导航:首页 > 研究方法 > 聚类分析常用的聚类方法包括

聚类分析常用的聚类方法包括

发布时间:2023-04-01 17:23:41

① 聚类分析方法哪些

问题一:什么是聚类分析?聚类算法有哪几种 聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于
分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行
定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识
难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又
将多元分析的技术引入到数值分类学形成了聚类分析。
聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论
聚类法、聚类预报法等。
聚类分析计算方法主要有如下几种:分裂法(partitioning methods):层次法(hierarchical
methods):基于密度的方法(density-based methods): 基于网格的方法(grid-based
methods): 基于模型的方法(model-based methods)。

问题二:聚类分析方法有什么好处 5分 聚类分析:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。
常用聚类方法:系统聚类法,K-均值法,模糊聚类法,有序样品的聚类,分解法,加入法。
注意事项:
1. 系统聚类法可对变量或者记录进行分类,K-均值法只能对记录进行分类;
2. K-均值法要求分析人员事先知道样品分为多少类;
3. 对变量的多元正态性,方差齐性等要求较高。
应用领域:细分市场,消费行为划分,设计抽样方案等
优点:聚类分析模型的优点就是直观,结论形式简明。
缺点:在样本量较大时,要获得聚类结论有一定困难。由于相似系数是根据被试的反映来建立反映珐试间内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。

问题三:什么是聚类分析? 聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于
分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行
定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识
难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又
将多元分析的技术引入到数值分类学形成了聚类分析。
聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论
聚类法、聚类预报法等。
聚类分析计算方法主要有如下几种:分裂法(partitioning methods):层次法(hierarchical
methods):基于密度的方法(density-based methods): 基于网格的方法(grid-based
methods): 基于模型的方法(model-based methods)。

问题四:常用的聚类方法有哪几种?? 1.k-mean聚类分析 适用于样本聚类;
2.分层聚类 适用于对变量聚类;
3.两步搐类 适用于分类变量和连续变量聚类;
4.基于密度的聚类算法;
5.基于网络的聚类;
6.机器学习中的聚类算法;
前3种,可用spss简单操作实现;

问题五:spss聚类分析方法有哪些 首先,k-means你每次算的结果都会不一样,因为结果跟初始选取的k个点有关

问题六:聚类分析方法是什么? 5分 聚类分析:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。

问题七:聚类分析的算法 聚类分析是数据挖掘中的一个很活跃的研究领域,并提出了许多聚类算法。传统的聚类算法可以被分为五类:划分方法、层次方法、基于密度方法、基于网格方法和基于模型方法。1 划分方法(PAM:PArtitioning method) 首先创建k个划分,k为要创建的划分个数;然后利用一个循环定位技术通过将对象从一个划分移到另一个划分来帮助改善划分质量。典型的划分方法包括:k-means,k-medoids,CLARA(Clustering LARge Application),CLARANS(Clustering Large Application based upon RANdomized Search).FCM2 层次方法(hierarchical method) 创建一个层次以分解给定的数据集。该方法可以分为自上而下(分解)和自下而上(合并)两种操作方式。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。典型的这类方法包括:BIRCH(Balanced Iterative Recing and Clustering using Hierarchies) 方法,它首先利用树的结构对对象集进行划分;然后再利用其它聚类方法对这些聚类进行优化。CURE(Clustering Using REprisentatives) 方法,它利用固定数目代表对象来表示相应聚类;然后对各聚类按照指定量(向聚类中心)进行收缩。ROCK方法,它利用聚类间的连接进行聚类合并。CHEMALOEN方法,它则是在层次聚类时构造动态模型。3 基于密度的方法,根据密度完成对象的聚类。它根据对象周围的密度(如DBSCAN)不断增长聚类。典型的基于密度方法包括:DBSCAN(Densit-based Spatial Clustering of Application with Noise):该算法通过不断生长足够高密度区域来进行聚类;它能从含有噪声的空间数据库中发现任意形状的聚类。此方法将一个聚类定义为一组“密度连接”的点集。OPTICS(Ordering Points To Identify the Clustering Structure):并不明确产生一个聚类,而是为自动交互的聚类分析计算出一个增强聚类顺序。。4 基于网格的方法,首先将对象空间划分为有限个单元以构成网格结构;然后利用网格结构完成聚类。STING(STatistical INformation Grid) 就是一个利用网格单元保存的统计信息进行基于网格聚类的方法。CLIQUE(Clustering In QUEst)和Wave-Cluster 则是一个将基于网格与基于密度相结合的方法。5 基于模型的方法,它假设每个聚类的模型并发现适合相应模型的数据。典型的基于模型方法包括:统计方法COBWEB:是一个常用的且简单的增量式概念聚类方法。它的输入对象是采用符号量(属性-值)对来加以描述的。采用分类树的形式来创建一个层次聚类。CLASSIT是COBWEB的另一个版本.。它可以对连续取值属性进行增量式聚类。它为每个结点中的每个属性保存相应的连续正态分布(均值与方差);并利用一个改进的分类能力描述方法,即不象COBWEB那样计算离散属性(取值)和而是对连续属性求积分。但是CLASSIT方法也存在与COBWEB类似的问题。因此它们都不适合对大数据库进行聚类处理.传统的聚类算法已经比较成功的解决了低维数据的聚类问题。但是由于实际应用中数据的复杂性,在处理许多问题时,现有的算法经常失效,特别是对于高维数据和大型数据的......>>

