8月26日通过了河南省国土资源厅的验收和科技鉴定。

原项目研究范围:郑州、开封、新乡、许昌、漯河、周口、安阳、濮阳、焦作、洛阳、南阳等11个重点城市的城市建成区及规划区,面积约5000km2。研究过程中根据社会发展状况,调整工作区面积为2020年规划区面积。

本书研究范围是根据专家意见及河南省的实际情况,增加了鹤壁、济源、三门峡、商丘、平顶山、驻马店、信阳等7个城市的相应内容,同时,根据《浅层地热能勘查评价规范》(DZ/TO225—2009),增加了地埋管热泵系统应用适宜性评价与区划研究内容。

二、研究目的

本项目研究目的是为科学利用与保护浅层地热资源,初步研究河南省重点城市浅层地热资源类型与潜力,进行开发利用区划,促进河南省城市浅层地热能的合理开发利用,减少投资风险等提供科学依据。

三、研究内容

为保证本项目研究目的及任务的实现,有利于科技攻关,提高成果科技水平及实用性,本书主要从以下4个方面进行研究。

1.浅层地热能埋藏分布规律及循环特征研究

该课题针对城市所处的山前冲洪积平原、河流冲积平原、河谷及盆地等水文地质单元,对浅层地热能埋藏分布规律和循环体征进行研究,是此次研究项目的基础,重点研究以下内容。

1)第四系厚度及年恒温层深度。

2)浅层地热能埋藏、分布及循环特征。

3)水位、水温、水质动态变化及影响因素。

4)建立和确定浅层地热资源评价参数系列,包括渗透系数、储水系数、地温梯度、回灌渗透系数、热导率和大地热流值等。

5)建立典型城市的浅层地热能概念模型和确定边界条件。

2.浅层地热能资源评价

该课题是城市浅层地热能资源合理开发利用区划的主要依据,针对不同的水文地质单元,主要研究如下内容:

1)根据地(水)温观测、抽水和回灌试验及室内测试,计算和确定浅层地热能资源计算与评价参数值。

2)根据概念模型建立数学模型。

3)采用不同评价方法,计算浅层地热能储存量和可采资源量。

4)根据浅层地热资源现状开采量与可采资源量,计算开采潜力,并进行开采潜力分区。

3.浅层地热能采集与回灌技术研究

该课题也是进行浅层地热能合理开发利用区划的主要依据。主要针对不同水文地质单元的地质和水文地质条件,结合现有工程开展回灌技术和现场试验,研究回灌量和水质及水温对浅层地热能储存条件和可采资源量的影响;研究施工工艺,确定浅层地热能采集与回灌的技术条件,包括合理井深、井间距、井结构、开采量与降深、回灌量等;确定合理的“即采即用即灌”方案。

4.浅层地热能综合开发利用区划

在以上课题研究的基础上,进行浅层地热能开发利用适宜性分区;根据开发利用技术条件,确定浅层地热能开发利用方式;对地下水资源和浅层地热能资源提出相应的保护措施与保护目标。

四、主要研究方法

1.资料收集及二次开发

项目执行过程中广泛收集18个重点城市的社会经济发展、区域地质、水文地质、浅层地热能利用、遥感、水文、气象、环保、城市建设规划和城市节能规划等方面的资料,并进行系统地综合整理。研究内容包括:①地层结构、构造特征;②浅层地热能利用层位水文地质条件;③总结浅层地热能开发利用现状与存在的问题。

2.浅层地热能开发利用现状调查研究

在地面调查的基础上,重点对此次研究的18个城市区浅层地热能利用项目进行调查,调查内容包括工程占地面积、应用建筑面积、抽、回水井数量、井间距、抽水量与地下水温、回水量与回灌水温、运行期间地下水动态变化、制冷(热)效果等。

3.水动力学方法调查与监测

浅层地热能资源可称为是一种主要以水为载体的可流动资源,为研究地下水的径流条件,开展了地下水位统测和动态监测。在枯水期部署地下水位统测工作,统测点密度一般为每4km2一个点;选择已有的浅层地热能空调系统进行长期监测,以研究地下水源热泵系统运行对地下水环境的影响,监测时间不少于一个水文年,监测内容包括抽水量、回灌量、水位、水质、水温及利用效能等。其中水质监测选择在浅层地热能空调系统运行前、运行过程中及运行后分别采取水样;水位及水温观测频率每5天1次。

