A. 蚕丝蛋白的提取工艺
1.蚕种场削口茧及下脚丝一丝素蛋白一水解一过滤提纯一滤液pH测试调整一浓缩一灭菌一成品。
①削口茧、下脚丝去杂脱胶:即把蚕种场制种的削口茧壳内的脱皮或缫丝厂的下脚丝中的杂质剔除,然后在一定浓度的弱碱溶液中煮沸半小时,取出茧丝用水漂洗几次拧干(脱胶)。
②水解:严格控制反应的温度、浴比、时间、溶剂浓度等条件,掌握至多肽的形式终止水解。
③过滤提纯:滤去没有完全水解的固体物质及杂质。
④pH调整:用pH调节剂调整pH在6.5~7.0左右。
⑤浓缩:把pH调整后的水解液上柱在薄膜浓缩器上进行浓缩。
⑥灭菌:(浓缩后的水解蛋白液如在食品上应用用酶制剂继续酶解,控制分子量在300~800左右中止,然后灭菌。)加入微量防腐剂,以防霉菌的滋生。
2.蚕丝蛋白丝素肽产品技术、质量指标
丝素肽又名丝多缩氨酸(SILK Polypeplide),其多肽键的基本结构为其中Rl、R2……R。为氨基酸侧基。丝素肽含有十七种氨基酸,其中人体所需的氨基酸几乎具备,特别是人体皮肤、毛发十分需要的营养氨基酸(甘氨酸、丙氨酸、丝氨酸、酪氨酸)其含量占到氨基酸总量的80%以上,这是其他水解蛋白所不可及的。
2.1技术指标:①外观形状:淡黄色透明液体,无特异气味,易溶于水。②双缩脲反应为阳性,紫外吸收光谱在波长200~240nm处有强吸收峰。③pH值6~7。④比重(d 2。o)1.000~1.050。⑨蛋白质含量:>/14%。⑥氨基酸:共17种,每ml中含87mg以上。⑦灰分:1%以下。⑧重金属汞、砷、铅分别在1ppm以下。⑨细菌总数(个/m1)≤10。⑩粪大肠杆菌、绿脓杆菌、金黄色葡萄球菌均不得检出。
2.2质量指标:丝素肽是由天然蚕丝经特殊工艺提取而成,因此,氨基酸组成与含量是衡量产品质量的重要指标之一;而丝素肽分子量的大小与护肤功效的发挥又有着密切的联系. [编辑本段]丝素蛋白材料改性的研究进展丝素蛋白是一种从蚕丝中提取的蛋白质,具有很好的生物相容性,能制备成膜、凝胶、微胶囊等多种形态的材料,由于它独特的理化性能,目前丝素蛋白材料在生物医学材料领域被广泛的研究,如固定化酶材料、细胞培养基质、药物缓释剂、人工器官等等。为了提高丝素蛋白的性能,使其更好地应用于生物材料领域,近年来,国内外学者通过不同方法对丝素蛋白进行了化学修饰,取得了一些新的研究成果。本文概述了丝素蛋白材料改性在提高丝素蛋白材料的力学性能、热稳定性等理化性质;改变丝素蛋白材料对药物的释放速度;赋予丝素蛋白材料抗血凝性、对细胞生长的调控性等方面的研究报道。 丝素膜是被研究得最早和最深入的丝素材料,它是由丝素溶液干燥而得。经不溶化处理后的丝素膜脆性,是丝素膜的最大缺点。造成不溶化处理后的丝素膜脆性的主要原因是:丝素蛋白质大分子肽链上的肽键—CO—NH—中的C—N的键长为0.132nm,比C—N单键的键长0.147nm要短一点,比C=N双键的键长0.127nm要长些,使肽链具有部分双键的性质,刚性较大,影响了丝素蛋白质大分子主链的柔顺性。在经不溶化处理过程中,丝素蛋白的结构会发生从任意卷曲到β结构的转变。在丝素蛋白发生结构转变后,侧链与侧链间、侧链与主链间以及分子与分子之间可形成大量的氢键结合,产生大量的次级交联点,使丝素蛋白质大分子更难以运动,致使丝素膜的柔软性、伸长和弹性都较差。不少研究通过共混、接枝、交联等方法,以提高和改良丝素膜的力学性能。
1.1共混改性
Freddi等曾报道过丝素蛋白/纤维素共混膜的性能。纤维素的加入可以有效地改变共混膜的力学性能。拉伸断裂强度随着纤维素的含量从20%起呈线性增加,断裂伸长率则在20%~40%间急速增加,而后趋于缓和。含40%纤维素共混膜的柔韧度大约是纯丝素膜的10倍。共混膜柔韧度的提高由多种因素促成,如纤维素的力学性能的影响;共混膜的吸湿性纯丝素膜强,含水率的提高有利于丝素膜的柔韧度提高;相邻丝素蛋白链和纤维素链在无定形区内的相互作用产生的影响等。