问题八:主成分分析法和聚类分析法的区别

问题九:聚类分析方法具体有哪些应用?可不可以举个例子? 比如说现在要把n个产品按产品的m个指标继续聚类,因为产品可能之前的特色是不一样的。而这个时候影响产品的因素有m个,不可能一个一个的考虑,那样是分不出类来的。所以只能对产品的m个指标综合考虑,采用SPSS中的样本聚类方法,就可以直接将产品分好类。并且从分析结果还可以看出各类产品的特色分别是什么。。就是最主要的分类标准是什么。
聚类分析不仅可以用于样本聚类,还可以用于变量聚类,就是对m个指标进行聚类。因为有时指标太多,不能全部考虑,需要提取出主要因素,而往往指标之间又有很多相关联的地方,所以可以先对变量聚类,然后从每一类中选取出一个代表型的指标。这样就大大减少了指标,并且没有造成巨大的信息丢失。

② 数据分析之聚类分析

RFM分析只能对客户的行为进行分析,包含的信息量有点少。一般来说,对人群进行分类,要综合考虑其行为、态度、模式以及相关背景属性,通过使用特定的方法,发现隐藏在这些信息背后的特征,将其分成几个类别,每一类具有一定的共性,进而做出进一步的探索研究。这个分类的过程就是聚类分析。

聚类分析,就是按照个体的特征将它们分类,目的在于让同一个类别内的个体之间具有较高的相似度,而不同类别之间具有较大的差异性。这样,就能够根据不同类别的特征有的放矢地进行分析,并制定出适用于不同类别的解决方案。

聚类可以对变量进行聚类,但是更常见的还是对个体进行聚类,也就是样本聚类。例如对用户、渠道、商品、员工等方面的聚类,聚类分析主要应用在市场细分、用户细分等领域。

为了合理的聚类,需要采用适当的指标来衡量研究对象之间的联系紧密程度,常用的指标有“距离”和“相似系数”,相似系数一般指的是相关系数。假设将研究对象采用点表示,聚类分析时,将“距离”较小的点或“相似系数”较大的点归为同一类,将“距离”较大的点或“相似系数”较小的点归为不同的类。

聚类分析具有如下特点:

1.对于聚类结果是未知的,不同的聚类分析方法可能得到不同的分类结果,或者相同的聚类分析方法但是所分析的变量不同,也会得到不同的聚类结果;

2.对于聚类结果的合理性判断比较主观,只要类别内相似性和类别间差异性都能得到合理的解释和判断,就认为聚类结果是可行的。

聚类分析可以应用于以下场景:

聚类分析的步骤:

(1)确定需要参与聚类分析的变量;

(2)对数据进行标准化处理;

因为各个变量间的变量值的数量级别差异较大或者单位不一致,例如一个变量的单位是元,另一个变量的单位是百分比,数量级别差异较大,而且单位也不一致,无法直接进行比较或者计算“距离”和“相似系数”等指标。

(3)选择聚类方法和类别个数;

(4)聚类分析结果解读;

常用的聚类方法包括:

1.快速聚类:也称K均值聚类,它是按照一定的方法选取一批聚类中心点,让个案向最近的聚类中心点聚集形成初始分类,然后按照最近距离原则调整不合理的分类,直到分类合理为止。

2.系统聚类:也称层次聚类,首先将参与聚类的个案(或变量)各视为一类,然后根据两个类别之间的聚类或者相似性逐步合并,直到所有个案(或变量)合并为一个大类为止。实际上,系统聚类分析结果展现了每个个案的聚类过程和分类结果。系统聚类之后,要制作交叉表通过每一个类别的均值来了解每一类别的特征。

3.二阶聚类:也称两步聚类,它是随着人工智能的发展起来的一种智能聚类方法。整个聚类方法分为两个步骤,第一个步骤是预聚类,就是根据定义的最大类别数对个案进行初步归类;第二个步骤是正式聚类,就是对第一步得到的初步归类进行再聚类并确定最终聚类结果,并且在这一步中,会根据一定的统计标准确定聚类的类别数。

(1)系统聚类分析不仅支持输入单个分类数量,还支持输入分类数量的范围。这对于暂时无法确定类别数,或者想进行多类别数的结果比较时,非常方便。

(2)系统聚类分析支持生成聚类结果图,从而更加直观地查看聚类过程。系统聚类分析支持两种图形:

谱系图(树状图):它以树状的形式展现个案被分类的过程;

冰柱图:它以“X”的形式显示全部类别或指定类别数的分类过程。

(3)系统聚类分析提供多种聚类方法和适用于不同数据类型的测量方法

其中,测量方法(度量标准):

(i)区间:适用于连续变量,虽然SPSS提供了8种测量方法,但是通常选用默认的【平方欧式距离】即可。

(ii)计数:适用于连续或分类变量,SPSS提供了2种测量方法,通常选用【卡式测量】即可。

(iii)二元:适用于0/1分类变量,SPSS提供多达27种测量方法,通常选用【平方欧式距离】即可。

通过方法里的转换值项来进行标准化处理。由于参与聚类分析的变量是连续变量,所以,【测量】应选择【区间】项,方法为默认的【平方欧式距离】,标准化可以选择【Z得分】,选择按【变量项】,用以每个变量单独进行标准化。

二阶聚类分析能够对连续变量和分类变量同时进行处理,无需提前指定聚类的数目,二阶聚类会自动分析并输出最优聚类数。二阶聚类的自动聚类结果借由统计指标施瓦兹贝叶斯准则(BIC)帮助判断最佳分类数量。判断一个聚类方案的依据是BIC的数值越小,同时,“BIC变化量”的绝对值和“距离测量比率”数值越大,则说明聚类效果越好。

聚类分析属于探索性数据分析方法,它没有一个所谓的标准流程和答案,不同的数据有不同的适用方法,即使相同的数据,应用不同的方法也可能会得到不同的结果。只要能有效解决实际业务问题即可。

③ 聚类算法有哪些分类

聚类算法的分类有:

1、划分法

划分法(partitioning methods),给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K小于N。而且这K个分组满足下列条件:

(1) 每一个分组至少包含一个数据纪录;

(2)每一个数据纪录属于且仅属于一个分组(注意:这个要求在某些模糊聚类算法中可以放宽);

2、层次法

层次法(hierarchical methods),这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。

例如,在“自底向上”方案中,初始时每一个数据纪录都组成一个单独的组,在接下来的迭代中,它把那些相互邻近的组合并成一个组,直到所有的记录组成一个分组或者某个条件满足为止。

3、密度算法

基于密度的方法(density-based methods),基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。

4、图论聚类法

图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。因此,每一个最小处理单元数据之间都会有一个度量表达,这就确保了数据的局部特性比较易于处理。图论聚类法是以样本数据的局域连接特征作为聚类的主要信息源,因而其主要优点是易于处理局部数据的特性。

5、网格算法

基于网格的方法(grid-based methods),这种方法首先将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。这么处理的一个突出的优点就是处理速度很快,通常这是与目标数据库中记录的个数无关的,它只与把数据空间分为多少个单元有关。

代表算法有:STING算法、CLIQUE算法、WAVE-CLUSTER算法;