4.水热力学方法调查与监测

为研究浅层地温分布特征,对浅层地下水温度进行了调查。主要是结合水动力场研究开展地下水温度场分布测量,仪器采用井中测温仪(型号JL-1),平面上测量点密度大体按每25m2设1个点布设;垂向上测点密度为每2m设1个点,测深视井结构具体条件确定。

5.水文地球化学研究方法

地下水的水化学组成反映了浅层地热能的形成环境与条件,可通过水化学成分研究其成因与形成年龄,评价浅层地热能的科学用途。为分析不同水质对浅层地热能空调系统的影响,研究提出相应的处理工艺措施,结合已有资料,分别在浅层地热能空调系统动态监测点与水化学资料相对较少的研究区补充布置水质全项分析水样并送实验室测试。

6.现场实验方法研究

为了解含水层富水性,计算水文地质参数,研究地下水回灌量和水质、水温对浅层地热能储存条件和开采资源量的影响,确定合理的“即采即用即灌”方案;研究适宜于东部平原细颗粒含水层地区抽水、回灌井科学的施工工艺和成井结构,研究浅层地热能采集技术的适用条件,针对不同的水文地质条件,结合已有或在建浅层地热能利用工程,布置注水试验和抽水试验。为求得不同地层岩性的热物理参数,在郑州市布置施工地质取样孔1眼,所取样品送往南京大学实验室测试。

7.模型建立与研究

建立浅层地热能补给量、排泄量与储存变化量的均衡模型,评价浅层地热能资源量;根据水文地质条件,采用热流量法或数值法预测评价浅层地热能的可利用资源量;根据开采资源与现状开采量评价浅层地热能开发利用潜力。

选择资料丰富且类型典型的地热区段,运用HST3D数值模拟软件,对地热流体运移进行模拟;预测评价规划开采和浅层地热流体利用条件下,地热流体温度的时空变化趋势;模拟不同地质、水文地质、地热条件下,地下水的流场和温度场的分布特征;评价浅层含水层的储热功能和热储量,为合理、科学地开发浅层地热流体资源提供科学依据。

8.浅层地热能开发利用综合研究

在上述方法研究的基础上,研究提出不同地质水文地质条件下浅层地热能采集技术方案,制定各市浅层地热能合理开发利用区划。

9.数据库建设

对收集的资料、新取得的各项资料进行整理装订成册,并统一使用GIS软件平台,按要求建立数据库。对原始图件及成果图件等实施数字化,并建立图形属性库及外挂属性库。

‘叁’ 研究方法

地下水系统演化:即在自然条件与人类活动影响叠加状态下地下水动力场及地下水化学场的演化。本书主要研究内容是地下水系统演化和地下水水环境保护。因此,本书综合采用水文地质、水文地球化学、环境地质学、数学等研究方法。以演化的观点为指导,动态地研究地下水系统的变化特征;从整体的观点出发,研究地下水系统中地下水动力场、化学场的相互关系;以环境的观点为依托,系统地研究地下水主要超标因子的来源与形成机理,并进行地下水系统的脆弱性分区,为地下水环境的改善和保护提供可靠的信息和科学的依据。具体方法如下:

图1.1 研究技术路线框图

1)用MapGIS和SUFER8.0刻画了研究区不同时期地下水流场、地下水位降落漏斗、地下水水化学场,以及主要因子的动态变化和空间分布特点,阐明了区域地下水系统的演化。

2)用水文地球化学模拟软件PHREEQC对地下水Fe离子升高的机理进行了探讨。

3)用DRASTIC模型和GIS平台的空间分析功能对研究区进行地下水系统内在脆弱性分区,为保护水资源提供理论依据。

首先,在查阅国内外大量专业文献,了解本领域研究现状的基础上,根据存在的环境水文地质问题,结合目前环境水文地质研究特点和发展方向,紧紧围绕地下水系统演化和地下水环境保护两条主线,充分收集资料,然后进行环境水文地质条件综合分析;最后在分析研究地下水动力场、地下水化学场演化规律及其影响因素的基础上,充分分析影响地下水水质的因素,探讨了总硬度升高、Fe离子含量升高的机理,并对研究区进行了地下水脆弱性分区。为保护水环境以及改善水质提供理论依据。研究方法与研究思路见图1.1。