李明忠等曾报道过关于丝素/聚氨酯共混膜的力学性能的研究。结果表明,随着聚氨酯所占比例的提高,丝素/聚氨酯共混膜的断裂伸长率明显增大;当聚氨酯所占比例大于40%时,断裂伸长率增长速度明显加快。当共混比例为50∶50时,断裂伸长率从60.2%提高到226.2%。聚氨酯阻止了丝素蛋白质大分子链段间产生过多的氢键结合,降低了丝素的结晶度,增加了可自由伸展链段,加上聚氨酯主链本身具备很好的柔顺性,所以共混膜的柔软性、弹性明显比纯丝素膜好。
最近,美国学者也曾做过这方面的实验。聚乙烯氧化物(PEO)是一种具有很好生物相容性的聚合体。他们在高浓缩的丝素溶液(8%)中加入不同比例的PEO溶液制成共混膜,发现加入2%的PEO可以提高膜的强度,而在其他浓度下膜的强度则降低。这种现象可以用相分离来解释。PEO和丝素蛋白两种聚合体发生相分离,阻止了丝素蛋白相内的相互作用。
当PEO含量达40%时,共混膜的断裂伸长率可从原来的1.9%增加到10.9%,因此,PEO的加入有助于丝素蛋白柔韧性的提高。另外,研究还发现PEO能方便地从共混膜上萃取,因此,很容易控制膜的多孔性和表面粗糙程度。
王朝霞等人研究了丝素/聚乙烯基吡咯烷酮(PVP)共混膜的制备方法和性能。结果表明,PVP与丝素蛋白共混后,可使共混膜增加伸长率、吸湿性以及透气性,改善了丝素创面保护膜的性能和应用效果。共混膜的强度随PVP含量的增加而有所降低。这是因为PVP是完全非晶态结构,其分子呈无规卷曲状,故PVP的加入使共混膜的强度降低。共混膜的伸长率开始随PVP的比例增加而下降,PVP/SF为2∶8时,伸长率较小,只有13%左右。而后伸长率又逐渐提高。PVP/SF为3∶7左右时,伸长率最大,可达18%以上。
关于丝素共混膜的研究还有丝素蛋白/海藻酸钠共混膜[5],丝素/明胶[6]等等,都不同程度地增强了丝素膜的强度和弹性。
1.2化学接枝改性
20世纪80~90年代,开展了较多的对丝素蛋白的接枝改性研究。刘剑洪等曾用四价铈盐作引发剂,引发丝素蛋白纤维接枝紫外吸收剂——2-羟基-4-丙烯酰氧二苯酮(HAOBP),虽然改善了丝素蛋白纤维的紫外稳定性能,且力学性能却大幅度地下降[7]。为了解决这一问题,刘剑洪继续采用“无引发剂聚合”法在丝素蛋白纤维表面接枝HAOBP的可行性。结果发现,这种接枝聚合方法是一种更为有效的改性方法。接枝0.6%HAOBP的丝素蛋白纤维,其热稳定性及紫外稳定性均得到了显着的改善,但力学性能没有下降。
Tsukada等曾研究了甲基丙烯腈接枝丝素纤维后物理性能的改变。结果表明,随着接枝物甲基丙烯腈的加入,丝素纤维的拉伸模量有所降低,这说明了接枝反应使得丝素纤维变得更加柔软且有弹性。
除了家蚕丝的化学接枝外,还有其他蚕丝的接枝共聚。Tsukada等研究了酸酐对柞蚕丝的化学修饰。柞蚕丝经LiSCN预处理后,与酸酐发生酰胺化反应。有意思的是,无论LiSCN预处理还是酰胺化修饰,共聚物的物理性能和热行为几乎没有发生变化,但是预处理后含水率有所增加,而酰胺化修饰后含水率却线性下降。柞蚕丝的这些性能为聚合反应提供较宽的适用范围,使得柞蚕丝很可能成为一种生物材料。
1.3化学交联卢神州等以环氧氯丙烷和聚乙二醇(PEG)为原料,在碱性催化下反应得到聚乙二醇缩水甘油醚(PEGO),作为制备丝素蛋白膜的交联剂。随PEG含量的增加,膜的拉伸断裂强度和杨氏模量减小,断裂伸长率增大、机械性能比纯丝素膜有了明显的提高 。闵思佳等发现用二缩水甘油基乙醚作为交联剂所制备的丝素蛋白质凝胶(CFG)具有良好的强度和柔韧性。根据制作条件可达压缩强度大于100g/mm2,压缩变形率大于60%。另外,材料的力学强度跟丝素水溶液的浓度有关。4%(wt)的丝素蛋白质水溶液的各种凝胶的强度和变形率均小于7%(wt)浓度的各种凝胶。这是因为丝素蛋白质浓度低时,形成的三维网目的结合点稀疏,因此,凝胶强度较低。要得到高强度CFG,除了合适的交联剂等外,还需有合适的丝素水溶液浓度。 闵思佳等曾测试了酰胺化修饰丝素材料对离子型化合物的吸附释放性能的影响。结果表明:经修饰后丝素蛋白质的等电点为pH=6左右,而天然的为pH=4左右;与未修饰相比,经修饰的丝素膜对阳离子化合物的吸附量减少,对阴离子化合物的吸附量增加,而且经修饰的多孔丝素材料对阳离子化合物的释放量增加,对阴离子化合物的释放量则明显降低。因此,认为用羧基酰胺化修饰的方法,可在一定程度上改变丝素材料对离子型化合物的吸收释放性能。