6、模型算法

基于模型的方法(model-based methods),基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。这样一个模型可能是数据点在空间中的密度分布函数或者其它。它的一个潜在的假定就是:目标数据集是由一系列的概率分布所决定的。

通常有两种尝试方向:统计的方案和神经网络的方案。

(3)聚类分析常用的聚类方法包括扩展阅读:

聚类算法的要求:

1、可伸缩性

许多聚类算法在小于 200 个数据对象的小数据集合上工作得很好;但是,一个大规模数据库可能包含几百万个对象,在这样的大数据集合样本上进行聚类可能会导致有偏的结果。

我们需要具有高度可伸缩性的聚类算法。

2、不同属性

许多算法被设计用来聚类数值类型的数据。但是,应用可能要求聚类其他类型的数据,如二元类型(binary),分类/标称类型(categorical/nominal),序数型(ordinal)数据,或者这些数据类型的混合。

3、任意形状

许多聚类算法基于欧几里得或者曼哈顿距离度量来决定聚类。基于这样的距离度量的算法趋向于发现具有相近尺度和密度的球状簇。但是,一个簇可能是任意形状的。提出能发现任意形状簇的算法是很重要的。

4、领域最小化

许多聚类算法在聚类分析中要求用户输入一定的参数,例如希望产生的簇的数目。聚类结果对于输入参数十分敏感。参数通常很难确定,特别是对于包含高维对象的数据集来说。这样不仅加重了用户的负担,也使得聚类的质量难以控制。

5、处理“噪声”

绝大多数现实中的数据库都包含了孤立点,缺失,或者错误的数据。一些聚类算法对于这样的数据敏感,可能导致低质量的聚类结果。

6、记录顺序

一些聚类算法对于输入数据的顺序是敏感的。例如,同一个数据集合,当以不同的顺序交给同一个算法时,可能生成差别很大的聚类结果。开发对数据输入顺序不敏感的算法具有重要的意义。

④ 聚类分析法

聚类分析,亦称群分析或点分析,是研究多要素事物分类问题的数量方法。其基本原理是,根据样本自身的属性,用数学方法按照某些相似性或差异性指标,定量地确定样本之间的亲疏关系,并按亲疏关系的程度对样本进行聚类(徐建华,1994)。

聚类分析方法,应用在地下水中,是在各种指标和质量级别标准约束条件下,通过样品的各项指标监测值综合聚类,以判别地下水质量的级别。常见的聚类分析方法有系统聚类法、模糊聚类法和灰色聚类法等。

(一)系统聚类法

系统聚类法的主要步骤有:数据标准化、相似性统计量计算和聚类。

1.数据标准化

在聚类分析中,聚类要素的选择是十分重要的,它直接影响分类结果的准确性和可靠性。在地下水质量研究中,被聚类的对象常常是多个要素构成的。不同要素的数据差异可能很大,这会对分类结果产生影响。因此当分类要素的对象确定之后,在进行聚类分析之前,首先对聚类要素进行数据标准化处理。

假设把所考虑的水质分析点(G)作为聚类对象(有m个),用i表示(i=1,2,…,m);把影响水质的主要因素作为聚类指标(有n个),用j表示(j=1,2,…,n),它们所对应的要素数据可用表4-3给出。在聚类分析中,聚类要素的数据标准化的方法较多,一般采用标准差法和极差法。

表4-3 聚类对象与要素数据

对于第j个变量进行标准化,就是将xij变换为x′ij

(1)总和标准化

区域地下水功能可持续性评价理论与方法研究

这种标准化方法所得的新数据x′ij满足

区域地下水功能可持续性评价理论与方法研究

(2)标准差标准化

区域地下水功能可持续性评价理论与方法研究

式中:

由这种标准化方法所得的新数据x′ij,各要素的平均值为0,标准差为1,即有

区域地下水功能可持续性评价理论与方法研究

(3)极差标准化

区域地下水功能可持续性评价理论与方法研究

经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在[0,1]闭区间内。

上述式中:xij为j变量实测值;xj为j变量的样本平均值;sj为样本标准差。

2.相似性统计量

系统聚类法要求给出一个能反映样品间相似程度的一个数字指标,需要找到能量度相似关系的统计量,这是系统聚类法的关键。

相似性统计量一般使用距离系数和相似系数进行计算。距离系数是把样品看成多维空间的点,用点间的距离来表示研究对象的紧密关系,距离越小,表明关系越密切。相似系数值表明样本和变量间的相似程度。

