导航:首页 > 研究方法 > 电合成是用什么方法合成化合物

电合成是用什么方法合成化合物

发布时间:2023-03-19 12:10:37

Ⅰ 最新化学科技

最新化学科技动态
二氧化碳的原子晶体
化合物总数知多少
合成氨新法——电合成
爆炸性的高能N5+阳离子登场
直接合成过氧化氢的新进展
来自稻田的甲烷
对新氢键——双氢键(A-H…H-B)的理论计算
广泛存在于食物的白藜芦醇是一种抗癌物质
可以上http://chemport.ipe.ac.cn/ 这个是中科院办的化学门户网站。

最近,美国Lawrence Livermore国家实验室(LLNL)的V. Lota, C. S. Yoo和H. Cynn成功地在高压下将CO2转化为具有类似SiO2的原子晶体。

在过去,CO2已经发现有4种晶体,都是分子晶体。他们发现,在–40℃的温度下将液态CO2装入一个高压容器(Dimond anvil cell)中用Nd : YbLiF4激光器加热到1800K,在40GPa高压下, CO2在微米级的红宝石芯片上或者在铂薄膜上形成类似SiO2的原子晶体(Science, 1999,283,1510)。该样品在高于1800K的显微照片上显示了一个新相。在常温下, 只要压力高于1GPa, 该相能够稳定存在。对比加热前后的Raman光谱,发现分子晶型的CO2正交相转化为SiO2的柯石英晶型(coesite, 是二氧化硅的一种高压相, 发现于陨石, 可在实验室中在高压下合成)的Si-O-Si键相同特征的振动图谱。该晶体强烈发射Nd:YLF激光的二级谐振频率;该性质引起人们对这种晶体在光电子学方面应用的浓厚兴趣。

截止1998年底,在全球最大的化学文摘——美国化学文摘上登记的化合物总数为18.8百万种,1998年是连续第三年化合物登记数超过100万的年头,达到1.6百万种。

可以预言,这种增长速度和发展势头不会不继续下去,1999年也应是第四个一年超过100万种登记化合物的年头,到年底,人类已知的——从自然界分离的和人类合成的——化合物总数肯定将超过2000万种,因此,进入2000年时,老师们尽管放心大胆地在自己的教室里告诉学生们这个十分巧合的数字。

最近,两位希腊化学家,位于Thessaloniki的阿里斯多德大学的George Marnellos和Michael Stoukides,发明了一种合成氨的新方法(Science,2 Oct. 1998, p98)。

在常压下,令氢与用氦稀释的氮分别通入一加热到570oC的以锶-铈-钇-钙钛矿多孔陶瓷(SCY)为固体电解质的电解池中,用覆盖在固体电解质内外表面的多孔钯多晶薄膜的催化,转化为氨,转化率达到78%;对比:几近一个世纪的哈伯法合成氨工艺通常转化率为10-15%!

实验条件探索:他们用在线气相色谱检测进出电解池的气体,用HCl吸收氨引起的pH值变化估算氨的产率,证实提高氮的分压对提高转化率无效;升高电流和温度虽提高质子在SCY中的传递速度却因SCY导电率受温度限制,升温反而加速氨的分解。

美国加州爱德华空军基地空军研究室研究高能材料的化学家Karl O. Christe在美国化学会冬季氟会议上宣布, 他与他的同事W. W. Wilson合成并表征了一种搭咐腔含有N5+离子的盐类。该阳离子可看作是100多年来第3次以可分离量获得的全氮物种。第一次是1772年分离出N2,第二知衫次是1890年合成了重氮离子N3–。尽管报道过其他存在于气体中的其他含氮物种,但未被分离过。Colorado州立大学S. H. Strauss教授称N5+的合成为真正不可思议的发现。

Christe的合成方法是在–78℃的无水氟化氢中令N2F+AsF6–与HN3反应。反应产物为白色粉末,稳定极限温度为22℃。他在该温度下获得了质谱数据,但在低温激光光谱仪中,只有几个微克的该样品发生爆炸,毁掉了样品池。