另外,用甲壳素交联丝素蛋白膜可以获得半渗透聚合体网状物,对离子和pH具有很好的敏感性,被期望用作人工肌腱。有人曾用含有磁小体的交联壳聚糖丝素膜作为药物缓释材料来调控5-氟尿嘧啶药物释放情况和磁反应特性。结果表明,交联壳聚糖丝素膜的释放程度和诱捕效率比纯甲壳素微球体要好得多,5-氟的释放程度随着交联剂戊二醛浓度的增加而降低。 异丁烯酰基丙烯酰基磷酸胆碱(MPC)是一种新合成的磷酸胆碱聚合物。在没有抗凝血剂的条件下,也能有效地阻止血凝的发生。把MPC聚合物接枝到丝素蛋白分子链上,可以很好地观察到接枝物的抗血凝性。Furuzono等通过异丁烯酰基丙烯酰基异氰酸酯(MOI)使丝素蛋白和MPC聚合体相互接枝。通过测定血小板在MPC-SF上的粘附能力,与原始丝素SF相比,血小板粘附量有了明显的减少。由此可以得出,经MPC修饰后的丝素材料的抗血凝性有所提高[17]。
此外,硫化丝素也具有很好的抗血凝性。它是通过丝素蛋白与硫酸或氯代硫酸在嘧啶溶液下反应所得。硫化后的丝素能延长血液凝固时间,并且随着硫酸基团的增加,抗血凝性也有了明显的提高。 丝素材料具有良好的生物相容性,可以用来做细胞培养基质。为了增强丝素蛋白材料的功能,如更强的抗菌抑菌性,调控细胞生长速度等,一些研究尝试了化学改性的方法。
5.1丝素/低聚糖接枝物
N-乙炔-壳聚寡糖(NACOS)含有6个以上的单糖单元,具有很强的抗菌性和抗肿瘤性。将其接枝到丝素蛋白上后,并在0.6%壳聚寡糖/丝素接枝物(NACOS-SF)上培养大肠杆菌24h后发现,此接枝物上大肠杆菌的细胞数目并没有明显的增加,这就是低聚寡糖(COS)发挥了作用。因此,NACOS-SF可以起到抗菌抑菌的效果。
最近,Gotoh等报道了关于乳糖/丝素接枝物作为肝细胞粘附支架材料的研究。他们利用氰尿酰氯(CY)把乳糖接枝到丝素蛋白主链上,所得溶液制成膜,在其上培养肝细胞,结果发现细胞粘附能力是纯丝素膜的8倍,与胶原相当;培养2d后,涂有接枝物的肝细胞形成的单层与胶原相比稍显圆滑和集中,更有利于肝细胞的培养。
5.2丝素/聚合体接枝物
为评估材料的亲水性,Gotoh等分别测定了聚乙二醇/丝素接枝物(PEG-SF)和丝素(SF)的水分含量和接触角。结果发现,PEG-SF含水率达380%,而SF只有32%。这也说明了亲水性PEG链接枝到丝素链上后,增加了水分含量,从而提高了丝素材料的亲水性。
亲水性的提高,可以带来其他性能的改变。Gotoh等以PEG-SF作细胞培养基质,与SF对照,比较细胞的生长率。结果显示,随着时间的推移,SF上的培养细胞个数有了明显的增加,而PEG-SF则几乎没有变化。从PEG-SF对细胞的低吸附性和低生长率上可以得出,PEG-SF可以调控细胞粘附的数量和生长速度。
经聚乳酸表面修饰过的丝素蛋白能够提高造骨细胞与修饰后的膜之间的交互作用,促进细胞粘附和增值。
相类似的还有通过对精氨酸化学修饰,来影响对纤维原细胞的附着能力。 丝素蛋白材料具有良好的生物相容性,在生物医用材料领域的应用前景甚广。但是,纯丝素蛋白材料的力学性能等尚未达到实用性的要求,而改性的研究是一种良好的途径。
2014年11月20日,西南大学家蚕基因组生物学国家重点实验室通过敲除Fib-H基因获得空丝腺,蚕宝宝吐出人工合成蚕丝蛋白,人们或许可以穿上人工合成蚕丝做的衣服。
B. 任务硅酸盐中二氧化硅的测定
实训准备
岩石矿物分析
任务分析
一、硅酸盐中二氧化硅含量的测定方法简述
硅酸盐中二氧化硅的测定方法较多,通常采用重量法(氯化铵法、盐酸蒸干法等)和氟硅酸钾容量法。对硅含量低的试样,可采用硅钼蓝光度法和原子吸收分光光度法。测定方法如图8-5所示。
图8-5 二氧化硅测定方法
二、重量法