(1)距离系数

常采用欧几里得绝对距离,其中i样品与j样品距离dij

区域地下水功能可持续性评价理论与方法研究

dij越小,表示i,j样品越相似。

(2)相似系数

常见的相似系数有夹角余弦和相关系数,计算公式为

1)夹角余弦

区域地下水功能可持续性评价理论与方法研究

在式(4-20)中:-1≤cosθij≤1。

2)相关系数

区域地下水功能可持续性评价理论与方法研究

式中:dij为i样品与j样品的欧几里得距离;cosθij为i样品与j样品的相似系数;rij为i样品与j样品的相关系数;xik为i样品第k个因子的实测值或标准化值;xjk为j样品第k个因子的实测值或标准化值;

为i样品第k个因子的均值,

为j样品第k个因子的均值,

;n为样品的数目;k为因子(变量)数。

3.聚类

在选定相似性统计量之后,根据计算结果构成距离或相似性系数矩阵(n×n),然后通过一定的方法把n个样品组合成不同等级的分类单位,对类进行并类,即将最相似的样品归为一组,然后,把次相似的样品归为分类级别较高的组。聚类主要有直接聚类法、距离聚类法(最短距离聚类法、最远距离聚类法)。

(1)直接聚类法

直接聚类法,是根据距离或相似系数矩阵的结构一次并类得到结果,是一种简便的聚类方法。它首先把各个分类对象单独视为一类,然后根据距离最小或相似系数最大的原则,依次选出一对分类对象,并成新类。如果一对分类对象正好属于已归的两类,则把这两类并为一类。每一次归并,都划去该对象所在的列与列序相同的行。经过n-1次把全部分类对象归为一类,最后根据归并的先后顺序作出聚类分析谱系图。

(2)距离聚类法

距离聚类法包括最短距离聚类法和最远距离聚类法。最短距离聚类法具有空间压缩性,而最远距离聚类法具有空间扩张性。这两种聚类方法关于类之间的距离计算可以用一个统一的公式表示:

区域地下水功能可持续性评价理论与方法研究

当γ=-0.5时,式(4-22)计算类之间的距离最短;当γ=0.5时,式(4-22)计算类之间的距离最远。

最短、最远距离法,是在原来的n×n距离矩阵的非对角元素中找出dpq=min(dij)或dpq=max(dij),把分类对象Gp和Gq归并为一新类Gr,然后按计算公式:

dpq=min(dpk,dqk)(k≠ p,q) (4-23)

dpq=max(dpk,dqk)(k≠ p,q) (4-24)

计算原来各类与新类之间的距离,这样就得到一个新的(n-1)阶的距离矩阵;再从新的距离矩阵中选出最小或最大的dij,把Gi和Gj归并成新类;再计算各类与新类的距离,直至各分类对象被归为一类为止。最后综合整个聚类过程,作出最短距离或最远距离聚类谱系图(图4-1)。

图4-1 地下水质量评价的聚类谱系图

(二)模糊聚类法

模糊聚类法是普通聚类方法的一种拓展,它是在聚类方法中引入模糊概念形成的。该方法评价地下水质量的主要步骤,包括数据标准化、标定和聚类3个方面(付雁鹏等,1987)。

1.数据标准化

在进行聚类过程中,由于所研究的各个变量绝对值不一样,所以直接使用原始数据进行计算就会突出绝对值大的变量,而降低绝对值小的变量作用,特别是在进行模糊聚类分析中,模糊运算要求必须将数据压缩在[0,1]之间。因此,模糊聚类计算的首要工作是解决数据标准化问题。数据标准化的方法见系统聚类分析法。