Clemson大学DesMarteau教授评论说,该化合物具有高爆简山炸性并不使大家感到惊讶,令人惊讶的是该化合物竟然能够存在。

加拿大McMaster大学J. Schrobilgen教授则指出,这种工作只有少数实验室能够进行得了。

Christe指出,N5+阳离子是远比O2+更强的氧化剂,跟水和有机物反应均发生爆炸。合成量可达半克。经计算,该化合物的生成焓高达+1460kJ/mol,因此,该化合物竟然还能稳定存在确实是令人惊讶的。振动光谱和理论计算表明,该离子具V形构型。研究者预想,可以其他含N5+离子的盐也能被合成,例如,可能N5+SbF6–是一个更稳定的盐,他们甚至还打算合成一个纯粹由氮组成的新物种——N5+N3–。

过氧化氢可以在第VIII族金属, 如钯, 和金的催化下直接合成是人们早就知道的, 但此反应因处于氢氧的爆炸极限而明显存在安全问题, 转化率也存在问题。

最近, J-P. Pirard等申请了专利(U.S.Patent 5 500 202, 19 Mar. 1996) 提出解决这些问题的办法: 他们用一个涓流床反应器(trickle-bed reactor), 把经氮气稀释的氢氧混合气体和经酸化的水蒸气共同流过载有钯的催化剂. 发明人使用100毫升的管式Hastelloy C反应器(1cm i.d.×120cm), 40克含2%(重量)钯的碳催化剂(150-250?m粒径), 水相的组成为0.1 M H2SO4和0.001M NaBr(以阻止过氧化氢的分解), 液相流速为0.8 L/h, 气相流速为25L/min(STP), 气相组成为59% O2, 5.5% H2和35.5% N2, 温度52℃, 压力60 bar. 当O2/N2进到反应器的前端空间的同时氢气被通入液相, 结果在水蒸气里过氧化氢的浓度达5%(质量). 相当于达80 mol%的选择性和30 mol%的转化率(按通入的氢计)。该体系的气体混合物在氢氧的爆炸界限之外. 估计此法的投资成本将低于传统的间接法。

据C&EN Oct.7,1996,p10报道,设在菲律宾的国际水稻研究所(IRRI)的科学家Lantin指出,甲烷是一种效果甚过二氧化碳的温室效应气体,每年它向大气的释放量为5亿吨,而20%来自稻田。稻田有机物的无氧分解生成的甲烷约90%通过水稻的根、茎、叶向大气释放。其余的则被从水稻根部扩散的氧氧化成二氧化碳。甲烷在大气中的浓度远小于二氧化碳,但是其致暖效应比二氧化碳大30倍。甲烷在大气中的滞留时间也较长。它对大气,对对流层的臭氧、羟基和一氧化碳的水平均有影响。因此,该研究所认为应当致力于研究培植较少向大气释放甲烷的水稻品种或栽培技术。

在随后于10月28日出版的该杂志上则登载了美国加里福尼亚大学的Ralph Cicerone的信件, 作者首先指出,甲烷在大气中的寿命比二氧化碳短;作者又指出,据最近资料,日本的土壤化学家K.Yagi和K.Minami的统计,全世界稻田向大气释放的甲烷的量只有Lantin给出的数据的一半。而且,田间实验告诉我们,稻田释放甲烷的量受诸多因素的制约,如向土壤添加的有机物,水稻生长期内水的管理,土壤的种类,水稻输送甲烷的机制等等。

附注:在较早的文献里还报道过白蚁或非洲草原蚁群也会向大气释放大量甲烷。

附带可以指出,与甲烷问题相似的还有稻田释放氮氧化物的问题。水稻研究所正在研究如何使水稻自身具有固氮能力而减少使用氮肥的问题。其实,所有农作物都存在因施用过多氮肥而使水体和大气难免受到氮化合物污染。释放到大气中的氮氧化物同样是一种改变大气温度的重要原因。