测定二氧化硅的重量法主要有氢氟酸挥发重量法和硅酸脱水灼烧重量法两类。氢氟酸挥发重量法是将试样置于铂坩埚中经灼烧至恒重后,加氢氟酸-硫酸(或氢氟酸-硝酸)处理后,再灼烧至恒重差减法计算二氧化硅的含量。该法只适用于较纯的石英样品中二氧化硅的测定,无实用意义。而硅酸脱水灼烧重量法则在经典和快速分析系统中均得到了广泛的应用。其中,两次盐酸蒸干脱水重量法是测定高、中含量二氧化硅的最精确的、经典的方法;采用动物胶、聚环氧乙烷、十六烷基三甲基溴化铵(CTMAB)等凝聚硅酸胶体的快速重量法是长期应用于例行分析的快速分析方法。下面重点介绍两次盐酸蒸干法和动物胶凝聚硅酸的重量法。
1.硅酸的性质和硅酸胶体的结构
硅酸有多种形式,其中偏硅酸是硅酸中最简单的形式。它是二元弱酸,其电离常数K1、K2分别为10-9.3和10-12.16。在pH=1~3 或pH>13 的低浓度(<1mg/mL)硅酸溶液中,硅酸以单分子形式存在。当pH=5~6时,聚合速率最快,并形成水溶性甚小的二聚物。所以,在含有EDTA、柠檬酸等配位剂配合Fe(Ⅲ)、Al、U(Ⅳ)、Th等金属离子以抑制其沉淀的介质中,滴加氨水至pH=4~8,硅酸几乎可完全沉淀。这是硅与其他元素分离的方法之一。
天然石英和硅酸盐岩石矿物试样与苛性钠、碳酸钠共熔时,试样中的硅酸盐全部转变为偏硅酸钠。熔融物用水提取,盐酸酸化时,偏硅酸钠转变为难离解的偏硅酸,金属离子均成为氯化物。反应式如下:
Na2SiO3+2HCl→H2SiO3+2NaCl
KAlO2+4HCl→KCl+AlCl3+2H2O
NaFeO2+4HCl→FeCl3+NaCl+2H2O
MgO+2HCl→MgCl2+H2O
提取液酸化时形成的硅酸存在三种状态:一部分呈白色片状的水凝聚胶析出;一部分呈水溶胶,以胶体状态留在溶液中;还有一部分以单分子溶解状态存在,能逐渐聚合变成溶胶状态。
硅酸溶胶胶粒带负电荷,这是由于胶粒本身的表面层的电离而产生。胶核(SiO2)m
表面的SiO2分子与水分子作用,生成H2SiO3分子,部分的H2SiO3分子离解生成
图8-6 硅酸胶体结构
显然,硅酸溶胶胶粒均带有负电荷,同性电荷相互排斥,降低了胶粒互相碰撞而结合成较大颗粒的可能性。同时,硅酸溶胶是亲水性胶体,在胶体微粒周围形成紧密的水化外壳,也阻碍着微粒互相结合成较大的颗粒,因而硅酸可以形成稳定的胶体溶液。若要使硅酸胶体聚沉,必须破坏其水化外壳和加入强电解质或带有相反电荷的胶体,以减少或消除微粒的电荷,使硅酸胶体微粒凝聚为较大的颗粒而聚沉。这就是在硅酸盐系统分析中测定二氧化硅的各种凝聚重量法的原理。
2.硅酸蒸干脱水重量法
试样与碳酸钠或苛性钠熔融分解,用水提取,盐酸酸化后,相当量的硅酸以水溶胶状态存在于溶液中。当加入浓盐酸时,一部分水溶胶转变为水凝聚胶析出。为了使其全部析出,一般将溶液蒸干脱水,并在温度为105~110℃下烘干1.5~2 h。再将蒸干破坏了胶体水化外壳而脱水的硅酸干渣用浓盐酸润湿,并放置5~10min,使蒸发过程中形成的铁、铝、钛等的碱式盐和氢氧化物与盐酸反应,转变为可溶性盐类而全部溶解,过滤,将硅酸分离出来。所得硅酸经沉淀洗净后,连同滤纸一起放入铂坩埚内。置于高温炉中,逐步升温,使其干燥并使滤纸碳化、灰化,在升温至1000℃灼烧1h,取出冷却称重即得二氧化硅的质量。
硅酸蒸干脱水时,硅酸沉淀完全的程度及其吸附包裹杂质的情况,与介质、酸度、碱金属氯化物浓度、搅拌情况、烘干时间与温度、过滤时的洗涤方法等有关。一般在盐酸介质中并经常搅拌,严格控制烘干时间和温度。蒸干后,用盐酸处理干渣时,过滤前加水稀释,控制盐酸浓度为18%~25%。
由于硅酸沉淀具有强烈的吸附能力,所以在析出硅酸时,总是或多或少地吸附有Fe3+、Al3+、Ti4+等杂质。为此,在过滤时必须采用正确的洗涤方法将杂质除去。首先,用热的2%~5% 的盐酸洗去Fe3+等杂质,然后再用热水将残留的盐酸和氯化钠洗去。
蒸干脱水时所生成的聚合硅酸的溶解度很小,但在100mL稀盐酸溶液中仍可溶解相当于5~10mg二氧化硅的硅酸。因此,若进行一次蒸干脱水,只能回收97%~99% 的二氧化硅。为此,在经典的分析系统中进行两次甚至三次蒸干脱水,再用光度法测定滤液中的硅。