2.标定与聚类

所谓标定就是计算出被分类对象间的相似系数rij,从而确定论域集U上的模糊相似关系Rij。相似系数的求取,与系统聚类分析法相同。

聚类就是在已建立的模糊关系矩阵Rij上,给出不同的置信水平λ(λ∈[0,1])进行截取,进而得到不同的分类。

聚类方法较多,主要有基于模糊等价关系基础上的聚类与基于最大树的聚类。

(1)模糊等价关系方法

所谓模糊等价关系,是指具有自反性(rii=1)、对称性(rij=rji)与传递性(R·R⊆R)的模糊关系。

基于模糊等价关系的模糊聚类分析方法的基本思想是:由于模糊等价关系R是论域集U与自己的直积U×U上的一个模糊子集,因此可以对R进行分解,当用λ-水平对R作截集时,截得的U×U的普通子集Rλ就是U上的一个普通等价关系,也就是得到了关于U中被分类对象元素的一种。当λ由1下降到0时,所得的分类由细变粗,逐渐归并,从而形成一个动态聚类谱系图(徐建华,1994)。此类分析方法的具体步骤如下。

第一步:模糊相似关系的建立,即计算各分类对象之间相似性统计量。

第二步:将模糊相似关系R改造为模糊等价关系R′。模糊等价关系要求满足自反性、对称性与传递性。一般而言,模糊相似关系满足自反性和对称性,但不满足传递性。因此,需要采用传递闭合的性质将模糊相似关系改造为模糊等价关系。改造的方法是将相似关系R自乘,即

R2=R·R

R4=R2·R2

这样计算下去,直到:R2k=Rk·Rk=Rk,则R′=Rk便是一个模糊等价关系。

第三步:在不同的截集水平下进行聚类。

(2)最大树聚类方法

基于最大树的模糊聚类分析方法的基本思路是:最大树是一个不包含回路的连通图(图4-2);选取λ水平对树枝进行截取,砍去权重低于λ 的枝,形成几个孤立的子树,每一棵子树就是一个类的集合。此类分析方法的具体步骤如下。

图4-2 最大聚类支撑树图

第一步:计算分类对象之间的模糊相似性统计量rij,构建最大树。

以所有被分类的对象为顶点,当两点间rij不等于0时,两点间可以用树干连接,这种连接是按rij从大到小的顺序依次进行的,从而构成最大树。

第二步:由最大树进行聚类分析。

选择某一λ值作截集,将树中小于λ值的树干砍断,使相连的结点构成一类,即子树,当λ由1到0时,所得到的分类由细变粗,各结点所代表的分类对象逐渐归并,从而形成一个动态聚类谱系图。

在聚类方法中,模糊聚类法比普通聚类法有较大的突破,简化了运算过程,使聚类法更易于掌握。

(三)灰色聚类法

灰色聚类是根据不同聚类指标所拥有的白化数,按几个灰类将聚类对象进行归纳,以判断该聚类对象属于哪一类。

灰色聚类应用于地下水水质评价中,是把所考虑的水质分析点作为聚类对象,用i表示(i=1,2,…,n);把影响水质的主要因素作为聚类指标,用j表示(j=1,2,…,m),把水质级别作为聚类灰数(灰类),用k表示(k=1,2,3)即一级、二级、三级3个灰类(罗定贵等,1995)。

灰色聚类的主要步骤:确定聚类白化数、确定各灰色白化函数fjk、求标定聚类权重ηjk、求聚类系数和按最大原则确定聚类对象分类。

1.确定聚类白化数

当各灰类白化数在数量上相差悬殊时,为保证各指标间的可比性与等效性,必须进行白化数的无量纲化处理。即给出第i个聚类对象中第j个聚类指标所拥有的白化数,i=1,2,…,n;j=1,2,…,m。

2.确定各灰色白化函数

建立满足各指标、级别区间为最大白化函数值(等于1),偏离此区间愈远,白化函数愈小(趋于0)的功效函数fij(x)。根据监测值Cki,可在图上(图4-3)解析出相应的白化函数值fjk(Cik),j=1,2,…,m;k=1,2,3。

3.求标定聚类权重

根据式(4-25),计算得出聚类权重ηjk的矩阵(n×m)。

区域地下水功能可持续性评价理论与方法研究

式中:ηjk为第j个指标对第k个灰类的权重;λjk为白化函数的阈值(根据标准浓度而定)。

图4-3 白化函数图

注:图4-3白化函数f(x)∈[0,1],具有下述特点:①平顶部分,表示该量的最佳程度。这部分的值为最佳值,即系数(权)为1,f(x)=max=1(峰值),x∈[x2,x3]。②白化函数是单调变化的,左边部分f(x)=L(x),单调增,x∈(x1,x2],称为白化的左支函数;右边部分f(x)=R(x),单调减,x∈[x3,x4),称为白化的右支函数。③白化函数左右支函数对称。④白化函数,为了简便,一般是直线。⑤白化函数的起点和终点,一般来说是人为凭经验确定。