Crabtree等去年报道了26种分子间双氢键B-H…H-A,dHH < 2.2埃(J. Am. Chem. Soc., 117, 1995: 3485; ibid: 12875)。日本Doi和Miyake新近对双氢键作了理论计算,提出双氢键的极限是dHH 2.7埃, 该值为假设的H3C-H…H-CH3之间的双氢键, 计算得到其双氢键的键能小于1 kJ/mol。

计算表明1972年报道的气相中的NH4+ + CH4 = [NH4·CH4] (J. Am. Chem. Soc., 1972, 94, 5188, 6305)反应产物应含双氢键,计算键能为14.69 kJ/mol, 与实验测得的反应焓15.02±0.46 kJ/mol相吻合。计算涉及的体系有BH4–…HCN, BH4–…CH4, LiH…NH4+, LiH…HCN, LiH…HCCH, BeH2…NH4+, BeH2…HCN, CH4…NH4+等。其中BH4–…HCN计算双氢键键长1.709埃,为最小者, 键能达75.44 kJ/mol, 为最高者。

美国Illinois大学和西班牙马德里大学的一个联合研究小组最近报道,广泛存在于许多食物,例如桑椹、花生、特别是葡萄中的白藜芦醇(resveratrol),即均二苯乙烯(stilbene)的一种三羟基衍生物(见下图)可能具有抗癌性质[Science 275,1997:218]。他们发现,含该化合物的植物提取液能够抑制环氧酶(cyclooxygenase)。在另一活体试验中,该化合物能够抑制用氟波醇酯(phorbol ester)处理过的白血病细胞生成自由基, 抑制其他细胞发生变异,并激活能减除致癌物质毒性的醌还原酶。

小鼠皮肤试验表明,白藜芦醇既减少了小鼠皮肤癌的数量也减少了得癌鼠的数量。研究者指出,白藜芦醇是人类通常饮食中的一个普遍存在的物质,是一种值得深入研究的一种潜在的化学抗癌剂。

Ⅱ 无机电化学合成和有机电化学合成的区别

听名字贺脊激都知道了,就是所研究的物质不一样,一个是无机物,一个是有机物。
有机物一般野改是指碳水化合物(当然还有其他的元素),它们的分子量比无机物要大,结构和性质也更为复杂,电化学特性也比较复杂禅袜。
无机物相较而言虽然它的元素种类比有机物多,但是结构简单,因此它们的电化学特性和有机物相比比较简单明了,规律性比较强。
而且就以后应用发展而言,我觉得有机电化学发展空间应该更大,毕竟在无机方面已经发展的相当成熟了

Ⅲ 聚苯胺的合成方法是什么

一 聚苯胺的合成方法

聚苯胺的合敏段成方法很多,但常用的合成方法有两大类:化学合成和电化学合成。

(1) 化学合成法 化学合成法是利用氧化剂作为引发剂在酸性介质中使苯胺单体发生氧化聚合,具体实施方法有如下几种。

① 化学氧化聚合法 聚苯胺的化学氧化聚合法,是在酸性条件下用氧化剂使苯胺单体氧化聚合。质子酸是影响苯胺氧化聚合的重要因素,它主要起两方面的作用:提供反应介质所需要的pH值和以掺杂剂的形式进入聚苯胺骨架赋予其一定的导电性。聚合同时进行现场掺杂,聚合和掺杂同时完成。常用的氧化剂有:过氧化氢、重铬酸盐、过硫酸盐等。其合成反应主要受质子酸的种类及浓度,氧化剂的种类及浓度,单体浓度和反应温度、反应时间等因素的影响。化学氧化聚合法优点在于能大量生产聚苯胺,设备投资少,工艺简单,适合于实现工业化生产,是目前最常用的合成方法。

② 乳液聚合法 乳液聚合法是将引发剂加入含有苯胺及其衍生物的酸性乳液体系内的方法。乳液聚合法具有以下优点:采用环境友好且成本低廉的水作为热载体,产物无需沉淀分离以除去溶剂;合成的聚苯胺分子量和溶解性都较销拿族高;如采用大分子磺酸为表面活性剂,则可一步完成掺杂提高导电聚苯胺电导率;可将聚苯胺制成直接使用的乳状液,后续加工过程不必再使用昂贵或有毒的有机溶剂,简化了工艺,降低了成本,还可以克服传统方法合成聚苯胺不溶不熔的缺点。