二次盐酸蒸干脱水所得硅酸,经过滤、洗涤、灰化、灼烧后所得的二氧化硅,即使严格控制操作条件,也难免含有少量杂质。因此,常将灼烧至恒重的残渣再用氢氟酸和硫酸加热处理,使二氧化硅呈四氟化硅挥发逸出后,灼烧称重,以处理前后的质量之差为二氧化硅的净重计算结果。加入硫酸的作用是:第一,防止四氟化硅水解;第二,使钛、锆、铌、钽等转变为硫酸盐,不至于形成沸点较低的氟化物而挥发逸出;第三,使氟离子结合成氟化氢挥发除去。
3.硅酸凝聚重量法
在硅酸凝聚重量法中,使用最广泛的凝聚剂是动物胶。动物胶是一种富含氨基酸的蛋白质,在水中形成亲水性胶体。由于其中氨基酸的氨基和羧基并存,在不同酸度条件下,它们既可接受质子,又可放出质子,从而显示为两性电解质。当pH=4.7 时,其放出和接受的质子数相等,动物胶粒子的总电荷为零即体系处于等电态。在pH<4.7 时,其中的氨基-NH2与H+结合成-NH3+而带正电荷;pH>4.7 时,其中的羧基电离,放出质子,成为-COO-,使动物胶粒子带负电荷。
在硅酸介质中,由于硅酸胶粒带负电荷,动物胶质点带正电荷,可以发生相互吸引和电性中和,使硅酸胶体凝聚。另外,由于动物胶是亲水性很强的胶体,它能从硅酸质点上夺取水分,以破坏其水化外壳,促使硅酸凝聚。
用动物胶凝聚硅酸时,其完全程度与凝聚时的酸度、温度及动物胶的用量有关。由于试液的酸度越高,胶团水化程度越小,它们凝聚能力越强,因此在加动物胶之前应先把试液蒸发至湿盐状,然后加浓盐酸,并控制其酸度在8mol/L以上。凝聚温度控制在60~70℃,在加入动物胶并搅拌100次以后,保温10min。温度过低,凝聚速度慢,甚至不完全,同时吸附杂质多;温度过高,动物胶会分解,使其凝聚能力减弱。过滤时应控制试液温度在30~40℃,以降低水合二氧化硅的溶解度。动物胶用量一般控制在25~100mg,少于或多于此量时,硅酸将复溶或过滤速度减慢。
用动物胶凝聚的重量法,只要正确掌握蒸干、凝聚条件、凝聚后的体积,以及沉淀过滤时的洗涤方法等操作,滤液中残留的二氧化硅和二氧化硅沉淀中存留的杂质均可低于2mg,在一般的例行分析中,对沉淀和滤液中二氧化硅不再进行校正。但是,在精密分析中需尽量要求做出必要的处理。另外,当试样中含氟、硼、钛、锆等元素时,将影响分析结果,应视具体情况和质量要求做出必要的处理。
硅酸凝聚重量法测定二氧化硅,其凝聚剂除动物胶以外,还可以采用聚环氧乙烷(PEO)、十六烷基三甲基溴化铵(CTMAB)、聚乙烯醇等。
三、滴定法
测定样品中二氧化硅的滴定分析方法都是间接测定方法。依据分离和滴定方法的不同分为硅钼酸喹啉法、氟硅酸钾法及氟硅酸钡法等。其中,氟硅酸钾法应用最广泛,下面做重点介绍。
氟硅酸钾法,确切地应称为氟硅酸钾沉淀分离-酸碱滴定法。其基本原理是:在强酸介质中,在氟化钾、氯化钾的存在下,可溶性硅酸与氟离子作用,能定量的析出氟硅酸钾沉淀,该沉淀在沸水中水解析出氢氟酸,可用标准氢氧化钠溶液滴定,从而间接计算出样品中二氧化硅的含量。其反应如下:
SiO2+2KOH→K2SiO3+H2O
岩石矿物分析
[SiF6]2-+2K+→K2SiF6↓
K2SiF6+3H2O→2KF+H2SiO3+4HF
HF+NaOH→NaF+H2O
氟硅酸钾法测定二氧化硅时,影响因素多,操作技术也比较复杂。试样的分解要注意分解方法和熔剂的选择,氟硅酸钾沉淀的生成要注意介质、酸度、氟化钾和氯化钾的用量以及沉淀时的温度和体积等的控制,还要注意氟硅酸钾沉淀的陈化、洗涤溶液的选择、水解和滴定的温度和pH以及样品中含有铝、钛、硼等元素的干扰等因素。氟硅酸钾法有关实验条件的影响讨论如下:
(1)试样的分解。单独称样测定二氧化硅,可采用氢氧化钾作熔剂,在镍坩埚中熔融;或以碳酸钾作熔剂,在铂坩埚中熔融。分析系统,多采用氢氧化钠作熔剂,在银坩埚中熔融。对于高铝试样,最好改用氢氧化钾或碳酸钾熔样,因为在溶液中易生成比K3AlF6溶解度更小的Na3AlF6而干扰测定。
(2)溶液的酸度。溶液的酸度应保持在3mol/L左右。酸度过低易形成其他金属的氟化物沉淀而干扰测定;酸度过高将使K2SiF6沉淀反应不完全,还会给后面的沉淀洗涤、残余酸的中和操作带来麻烦。