4.求聚类系数

σik=∑fjk(dij)ηjk (4-26)

式中:σik为第i个聚类对象属于第k个灰类的系数,i=1,2,…,n;k=1,2,3。

5.按最大原则确定聚类对象分类

由σik构造聚类向量矩阵,行向量最大者,确定k样品属于j级对应的级别。

用灰色聚类方法进行地下水水质评价,能最大限度地避免因人为因素而造成的“失真、失效”现象。

聚类方法计算相对复杂,但是计算结果与地下水质量标准级别对应性明显,能够较全面反映地下水质量状况,也是较高层次定量研究地下水质量的重要方法。

⑤ 聚类算法有哪些

聚类算法有:划分法、层次法、密度算法、图论聚类法、网格算法、模型算法。

1、划分法

划分法(partitioning methods),给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法。

2、层次法

层次法(hierarchical methods),这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等。

3、密度算法

基于密度的方法(density-based methods),基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。代表算法有:DBSCAN算法、OPTICS算法、DENCLUE算法等。

4、图论聚类法

图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。因此,每一个最小处理单元数据之间都会有一个度量表达,这就确保了数据的局部特性比较易于处理。图论聚类法是以样本数据的局域连接特征作为聚类的主要信息源,因而其主要优点是易于处理局部数据的特性。

5、网格算法

基于网格的方法(grid-based methods),这种方法首先将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。代表算法有:STING算法、CLIQUE算法、WAVE-CLUSTER算法。

6、模型算法

基于模型的方法(model-based methods),基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。通常有两种尝试方向:统计的方案和神经网络的方案。

(5)聚类分析常用的聚类方法包括扩展阅读:

聚类分析起源于分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又将多元分析的技术引入到数值分类学形成了聚类分析。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。

在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。

⑥ 聚类算法有哪几种

聚类分析计算方法主要有: 层次的方法(hierarchical method)、划分方法(partitioning method)、基于密度的方法(density-based method)、基于网格的方法(grid-based method)、基于模型的方法(model-based method)等。其中,前两种算法是利用统计学定义的距离进行度量。

k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然 后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。

其流程如下:

(1)从 n个数据对象任意选择 k 个对象作为初始聚类中心;

(2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;

(3)重新计算每个(有变化)聚类的均值(中心对象);

(4)循环(2)、(3)直到每个聚类不再发生变化为止(标准测量函数收敛)。

优点: 本算法确定的K个划分到达平方误差最小。当聚类是密集的,且类与类之间区别明显时,效果较好。对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为 O(NKt),其中N是数据对象的数目,t是迭代的次数。

缺点

1. K 是事先给定的,但非常难以选定;

2. 初始聚类中心的选择对聚类结果有较大的影响。

⑦ 聚类算法有哪几种

聚类算法有:聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k均值、k中心点等算法的聚类分析工具已被加入到许多着名的统计分析软件包中,如SPSS、SAS等。

⑧ 常见的几种聚类方法

作为无监督学习的一个重要方法,聚类的思想就是把属性相似的样本归到一类。对于每一个数据点,我们可以把它归到一个特定的类,同时每个类之间的所有数据点在某种程度上有着共性,比如空间位置接近等特性。多用于数据挖掘、数据分析等一些领域。

下面简单介绍一下几种比较常见的聚类算法。

K-means聚类方法大家应该都听说过,在各种机器学习书籍教程中也是无监督学习部分非常经典的例子。其核心主要为两个部分:其一是K,K在这里代表着类的数目,我们要把数据聚为多少类。其二是means,表示在每一次计算聚类中心的时候采取的是计算平均值。

我们假设样本总数为n,K-means聚类法可以简单表示为一下几个步骤:

1. 在样本中随机选取K个点,作为每一类的中心点。

2. 计算剩下 n-K 个样本点到每个聚类中心的距离(距离有很多种,假设这里采用欧式距离)。对于每一个样本点,将它归到和他距离最近的聚类中心所属的类。

3. 重新计算每个聚类中心的位置:步骤 2 中得到的结果是 n 个点都有自己所属的类,将每一个类内的所有点取平均值(这里假设是二维空间,即对 x 和 y 坐标分别取平均),计算出新的聚类中心。

4. 重复步骤 2 和 3 的操作,直到所有的聚类中心不再改变。

分析一下,算法本身的思想并不难。但是K值如何选择就见仁见智了,这里可以引入类内距离 J,每一类都会对应一个 J 值,其计算就是把类内所有点之间的距离累加起来。我们肯定希望 J 越小越好,因为小的类内间距代表这一类样本的相似程度更高(离得更近)。

如果 K 很小,则聚类可能不彻底,即隔着很远的两波点也被聚为一类,会使 J 变得很大;相反的,过大的 K 虽然会降低类内间距 J ,但有时候分得过细会对数据的泛化性造成损害,没有必要弄这么多类。因此 K 的选择应该是具体问题具体分析。

还有一个问题就是初始聚类中心的选择。不当的初始化会给算法的收敛带来更多的计算开销。试想一下,如果一开始把离得很近的 K 个点都设为聚类中心,那么算法的迭代次数会更多一些。

HAC也是一种比较经典的聚类方法,其主要思想是先把每一个样本点归为一类,再通过计算类间的距离,来对最相似或者距离最近的类进行归并,合成位一个新的类。反复循环,直到满足特定的迭代条件即可。

HAC的核心思想主要分为如下几个步骤:

1. 将每个样本点都视作一类,一共有n个类。

2. 计算所有类之间两两的类间距离(类间距离计算方式多种多样,可以取最近、最远、找重心等等,这里不做详述),然后把距离最近的两个类进行合并,组成一个新的更大的类。

3. 重复步骤 2 中的操作,直到达到特定的迭代条件(例如当前类的数目是初始时的 10% ,即 90% 的类都得到了合并;最小的类间距离大于预先设定的阈值等等),算法结束。

和K-means算法中的 K 值选取一样,HAC中如何选择迭代的终止条件也是一个比较复杂的问题,需要根据一定的经验,并且具体问题具体分析。

这种方法的核心思想是先计算出聚类中心,再把所有的样本点按照就近原则,归到离自身最近的聚类中心所对应的类。最大最小是指在所有的最小距离中选取最大的。其主要的算法步骤如下:

1. 随机选择一个点,作为第一个类的聚类中心 Z1。

2. 选择与步骤 1 中距离最远的样本点,作为第二个类的聚类中心 Z2。

3. 逐个计算每个点到所有聚类中心的距离,并把所有的最短的距离记录下来。

4. 在这些最短距离中挑选最大的值,如果这个最大值大于 ,其中 ,那么将这个最大距离所对应的另一个样本点作为新的聚类中心;否则整个算法结束。

5. 重复步骤 3 和 4 的操作,直到 4 中不再出现新的聚类中心。

6. 将所有的样本归到与他自身最近的聚类中心。

参考:

https://www.jianshu.com/p/4f032dccdcef

https://www.jianshu.com/p/bbac132b15a5

https://blog.csdn.net/u011511601/article/details/81951939

阅读全文

与聚类分析常用的聚类方法包括相关的资料

热点内容
餐巾杯花折叠方法图片 浏览:820
检索专利正确方法 浏览:160
传动轴安装方法 浏览:993
耳鼻喉内窥镜使用方法 浏览:512
康复认知训练方法和技巧 浏览:150
42减8破十法计算方法 浏览:136
圆五等分最简单的方法 浏览:91
霍尔传感器不带磁性检测方法 浏览:465
消毒压力锅的使用方法 浏览:830
碘伏泡脚有什么好方法 浏览:316
300模拟量计算方法 浏览:265
肩颈痛肩周炎的锻炼方法 浏览:606
干野生灵芝的食用方法 浏览:552
全身肌肉锻炼方法视频 浏览:422
哪里有系统的织毛衣方法 浏览:905
如何快速学会法语的方法 浏览:362
电视机话筒安装方法 浏览:535
黑凉粉制作方法和步骤 浏览:454
去角质正确方法 浏览:408
直播摄像头卡顿的原因及解决方法 浏览:657