‘壹’ 导数的求导方法
1、根据导数定义,用三步法求出一些简单函数的导数。
(1)求△y。
(2)求:△y/△x 。
(3)求:f'=dy/dx 2、建立求导的四则运算法则、复合函数求导法则和反函数求导法则,从而导出基本初等函数求导公式,
3、熟记基本函数的求导公式。可推导隐函数和对数函数的求导法。
‘贰’ 导数的计算是什么
导数的计算如下:
第一个:无穷等比数列所有项之和,q=2x。
第二个,定积分公式,定积分等于原函数积分上下限值之差。
这个应该可以用数学归纳法证明:
a)v/dx = u'v + uv'得证
b)假设(uv)^(k) = sum(C(n,k)u^(k)v^(n-k))
则uv的第k+1次导数
(uv)^(k+1) = d((uv)^(k))/dx = dsum(C(n,k)u^(k)v^(n-k))/dx
=sum(C(n,k) ^(k)v^(n-k)/dx)
=sum(C(n,k)u^(k+1)v^(n-k) + C(n,k) u^k v^(n-k+1))
对上市重新整理,考虑上式中的u^(k)v^(n-k+1)项,它的系数应该是C(n,k)+C(n,k-1)
根据组合数学知识,C(n,k)+C(n,k-1)=C(n+1,k),带人就是你要的公式
导数公式规律:
一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。因此有必要研究高阶导数特别是任意阶导数的计算方法。
可见导数阶数越高,相应乘积的导数越复杂,但其间却有着明显的规律性,为归纳其一般规律,乘积的 n 阶导数的系数及导数阶数的变化规律类似于二项展开式的系数及指数规律。
‘叁’ 求导数的方法总结
求导数主要有以下方法和思路:
导数的定义求法;
各种基本函数导数公式计算法;
几个函数的和、差、乘积和商的求导法则;
复合函数的链式求导;
参数函数的求导。