使用硝酸比盐酸好,既不易析出硅酸胶体,又可以减弱铝的干扰。溶液中共存的Al3+在生成K3SiF6的条件下亦能生成K3AlF6(或Na3AlF6)沉淀,从而严重干扰硅的测定。由于K3SiF6在硝酸介质中的溶解度比在盐酸中的大,不会析出沉淀,即防止了Al3+的干扰。
(3)氯化钾的加入量。氯化钾应加至饱和,过量的钾离子有利于K2SiF6沉淀完全,这是本法的关键之一。在操作中应注意以下事项:①加入固体氯化钾时,要不断搅拌,压碎氯化钾颗粒,溶解后再加,直到不再溶解为止,再过量1~2g;②市售氯化钾颗粒如较粗,应用瓷研钵(不用玻璃研钵,以防引入空白)研细,以便于溶解;③氯化钾的溶解度随温度的改变较大,因此在加入浓硝酸后,溶液温度升高,应先冷却至30℃以下,再加入氯化钾至饱和。否则氯化钾加入过量太多,给以后的过滤、洗涤及中和残余酸带来很大困难。
(4)氟化钾的加入量。氟化钾的加入量要适宜。一般硅酸盐试样,在含有0.1g试料的试验溶液中,加入10mL KF·2H2O(150g/L)溶液即可。如加入量过多,则Al3+易与过量的氟离子生成K3AlF6沉淀,该沉淀水解易生成氢氟酸而使结果偏高。
K3AlF6+3H2O→3KF+H3AlO3+3HF
注意量取氟化钾溶液时应用塑料量杯,否则会因腐蚀玻璃而带入空白。
(5)氟硅酸钾沉淀的陈化。从加入氟化钾溶液开始,沉淀放置15~20min为宜。放置时间短,K3SiF6沉淀不完全;放置时间过长,会增强Al3+的干扰。特别是高铝试样,更要严格控制。
K3SiF6的沉淀反应是放热反应,所以冷却有利于沉淀反应完全。沉淀时的温度以不超过25℃为宜,否则,应采取流水冷却,以免沉淀反应不完全,结果将严重偏低。
(6)氟硅酸钾的过滤和洗涤。氟硅酸钾属于中等细度晶体,过滤时用一层中速滤纸。为加快过滤速度,宜使用带槽长颈塑料漏斗,并在漏斗颈中形成水柱。
过滤时应采用倾泻法,先将溶液倒入漏斗中,而将氯化钾固体和氟硅酸钾沉淀留在塑料杯中,溶液滤完后,再用50g/L氯化钾洗烧杯2 次,洗漏斗1 次,洗涤液总量不超过25mL。洗涤时,应等上次洗涤液漏完后,在洗下一次,以保证洗涤效果。
洗涤液的温度不宜超过30℃。否则,须用流水或冰箱来降温。
(7)中和残余酸。氟硅酸钾晶体中夹杂的金属阳离子不会干扰测定,而夹杂的硝酸却严重干扰测定。当采用洗涤法来彻底除去硝酸时,会使氟硅酸钾严重水解,因而只能洗涤2~3次,残余的酸则采用中和法消除。
中和残余酸的操作十分关键,要快速、准确,以防氟硅酸钾提前水解。中和时,要将滤纸展开、捣烂,用塑料棒反复挤压滤纸,使其吸附的酸能进入溶液被碱中和,最后还要用滤纸擦洗杯内壁,中和溶液至红色。中和完放置后如有褪色,就不能再作为残余酸继续中和了。
(8)水解和滴定过程。氟硅酸钾沉淀的水解反应分为两个阶段,即氟硅酸钾沉淀的溶解反应及氟硅酸根离子的水解反应,反应式如下:
K2SiF6→2K++[SiF6]2-
[SiF6]2-+3H2O→H2SiO3+2F-+4HF
两步反应均为吸热反应,水温越高、体积越大,越有利于反应进行。故实际操作中,应用刚刚沸腾的水,并使总体积在200mL以上。
上述水解反应是随着氢氧化钠溶液的加入,K2SiF6不断水解,直到终点滴定时才趋于完全。故滴定速度不可过快,且应保持溶液的温度在终点时不低于70℃为宜。若滴定速度太慢,硅酸会发生水解而使终点不敏锐。
(9)注意空白。测定试样前,应检查水、试剂及用具的空白。一般不应超过0.1mL氢氧化钠溶液(0.15mol/L),并将此值从滴定所消耗的氢氧化钠溶液体积中扣除。如果超过0.1mL,应检查其来源,并设法减小或消除。例如,仅用阳离子交换树脂处理过的去离子水、搅拌时用带颜色的塑料筷子、使用玻璃量筒和许多划痕的旧烧杯脱埚等,均会造成较大的空白值。
四、光度法
硅的光度分析方法中,以硅钼杂多酸光度法应用最广,不仅可以用于重量法测定二氧化硅后的滤液中的硅(GB/T176-2008 ),而且采用少分取滤液的方法或用全差示光度法可以直接测定硅酸盐样品中高含量的二氧化硅。