‘肆’ 开题报告中,研究方法与研究手段的区别

两者之间没有明显的区别。研究方法多指那些具有明确定义的实验研究方法,研究手段多是指那些没有明确定义名称的方法。

这是运用智慧进行科学思维的技巧,一般包括文献调查法、观察法、思辨法、行为研究法、历史研究法、概念分析法、比较研究法等。研究方法是人们在从事科学研究过程中不断总结、提炼出来的。

由于人们认识问题的角度、研究对象的复杂性等因素,而且研究方法本身处于一个在不断地相互影响、相互结合、相互转化的动态发展过程中,所以对于研究方法的分类很难有一个完全统一的认识。

研究方法的使用

科学研究通常是分阶段进行的,在不同的阶段应该选择不同的研究方法来完成相应的研究任务。选题阶段通过可以借观察法、文献调查法、历史研究法等来获取相关的数据,进而保持所选课题的学术价值、社会价值和经济价值等。

调研文献阶段可以借助问卷调查法、文献调查法,从各种期刊、图书、档案等传统文献和现代的光盘、网络等新型资源当中,查找相关的学术信息,研究成果。在提出假说和构建理论阶段,可以借助公理化方法、从抽象到具体方法、历史与逻辑相统一法等,将自己的想法和观念通过符号化而成为显性信息。

以上内容参考网络-研究方法

‘伍’ 开题报告的研究方法有哪些

运用比较广泛的是文献法、调查法、实验法、行动研究法、访谈法等。

在介绍论文方法时,不是对方法概念的解释,而是要介绍如何使用的研究方法,比如问卷调查法,就要阐述清楚问卷是自制,还是沿用的前人。在研究用,不要罗列一大堆的研究方法,主要提炼一两种研究方法,侧重研究就可以。

研究价值就这个部分,不能空而大或罗列许多根本解决不了的,比如有的老师说他的研究有利于提高某某地区的教育质量等等,别人一看“提高”这个词就不相信,最多是“改善”。教育的质量不是一项科研就可提高的,另就本土文化的研究,是否具有良好的推广性,还有待实证。

研究的创新相对别人这方面的研究,别人没有的,自己总结提炼出来的新亮点,也是文章的亮点。研究的价值与创新应立足于自己的本研究,不能把自己无关的或自己根本解决不了的罗列上去。

(5)研究方法及扩展阅读

开题报告的内容:

1、课题来源及研究的目的和意义。

2、国内外在该方向的研究现状及分析。

3、主要研究内容及创新点。

4、研究方案及进度安排,预期达到的目标。

5、为完成课题已具备和所需的条件。

6、预计研究过程中可能遇到的困难和问题有及解决的措施。

7、主要参考文献。

阅读全文

与研究方法及相关的资料

热点内容
手指震动棒的使用方法 浏览:620
泡脚包的正确方法图片 浏览:562
研究物质的重要方法 浏览:902
玻璃去除贴纸残留胶最简单的方法 浏览:859
分开毛线简便方法 浏览:389
九层塔的详细种植方法 浏览:513
毕业论文研究方法如何体现出来 浏览:640
大数除法计算简便方法 浏览:810
接地检测的方法和步骤 浏览:503
单开三孔控制安装方法 浏览:445
回风取暖炉如何制作方法 浏览:52
问卷相关分析方法 浏览:309
贺卡立体的制作方法视频 浏览:574
耳聋有哪些方法治疗 浏览:879
小金毛弓形虫治疗方法 浏览:319
阳其参减肥正确使用方法 浏览:824
熟琵琶虾怎么保存方法 浏览:996
手机淘宝账号卖家中心在哪里设置方法 浏览:465
计量资料可以用什么研究方法 浏览:230
正六面体型晶胞计算方法 浏览:821