⑴ 十大数学思想方法
十大数学思想方法:
1.数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2.联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3.分类讨论的思想:在数学中,我们常常需要根据研究伍世对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策模慧略。
8.综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”……
9.演绎法:由一般到特殊的推理方法。
10.类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间,根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。类比法既可能是特殊到特殊,也可能一般到一般的推理。
⑵ 初中数学思想方法有哪些
根据大纲’‘精神,初中数学的基本思想主要指转化、分类、数形结合等基本方法主要指待定系数法、消儿法、配方法、换元法、图象法等由于数学方法在教材中大都有具体陈述,而数学思想却是隐含在知识系统之中.这为强化数学思想方法带来了一定困难_为此.下面谈谈转化、分类讨论、数形结合等在初中数学中的表现“〕1.转化思想所谓转化思想是指一种研究对象在一定条件下转化为另一种研究对象的思维方式转化思想是数学思想方法的核心,其它数学思想方法都是转化的手段或策略)初中数学中运用转化思想具体表现在以下三个方面:(l)把新问题转化为原来研究过的问题如有理数减法转化为加法,除法转化为乘法等(助把复杂的问题转化为简单的问题(,新问题用已有的方法不能或难以解决时,建立新的研究方式如引进负数,建立数轴;变利用逆运算的性质解方程为利用等式的性质解方程,等等。‘2.分类讨论思想所谓分类讨论是指对于复杂的对象,为了研究的需要.根据对象本质属性的相同点和差异性,将对象区分为不同种类,通过研究各类对象的性质,从而认识整体的性质的思想方式。在分类讨论中要注意标准的同一性.即划分始终是同一个标准、这个标准必须是科学合理的;分域的互斥性.即所分成的各类既要互不包含.义要使各类总和等于讨论的全集;分域的逐级性,有的问题分类后还可在每,类中丙继续分类。运用分类讨论思想指导数学教学,有利于学生归纳、总结所学的数学知识,使之系统化、条理化.并逐步形成一个完整的知识结构网络,这有利于学生严密、清晰、合理地探索解题思路,提高数学思维能力。在初中数学中需要分类讨沦的问题主要表现个方而:(扮有的数学概念、定理的论证包含多种情况.这类问题需要分类讨论。如平面儿何中二角形的分类、四边形的分类、角的分类、圆周角定理、圆幂定理、弦切角定理等的证明,都涉及到分类i寸论(约解含字毋参数或绝对值符号的为一程、穗宴不等式、讨论算术根、正比例和反比例的数中二次项系数、,与图象的开l:]方向等,由于这些参数的取位不同或要去掉绝对值符号就有不同派源的结果.这类问题需要分类讨论(3)有的数学问题.虽结论惟一但导致这结论的前提不尽相同.这类问题也要分类讨论3一效形结合思想所谓数形结合是指抽象的数学语言与形象直观的图形结合起来.从而实现由抽象向具体转化的一种思维方式。着名数学家华罗庚说过:数缺形时不直观,形少数时难人微有些数最关系.借助于图形的性质,可以使许多抽象的概念和复杂的关系直观化、形象化、简单化,而图形的一些性质.借助于数量的计算和分析.得以严谨化。在初中阶段,数形结合的形可以是数轴、函数的图象和几何图形等等.它们都具有形象化的特点数形结合思想在初中数学中主要尘族态表现在以下两个方面;(l)以形助数,帮助学生深刻理解数学概念如教师可以用数轴上点和实数之间的对应关系来讲清相反数、绝对值的概念以及比较两个数大小的方法;运用函数图象的性质讨沦一元三次方程的根以及讨论一7乙一次小等式等等(2)以数助形,帮助学生简化解题方法。初中数学中还渗透了类比、归纳、联想等数学思想方法这些思想力一法之间,是相互渗透、互相促进的,在数学教学中要有机地结合起来
⑶ 数学思想方法有哪几种
数学思想方法有以下5种:
一、方程思想
当一个问题可能与某个等式建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。
二、分类讨论思想
当一个问题因为某种量或图形的情况不同而有可能引起问题的结果不同时,需要对这个量或图形的各种情况进行分类讨论。比如解不等式|a-1|>4的时候,就要分类讨论a的取值情况。
三、隐含条件思想
没有明文表述出来,但是根据已有的明文表述可以推断出来的条件,或者是没有明文表述,但是该条件是一个常规或者真理。例如一个等腰三角形,一条过顶点的线段垂直于底边,那么这条线段所在的直线也平分底边和顶角。
四、类比思想
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
五、极限思想
极限思想是微积分的基本思想,数学分析中的一系列重要概念,如函数的连续性、导数以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科”。
⑷ 数学常用的数学思想方法有哪些
数学常用的数学思想方法主要有:用字母表示数的思想,数形结合的思想,转化思想 (化归思想),分类思想,类比思想,函数的思想,方程的思想,无逼近思想等等。
1.用字母表示数的思想:这是基本的数学思想之一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。
2.数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。
3.转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
4.分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
5.类比:类比推理在人们认识和改造客观世界的活动中具有重要意义.它能触类旁通,启发思考,不仅是解决日常生活中大量问题的基础,而且是进行科学研究和发明创造的有力工具.