在一定的酸度下,硅酸与钼酸生成黄色硅钼酸杂多酸(硅钼黄)H8[Si(MO2O7)6],可用于光度法测定硅。若用还原剂进一步将其还原成钼的平均价态为+5.67 价的蓝色硅钼杂多酸(硅钼蓝),亦可用与光度法测定硅,而且灵敏度和稳定性更高。
硅酸与钼酸的反应如下:
H4SiO4+12H2MoO4→H8[Si(Mo2O7)6]+10H2O
产物呈柠檬黄色,最大吸收波长为350~355nm,摩尔吸光系数约为103L/(mol · cm),此法为硅酸黄光度法。硅钼黄可在一定酸度下,被硫酸亚铁、氯化亚锡、抗坏血酸等还原剂所还原。
H8[Si(Mo2O7)6]+2C6H8O6→H8[Si(Mo2O7)4(Mo2O6)2]+2C6H6O6+2H2O
产物呈蓝色,λmax=810nm,εmax=2.45×104L/(mol·cm)。通常采用可见分光光度计,于650nm波长处测定,摩尔吸光系数为8.3×103L/(mol·cm),虽然灵敏度稍低,但恰好适于硅含量较高的测定。此法为硅钼蓝光度法。
该法应注意以下问题。
1.正硅酸溶液的制备
硅酸在酸性溶液中能逐渐聚合,形成多种聚合状态。高聚合状态的硅酸不能与钼酸盐形成黄色硅钼杂多酸,而只有单分子正硅酸能与钼酸盐生成黄色硅钼杂多酸,因此,正硅酸的获得是光度法测定二氧化硅的主要关键。
硅酸的聚合程度与硅酸的浓度、溶液的酸度、温度及煮沸和放置的时间有关。硅酸的浓度越高、酸度越大、加热煮沸和放置时间越长,则硅酸的聚合现象越严重。如果控制二氧化硅的浓度在0.7mg/mL以下,溶液酸度不大于0.7mol/L,则放置8d,也无硅酸聚合现象。
2.显色条件的控制
正硅酸与钼酸铵生成的黄色硅钼杂多酸有两种形态:α-硅钼酸和β-硅钼酸。它们的结构不同,稳定性和吸光度也不同。而且,它们被还原后形成的硅钼蓝的吸光光度和稳定性也不相同。α-硅钼酸的黄色可稳定数小时,可用于硅的测定,甚至用于硅酸盐、水泥、玻璃等样品的分析,其结果可与重量法媲美,但许多金属离子将沉淀或水解。β-硅钼酸因稳定性差而难用于分析。α-硅钼酸和β-硅钼酸被还原所得产物不同,α-硅钼酸被还原后所得产物呈绿蓝色,λmax=742nm,不稳定而很少采用;β-硅钼酸的还原产物则呈深蓝色,λmax=810nm,颜色可稳定8h以上,被广泛用于分析。
硅钼杂多酸的不同形态的存在量与溶液的酸度、温度、放置时间及稳定剂的加入等因素有关,所以对显色条件的控制也非常关键。
酸度对生成黄色硅钼酸的形态影响最大。当溶液pH<1.0时,形成β-硅钼酸,并且反应迅速,但不稳定,极易转变为α-硅钼酸;当pH=3.8~4.8时,主要生成α-硅钼酸,且较稳定;当pH=1.8~3.8时,α-硅钼酸和β-硅钼酸同时存在。在实际工作中,若以硅钼黄(宜采用α-硅钼酸)光度法测定硅,可控制pH=3.0~3.8;若以硅钼蓝光度法测定硅,宜控制生成硅钼黄(β-硅钼酸)的pH=1.3~1.5,将β-硅钼酸还原为硅钼蓝的酸度控制在0.8~1.35mol/L,酸度过低,磷和砷的干扰较大,同时有部分钼酸盐被还原。近年有人实验证明,采用赤霉素 - 葡萄糖 - 氯化亚锡为还原剂,在硝酸(0.2mol/L)介质中还原生成硅钼杂多蓝,λmax=801nm,εmax=1.28×104L/(mol·cm),且还原速度快,稳定性较好。
同时,硅钼黄显色温度以室温(20℃左右)为宜。低于15℃时,放置20~30min;15~25℃时,放置5~10min;高于25℃时,放置3~5min。温度对硅钼蓝的显色影响较小,一般加入还原剂后,放置5min测定吸光度。有时在溶液中加入甲醇、乙醇、丙酮等有机溶剂,可以提高β-硅钼酸的稳定性,丙酮还能增大其吸光度,从而改善硅钼蓝光度法测定硅的显色效果。
3.干扰元素及其消除
3+会降低Fe2+的还原能力,使硅钼黄还原不完全,可加入草酸来消除。钛、锆、钍、锡的存在,会由于生成硅钼黄时溶液酸度很低,水解产生沉淀,带下部分硅酸,使结果偏低,可加入EDTA溶液来消除影响。大量Cl-使硅钼蓝颜色加深,大量