③ 微乳液聚合法 微乳液聚合法是在乳液法基础上发展起来的。聚合体系由水、苯胺、表面活性剂、助表面活性剂组成。微乳液分散相液滴尺寸(10~100nm)小于普通乳液(10~200nm),非常有利于合成纳米级聚苯胺。纳米聚苯胺微粒不仅可能解决其难于加工成型的缺陷,且能集聚合物导电性和纳米微粒独特理化性质于一体,因此自1997年首次报道利用此法合成了最小粒径为5nm的聚苯胺微粒以来,微乳液法己经成为该领域的研究热点。目前常规O/W型微乳液用于合成聚苯胺纳米微粒常用表面活性剂有DBSA、十二烷基磺酸钠等,粒径约为10~40nm。反相微乳液法(W/O)用于制备聚苯胺纳米微粒可获得更小的粒径(<10nm),且粒径分布更均匀。这是由于在反相微乳液水核内溶解的苯胺单体较之常规微乳液油核内的较少造成的。

④ 分散聚合法 苯胺分散聚合体系一般是由苯胺单体、水、分散剂、稳定剂和引发剂组成。反应前介质为均相体系,但所生成聚苯胺不溶于介质,当其达到临界链长后从介质中沉析出来,借助于稳定剂悬浮于介质中,形成类似于聚合物乳液的稳定分散体系。该法目前用于聚苯胺合成研究远不及上述三种实施方法

成熟,研究较少。

(2) 电化学合成法 聚苯胺的电化学聚合法主要有:恒电位法、恒电流法、动电位扫描法以及脉冲极化法。一般都是An在酸性溶液中,在阳极上进行聚合。电化学合成法制备聚苯胺是在含An的电解质溶液中,使An在阳极上发生氧化聚合反应,生成粘附于电极表面的聚苯胺薄膜或是沉积在电极表面的聚苯胺粉末。Diaz等人用电化学方法制备了聚苯胺薄膜。

目前主要采用电化学方法制备PANI电致变色膜,但是,采用电化学方法制备PANI电致变色膜时存在如下几点缺陷:不能大规模制备电致变色膜;PANI膜的力学性能较差;PANI膜与导电玻璃基底粘结性差。

二 聚苯胺的质子酸掺杂

导电聚合物的“掺杂”是指将导电聚合物从绝缘态转变成导电态时从其分子链中迁移出电子的过程。简单地说,掺杂就是将电子从导电聚合物价带顶部移出(p型掺杂,导电聚合物被氧化),或者向导带底部注入电子(n型掺杂,导电聚合物被还原),使导电聚合物离子化。而导电高聚物的“掺杂”与无机半导休“掺杂”有本质的差别,主要表现在:

(1) 无机半导体掺杂是原子的替代,而在导电高聚物的实质是掺杂剂与主链发生氧化还原反应,产生带电缺陷,两者生成电荷转移络合物;

(2) 无机半导体掺杂量极低(万分之几),而导电高聚物掺杂量可以很大,甚至超过聚合物自身质量;

(3) 无机半导体中不存在脱掺杂过程,而某些导电高聚物中不仅存在脱掺杂,而且掺杂脱掺杂过程完全可逆,进而进行二次或多次掺杂。

聚苯胺的质子酸掺杂机制不同于其它导电高聚物的氧化还原掺杂,后者通过掺杂电子受体或电子给予体总伴随着分子链上电子的得失亏弊,而聚苯胺的质子掺杂则不改变主链上的电子数目,只是质子进入高聚物链上才使链带正电,为维持电中性,对阴离子也进入高聚物链[27]。现有的研究表明[28],聚苯胺的胺基和亚胺基均可与质子酸反应生成胺盐和亚胺盐,但只有亚胺氮原子上的掺杂反应才对导电性有贡献。在两种氮原子都存在的情况下,亚胺的氮原子优先被质子化,有效掺杂必须存在醌式结构。用质子酸掺杂时,只是在主链上引入正电荷,为了维持电中性对阴离子也进入聚苯胺分子链中,如图1-4所示。