6.函数的思想 :辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。
7.方程:是初中代数的主要内容.初中阶段主要学习了几类方程和方程组的解法,在初中阶段就要形成方程的思想.所谓方程的思想,就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略,
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用。
⑸ 数学基本思想方法有哪些
1、数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。
2、转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
3、分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
4、整体思想
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。
5、类比思想
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
⑹ 一般的数学思想方法有哪些
1 函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。
2 数形结合思想
把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答。
3 整体思想
整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。
4 转化思想
在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。
5 类比思想
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么推断它们在其他方面也可能有相同或类似之处。
(6)对于思想的分析方法种类扩展阅读:
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。
它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。
在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。
我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系。
实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。
引起分类讨论的原因主要是以下几个方面:
① 问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。
② 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。
③ 解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。
进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。
解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。
⑺ 浅谈几种常见的数学思想方法
摘要:数学思想方法以数学知识为载体,蕴涵于知识之中,是数学的精髓。文章主要介绍四种常见的数学思想方法:函数与方程思想、分类与整合的思想、数形结合的思想、化归与转化的思想。在教学过程中渗透数学思想方法,能提高教学效果,提高学生数学素养。
1对数学思想方法的认识
在数学教学和数学教育领域,数学知识、数学方法、数学思想是数学知识体系的三个层次,它们相互联系,共同发展。数学知识是数学思想方法解决问题所依附的材料;数学方法是解决问题的手段和途径,是数学思想发展的前提;数学思想是对数学对象的本质认识,是从某些具体的数学内容(概念、命题、定理)和数学认识过程中提炼出来的基本观点和想法,是数学方法的灵魂,是解决问题的指导思想,对数学活动具有指导意义。数学思想和数学方法是紧密联系的,数学思想方法通常从“数学思想”和“数学方法”两个角度进行阐述。
数学中常用的数学思想方法,概括起来可以分为两类。一类是科学思想在数学中的应用,如分析与综合、分类讨论、类比、化归、归纳与演绎思想等;另一类是数学学科特有的思想方法,如集合与对应、数学建模、数形结合、函数与方程、极限、概率统计的思想方法等。
2教学中主要的数学思想方法
数学思想方法的学习和领悟能帮助学生构建知识体系,使学生所学的知识不再是零散的知识点,能提高学生数学思维能力,提高学习效果。因此,在教学过程中必须重视数学思想方法的教学。
数学思想方法以数学知识为载体,蕴涵于知识之中,是数学的精髓,它支撑和统率着数学知识。教师在讲授概念、性质、定理的过程中应不断渗透与之相关的数学思想方法,让学生在掌握知识的`同时,又能领悟到数学思想,从而提升学生思维能力。在教学过程中,要引导学生主动参与结论的探索、发现及推导过程,搞清知识点间的联系及其因果关系,让学生亲身体验蕴含在知识中的数学思想和方法。
2.1 分类与整合的思想分类是通过比较数学对象本质属性的相同点和差异点,然后根据某一种属性将数学对象区分为不同种类的思想方法。分类讨论既是是一个重要的数学方法,又一个重要的数学思想,在解题时,它能避免思维的片面性,保证不遗不漏。
整合就是考虑数学问题时把注意力和重点放在问题的整体结构上,通过对其全面深刻的观察和分析,从整体上认识问题的实质,把中间相互紧密联系着的量作为整体来处理的思想方法。
解题时,我们常常遇到这种情况,解到某一步时,被研究的问题包含了多种情况,我们不能再按照统一标准进行下去,这就需要把条件所给出的总区域划分成若干个子区域,然后分别在各个子区域内进行解题,当分类解决完这个问题后,再把它们整合在一起,这就是分类与整合的思想。有分有合,先分后合,不仅是分类与整合的思想解决问题的主要过程,也是这种思想方法的本质属性。
