Ⅰ 湖人选择签下霍夫,是看中了他怎样的能力
湖人主要看重的是霍夫的防守能力。
在湖人签下霍夫之后,湖人的球员大名单基本上已经确定下来了。与此同时,新赛季的湖人队星光璀璨,湖人队的众多老将本身有着丰富的比赛经验,但同时湖人队的老将的年龄也非常大了,这也就意味着湖人队需要通过轮换阵容来调整老将的体力分配问题。也正因如此,湖人队才会签下霍夫这样的替补球员。
一、湖人队正式签下霍夫。
在新赛季马上就要开打的时候,湖人队正式签下了霍夫。霍夫对于很多人来说非常陌生,因为霍夫是一个刚进联盟的年轻球员,甚至连NBA的选秀大会都没有参加。与此同时,霍夫是一个非常有潜力的中锋,如果湖人队愿意培养霍夫的话,霍夫可能会获得很多出场机会。
常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。
1、聚类分析(Cluster Analysis)
聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。
2、因子分析(Factor Analysis)
因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。
3、相关分析(Correlation Analysis)
相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。
4、对应分析(Correspondence Analysis)
对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
5、回归分析
研究一个随机变量Y对另一个(X)或一组(X1,X2,?,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。
6、方差分析(ANOVA/Analysis of Variance)
又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显着性检验。由于各种因素的影响,研究所得的数据呈现波动状。
想了解更多关于数据分析的信息,推荐到CDA数据认证中心看看,CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。
Ⅲ 数据分析的六种基本分析方法
数据分析的六种基本分析方法:
1、对比分析法:常用于对纵向的、横向的、最为突出的、计划与实际的等各种相关数据的。例如:今年与去年同期工资收入的增长情况、3月CPI环比增长情况等。
2、趋势分析法:常用于在一段时间周期内,通过分析数据运行的变化趋势(上升或下降),为未来的发展方向提供帮助。例如:用电量的季节性波动、股市的涨跌趋势等。
3、相关分析法:常用于分析两个或多个变量之间的性质以及相关程度。例如:气温与用电量的相关性、运动量大小与体重的相关性等。
4、回归分析法:常用于分析一个或多个自变量的变化对一个特定因变量的影响程度,从而确定其关系。例如:气温、用电设备、用电时长等因素对用电量数值大小的影响程度、工资收入的高低对生活消费支出大小的影响程度等。
5、描述性分析法:常用于对一组数据样本的各种特征进行分析,以便于描述样本的各种及其所代表的总体的特征。例如:本月日平均用电量、上海市工资收入中位数等。
6、结构分析法:常用于分析数据总体的内部特征、性质和变化规律等。例如:各部分用电量占总用电的比重、生活消费支出构成情况等。
Ⅳ 数据分析方法
常见的分析方法有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。
01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。
02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。
03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。
04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。
05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。
06) 趋势分析
比如人才流失率过去12个月的变化趋势。
07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。