NH

xNN1 -x

脱 掺 杂 xHA 掺 杂N 1-yN+A-

掺 杂部 分 y1-x 未 掺 杂部 分

图1-4 PANI的掺杂过程

Fig. 1-4 Doping process of PANI

其中,x表示氧化程度,由合成来决定;y表示掺杂程度,由掺杂来决定:A-表示质子酸中的阴离子,由掺杂剂来决定。

根据聚苯胺掺杂过程和步骤的不同,质子酸掺杂可分为以下几种:一次掺杂、掺杂-脱掺杂-再掺杂、二次掺杂、共掺杂。

三 聚苯胺的导电机理

导电过程是载流子在电场作用下作定向运动的过程。高分子材料要能导电,必须具备两个条件:要能产生足够数量的载流子(电子、空穴或离子等);以及大分子链内和链间要能形成导电通道。导电聚合物的导电机理既不同于金属又不同于半导体,金属的载流子是自由电子,半导体的载流子是电子或空穴,而导电聚合物的载流子是“离域”π电子和由掺杂剂形成的孤子、极化子、双极化子等构成。

我国学者王慧中等人提出的掺杂态聚苯胺单极化子和双极化子相互转化的结构模型,比较合理的解释了聚苯胺的导电机理,如图1-5所示。

NH

BB

-O H

NHB+A-H+-A

+ *NH

A-NQN本征态 聚苯胺+NH-A+*NH

A-质子化NHNH分子内电 荷 转 移

NH

BnB+ *NH-A

BNHQ+*NH-A掺 杂态 聚苯胺

图1-5 掺杂态聚苯胺的导电机理

Fig. 1-5 Conctive mechanism of doped PANI

这一模型可以看出,掺杂态聚苯胺体系中,既有绝缘成分,也有各种导电成分,聚苯胺的分子链结构对导电性有很大的影响。

本征态的聚苯胺经质子酸掺杂后分子内的醌环消失,电子云重新分布,氮原子上的正电荷离域到大共轭π键中,而使聚苯胺呈现出高的导电性,掺杂前后的电导率变化可以高达9~10 个数量级。实验表明掺杂后的聚苯胺导电性能有极大的改善,其掺杂剂可以是质子酸、类质子酸、中性盐及某些氧化剂如NH4S2O8、FeCl3等。

四 性能测试方法

1.红外光谱分析 红外吸收光谱在高分子研究中是一种很有用的手段,目前普遍应用在分析与鉴别高聚物、高聚物反应的研究、共聚物研究、高聚物结晶形态的研究、高聚物取向的研究、聚合物表面的研究等方面[58]。样品与溴化钾(KBr)以大约1:100的比例混合,置于研磨中研磨成细粉,在5 MPa下将之压成试片。使用傅里叶红外光谱仪进行表征,光谱范围4000~400 cm-1;分辨率优于0.5 cm-1(可达0.2 cm-1);波数精度优于0.01 cm-1;透光率精度优于0.1 %T。

2.拉曼光谱分析 激光拉曼光谱和红外光谱在高聚物研究中可互补充。拉曼光谱在表征高分子链的碳-碳骨架振动方面更为有效,也可用于研究高聚物的结晶和取向[58]。使用显微拉曼光谱仪进行表征,光谱范围:3600~100 cm-1;分辨率:1~2 cm-1;激发波长:785 nm(固体激光器);光谱重复性:±0.2 cm-1;样品尺寸:不大于3cm×3cm×3cm。

3.热性能分析 热分析是测量在受控程序温度条件下,物质的物理性质随温度变化的函数关系的技术。这里所说的物质是指被测样品以及它的反应产物。程序温度一般采用线性程序,但也可能是温度的对数或倒数程序[59]。