这就需要我们在学习中认识到以下几点:什么样的问题需要分类研究;为什么要分类;如何分类;分类后如何研究与最后如何整合等。例如:等比数列的求和公式就分为q=1和q≠1两种情况;对数函数的单调性就分为a>1,0 2.2 数形结合的思想数学研究的对象是数量关系和空间形式,即“数”与“形”两个方面。“数”与“形”之间不是孤立存在的,而是有着密切的联系。数量关系的研究可以转化为图形性质的研究,反之,图形性质的研究可以转化为数量关系的研究,这种解决数学问题过程中“数”与“形”相互转化的思维策略,即是数形结合的思想。
数形结合的思想,既是一个重要的数学思想,也是一种常用的数学方法,为解决问题提供了方便,是解决问题的一个捷径。数形结合思想一方面,能使数量关系的抽象概念和解析式通过图形变得直观形象;另一方面,能使一些图形的属性通过对数量关系的研究,更精准、更深刻地得出图形的性质。这种“数”与“形”的相互转换,相互渗透,不仅可以使一些题目的解决简捷明快,同时还可大大拓宽我们的解题思路。华罗庚先生曾作过精辟的论述:“数与形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数时难人微,数形结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系切莫离”。它的运用,往往展现出“柳暗花明又一村”般的数形和谐完美结合的境地。
数形结合在数学解题时应用也比较广泛。例如:不连续函数讨论增减性问题,函数求最值问题;根的分布问题及数形结合在不等式中、在数列中、在解析几何中的应用等。这些都是数形结合的思想方法的体现。
2.3 化归与转化的思想化归与转化的思想就是将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,化归为在已知知识范围内已经解决或容易解决的问题的思想方法。化归与转化思想的实质是揭示联系,实现转化。
化归与转化的思想是解决数学问题的根本思想,大部分数学问题的解决都是通过转化实现的。从某种意义上讲,解决数学问题就是从未知向已知转化的过程,解题的过程实际上就是一步步转化的过程。要想熟练运用化归与转化思想,就要积极主动地去挖掘问题之间的联系,要有丰富的联想、机敏细微的观察,要熟练、扎实地掌握基础知识、基本技能和基本方法。在学习中我们要对公式、定理、法则有深刻理解,并对典型例题和习题进行总结和提炼。人们常说:“抓基础,重转化”是学好数学的金钥匙,学习中一定要用好这把金钥匙。运用化归与转化思想的例子比比皆是,如:未知向已知的转化,复杂问题向简单问题的转化,新知识向旧知识的转化,数与形的转化,空间向平面的转化,命题之间的转化,高维向低维的转化,多元向一元的转化,函数与方程的转化等都是转化思想的体现。
2.4 函数与方程的思想函数的思想是用运动、变化的观点,分析研究具体问题中的数量关系,通过函数形式把这种数量关系刻划出来并加以研究,从而解决问题的方法。
方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的解题思路和策略。
函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,,是对知识在更高层次上的抽象、概括与提炼,是研究变量与函数之间的内在联系,并从函数与方程各部分的内在联系出发来考虑问题,研究问题和解决问题的数学思想。
着名数学家克莱因说:“一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考”。一个学生仅仅学习了函数的知识,他在解决问题时往往是被动的,而建立了函数思想,才能主动地去思考一些问题。
在解题时,要学会思考这些问题:①是不是需要把字母看作变量?②是不是需要把代数式看作函数?如果是函数它具有哪些性质?③是不是需要构造一个函数,把表面上不是函数的问题化归为函数问题?④能否把一个等式转化为一个方程?等等。我们常见的运用函数思想的例子有:数列问题借助于函数思想,用函数方法来解决;遇到变量时构造函数关系式来解题;有关的最大、最值问题,可利用函数观点加以分析;实际应用问题,转化成数学语言,建立数学模型和函数关系式,应用函数相关性质来解决等。
参考文献:
[1]钱佩玲.数学思想方法与中学数学(第2版).北京师范大学出版社,2008.
[2]张顺燕.数学的思想、方法和应用.北京大学出版社,2009.
⑻ 思想内容从哪些方面分析
1、态蠢配把准政治方向。政治是党的生存和发展的首要问题,关系到党的前途命运和事业成败。我们要坚持的政治方向是共产主义的崇高理想、中国特色社会主义的共同理想的奋斗目标,这是党的基本理论、基本路线和基本战略。
2、坚持党的政治领导。我们要引导全党增强“四个意识”,自觉在思想上、政治上、行动上同党中央保持高度一致。
3、夯实政治根基。加强党的政治建设,要紧扣人心这个最大的政治,把笼络人心、汇聚民智民力作为重要着力点。
⑼ 数学思想方法有哪些
如下:
1、数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。
2、转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
3、分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
简介
纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在求复数和三角函数解题中,运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。
⑽ 物理思想方法有哪些
物理思想方法
§1.图形/图象图解法
图形/图象图解法就是亮隐虚将物理现象或过程用图形/图象表征出后,再据图形表征的特点或图象斜率、截距、面积所表述的物理意义来求解的方法.尤其是图象法对于一些定性问题的求解独到好处.