技能训练
重量法检测二氧化硅
(一)检测流程
岩石矿物分析
(二)试剂配制
(1)动物胶溶液(1%):取动物胶1g溶于100mL热水(用时配制)。
(2)盐酸洗液:密度1.19g/cm3,(3+97)。
(3)氢氧化钠:固体粒状,分析纯。
(三)操作要点
1.熔样
称取在105℃烘干过的试样0.5000g于镍坩埚中,加入3~4g NaOH,然后放入已升至400℃的马弗炉中,继续升至700℃,熔融10min(熔融物呈透明体状)取出稍冷,移入250mL烧杯中,加入热水20mL(立即盖上表面皿)并洗净镍坩埚(可用少许盐酸清洗坩埚)。
2.测定
在提取溶液中加20~30mL 盐酸,将烧杯移至水浴上(或低温电热板上)蒸干,蒸干后取下加20mL盐酸,以少许水吹洗烧杯壁,在60~70℃保温10min,加入10mL新配制的动物胶溶液(1%),充分搅拌后再保温10min取下,加25mL热水,以中速定量滤纸过滤,滤液收集在250mL容量瓶中,以热盐酸(3+97 )的洗液洗烧杯4~5次,并将沉淀全部移入滤纸内,然后用一小片滤纸擦净烧杯,也移入漏斗内,沉淀继续用盐酸(3+97 )洗液洗至无铁的黄色,以后即用热水洗涤至无氯离子(用热水洗8~10 次),滤液以水稀释至250mL 刻度,摇匀,供测 Fe、Al、Ti、Ca、Mg、Mn、P等用。
将滤纸连同沉淀一起移入已恒重的瓷坩埚中,低温灰化(马弗炉中的温度不得高于400℃)后继续升温至900~950℃灼烧1h,取出,稍冷,放入干燥器中,冷却半小时,称重再灼烧至恒重。
3.数据处理
SiO2质量分数按下式计算:
岩石矿物分析
式中:w(SiO2)为SiO2的质量分数,%;m1为坩埚质量+沉淀质量,g;m2为坩埚质量,g;m为称取试样质量,g。
实验指南与安全提示
试样的处理。由于水泥试样中或多或少含有不溶物,如用盐酸直接溶解样品,不溶物将混入二氧化硅沉淀中,造成结果偏高。所以,在国家标准中规定,水泥试样一律用碳酸钠烧结后再用盐酸溶解。若需准确测定,应以氢氟酸处理。
用盐酸浸出烧结块后,应控制溶液体积,若溶液太多,则蒸干耗时太长。通常加5mL浓盐酸溶解烧结块,再以约5mL盐酸(1+1)和少量的水洗净坩埚。
脱水的温度与时间。脱水的温度不要超过110℃。若温度过高,某些氯化物(MgCl2、AlCl3等)将变成碱式盐,甚至与硅酸结合成难溶的硅酸盐,用盐酸洗涤时不易除去,使硅酸沉淀夹带较多的杂质,结果偏高。反之,若脱水温度或时间不够,则可溶性硅酸不能完全转变成不溶性硅酸,在过滤时会透过滤纸,使二氧化硅结果偏低,且过滤速度很慢。为保证硅酸充分脱水,又不致温度过高,应采用水浴加热。不宜使用砂浴或红外线灯加热,因其温度难以控制。
沉淀的洗涤。为防止钛、铝、铁水解产生氢氧化物沉淀及硅酸形成胶体漏失,首先应以温热的稀盐酸(3+97)将沉淀中夹杂的可溶性盐类溶解,用中速滤纸过滤,以热稀盐酸溶液(3+97)洗涤沉淀3~4次,然后再以热水充分洗涤沉淀,直至无氯离子为止。但洗涤次数也不能过多,否则漏失的可溶性硅酸会明显增加。一般洗液体积不超过120mL。洗涤的速度要快(应使用长颈漏斗,且在颈中形成水柱),防止因温度降低而使硅酸形成胶冻,以致过滤更加困难。
沉淀的灼烧。实验证明,只要在950~1000℃充分灼烧(约1.5 h ),并且在干燥器中冷却至与室温一致,灼烧温度对结果的影响并不显着。灼烧后生成的无定形二氧化硅极易吸水,故每次灼烧后冷却的条件应保持一致,且称量要迅速。灼烧前滤纸一定要缓慢灰化完全。坩埚盖要半开,不要产生火焰,以防造成二氧化硅沉淀的损失;同时,也不能有残余的碳存在,以免高温灼烧时发生下述反应而使结果产生负误差:SiO2+3C→SiC+2CO↑。
氢氟酸的处理。即使严格掌握烧结、脱水、洗涤等步骤的分析条件,在二氧化硅沉淀中吸附的铁、铝等杂质的量也能达到0.1%~0.2%,如果在脱水阶段蒸发至干,吸附量还会增加。消除吸附现象的最好办法就是将灼烧的不纯二氧化硅沉淀用氢氟酸+硫酸处理。处理后,SiO2以SiF4形式逸出,减轻的质量即为纯SiO2的质量。