利用综合热分析仪对样品进行热分析。该综合热分析仪集TG-DSC/DTA及Cp多方面测量功能于一身,主要参数为:温度测量范围-120~1650℃;比热测量范围0.1~5.0J/gK;比热测量精度5%;噪声影响(最大)15μW;温度精度<1K;热焓精度±3%;真空度10-4 MPa;热重精度10-6g,热分析条件:Ar气氛,升温速率10℃/min,温度范围为30~700℃。测定加热过程中,各种薄膜的热重量损失及能量变化。

4.X射线衍射谱分析(XRD) XRD是物相分析最有效的手段之一。通过材料的X射线衍射图能过得到相关物质的元素组成、尺寸、离子间距等材料的精细结构方面的数据与信息[60]。取少量产物粉末约0.89铜靶,电压40.0kV,电流30.0mA,扫描范围2θ=5~45。和10~100。,扫描速度4。/min进行测试。

5.扫描电子显微镜分析(SEM) 扫描电子显微镜(SEM)作为一种直观的表征手段,通过直接的观察就可以确定聚合物形貌结构,如颗粒或纤维状、多孔或致密等[60]。一般认为,不同的掺杂阴离子将导致导电聚合物的成核与生长机理不同,因此产生形态各异的聚合物。

6.气敏特性测试 采用静态配气法,测试元件对某些气体的灵敏度及其响应-恢复时间。气体灵敏度的定义为S = Rg / Ra (Ra为空气中测得的电阻,Rg为待测气体中测得的电阻),响应-恢复时间为薄膜元件从接触和脱离检测气体开始到其阻值或阻值增量达到某一确定值的时间。主要技术参数:测试通道数:30路,采集速度:1次/秒,系统综合误差:<±1% ,电源:AC 220V±10% 50Hz,测试电源:Vh 2~10V连续可调 Max8A,Vc:2~10V 连续可调 Max1A,配气箱:外形尺寸 315mm×335mm×350mm;容积30L。

Ⅳ 电解是有机合成一种重要的方法,它为进行奇特反应提供了有效的手段.例如利用电解可以制得一些小环化合物

(1)电解过程是阳极失电子发生氧化反应得到还原产物,阴极上得到电子发生还原反应得到氧化产物;依据电极反应可知是得到电子发生的还原反应,在阴极发生的反应,
故答案为:阴;
(2)依据题干中的反应实质:

Ⅳ 有机电化学合成的优缺点

有机电合成利大于弊。
优点腊埋返是电子纯度高,环境污染小,反应可液租在常温常压下进行节约了能源,降低了投资成本;缺点是有机电合成需要很大的技术支撑。
有机电化学合成又称为有机电解合成,简称有机电合成轮饥。

Ⅵ 电化学合成的本质是电解嘛

电化学合成的本质是电解。根据查询相关卖棚信息显示,利用电哪配兄化学反应进行合成的方法,即为电化学合成法,电化学合李袭成本质上是电解,也称为电解合成。

阅读全文

与电合成是用什么方法合成化合物相关的资料

热点内容
金湖过滤器安装方法 浏览:341
来的时的使用方法 浏览:343
如何练习动力的方法 浏览:214
养鸡啄毛解决方法 浏览:41
内部审计研究方法 浏览:134
销售眼镜技巧与方法 浏览:609
黑枸杞正确食用方法 浏览:462
如何分辨真假蜂蜜有几种方法 浏览:836
魅族手机微信红包提醒怎么设置在哪里设置方法 浏览:846
五十八乘一百九十八的简便方法 浏览:980
话筒线与喇叭线连接方法 浏览:119
土壤检测的方法 浏览:341
教学方法教师教学工作基本环节 浏览:300
秋繁如何分蜂方法 浏览:380
蚕丝被的好真假鉴别方法 浏览:358
仙客来烂根的治疗方法 浏览:63
臀部松解最佳方法 浏览:261
如何做辣椒油的最好方法 浏览:498
课堂教学方法改革中的问题与对策 浏览:39
白线癌的治疗方法 浏览:640