§2 极限思维方法
极限思维方法是将问题推向极端状态的过程中,着眼一些物理量在连续变化过程中的变化趋势及一般规律在极限值下的表现或者说极限值下一般规律的表现,从而对问题进行分析和推理的一种思维办法.
§3 平均思想方法
物理学中,有些物理量是某个物理量对另一物理量的积累,若某个物理量是变化的,则在求解积累量时,可把变化的这个物理量在整个积累过程看作是恒定的一个值---------平均值,从而通过求积的方法来求积累量.这种方法叫平均思想方法.
物理学中典型的平均值有:平均速度、平均加速度、平均功率、平均力、平均电流等.对于线性变化情况,平均值=(初值+终值)/2.由于平均值只与初值和终值有关,不涉及中间过程,所以在求解问题时有很大的妙用.
§4 等效转换(化)法
等效法,就是在保证效果相同的前提下,将一个复杂的物理问题转换成较简单问题的思维方法.其基本特征为等效替代.
物理学中等效法的应用较多.合力与分力;合运动与分运动;总电阻与分电阻;交流电的有效值等.除这些等效等效概念之外,还有等效电路、等效电源、等效模型、等效过程等.
§5 猜想与假设法
猜想与假设法,是在研究对象的物理过程不明了或物理状态不清楚的情况下,根据猜想,假设出一种过程或一种状态携衡,再据题设所给条件通过分析计算结果与实际情况比较作出判断的一种方法,或是人为地改变原题所给条件,产生出与原题相悖的结论,从而使原题得以更清晰方便地求解的一种方法.
§6 整体法和隔离法
整体法是在确定研究对象或研究过程时,把多个物体看作为一个整体或多个过程看作整个过程的方法;隔离法是把单个物体作为研究对象或只研究一个孤立过程的方法.
整体法与隔离法,二者认识问题的触角截然不同.整体法,是大的方面或者是从整的方面来认识问题,宏观上来揭示事物的本质和规律.而隔离法则是从小的方面来认识问题,然后再通过各个问题的关系来联系,从而揭示出事物的本质和规律.因而在解题方面,整体法不需事无巨细地去分析研究,显的简捷巧妙,但在初涉者来说在理解上有一定难度;隔离法逐个过程、逐个物体来研究,虽在求解上繁点,但对初涉者来说,在理解上较容易.熟知隔离法者应提升到整体敬燃法上.最佳状态是能对二者应用自如.
§7 临界问题分析法
临界问题,是指一种物理过程转变为另一种物理过程,或一种物理状态转变为另一种物理状态时,处于两种过程或两种状态的分界处的问题,叫临界问题.处于临界状的物理量的值叫临界值.
物理量处于临界值时:
①物理现象的变化面临突变性.
②对于连续变化问题,物理量的变化出现拐点,呈现出两性,即能同时反映出两种过程和两种现象的特点.
解决临界问题,关键是找出临界条件.一般有两种基本方法:①以定理、定律为依据,首先求出所研究问题的一般规律和一般解,然后分析、讨论其特殊规律和特殊解②直接分析、讨论临界状态和相应的临界值,求解出研究问题的规律和解.
§8 对称法
物理问题中有一些物理过程或是物理图形是具有对称性的.利用物理问题的这一特点求解,可使问题简单化.要认识到一个物理过程,一旦对称,则相当一部分物理量(如时间、速度、位移、加速度等)是对称的.
§9 寻找守恒量法
守恒,说穿意思是研究数量时总量不变的一种现象.物理学中的守恒,是指在物理变化过程或物质的转化迁移过程中一些物理量的总量不变的现象或事实.
守恒,已是物理学中最基本的规律(有动量守恒、能量守恒、电荷守恒、质量守恒),也是一种解决物理问题的基本思想方法.并且应用起来简练、快捷.
从运算角度来说,守恒是加减法运算,总和不变.
从物理角度来讲,那就与所述量表征的意义有关,重在理解了.理解所述量及所述量守恒事实的内在实质和外在表现.
如动量,描述的是物体的运动量,大小为mV,方向为速度的方向.动量守恒,就是物体作用前总的运动量是动的时,且方向是向某一方向的,那作用后,总的运动量还是动的,方向还是向着这一方向.
§10 构建物理模型法
物理学很大程度上,可以说是一门模型课.无论是所研究的实际物体,还是物理过程或是物理情境,大都是理想化模型.
如 实体模型有:质点、点电荷、点光源、轻绳轻杆、弹簧振子、平行玻璃砖、……
物理过程有:匀速运动、匀变速、简谐运动、共振、弹性碰撞、圆周运动……
物理情境有:人船模型、子弹打木块、平抛、临界问题……
求解物理问题,很重要的一点就是迅速把所研究的问题归宿到学过的物理模型上来,即所谓的建模.尤其是对新情境问题,这一点就显得更突出.