① 初中数学解题方法归纳总结
想要在初中学好数学,学会解题是关键。那么初中数学解题方法有哪些呢?为了帮助同学们更好的学习数学,我给大家整理了初中数学解题方法。
初中数学解题方法归纳
1. 观察与实验
( 1 )观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。
( 2 )实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。
2. 比较与分类
( 1 )比较法
是确定事物共同点和不同点的思维方法。在数学上两类数学对象必须有一定的关系才好比较。我们常比较两类数学对象的相同点、相异点或者是同异综合比较。
( 2 )分类的方法
分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的思维方法。如上图中一次函数的 k 在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。
3 .特殊与一般
( 1 )特殊化的方法
特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。
( 2 )一般化的方法
4. 联想与猜想
( 1 )类比联想
类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。
通过类比联想可以发现新的知识;通过类比联想可以寻求到数学解题的方法和途径:
( 2 )归纳猜想
牛顿说过:没有大胆的猜想就没有伟大的发明。猜想可以发现真理,发现论断;猜想可以预见证明的方法和思路。初中数学主要是对命题的条件观察得出对结论的猜想,或对条件和结论的观察提出解决问题的方案与方法的猜想。
归纳是对同类事物中的所蕴含的同类性或相似性而得出的一般性结论的思维过程。归纳有完全归纳和不完全归纳。完全归纳得出的猜想是正确的,不完全归纳得出的猜想有可能正确也有可能错误,因此作为结论是需要证明的。关键是猜之有理、猜之有据。
5. 换元与配方
( 1 )换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。 你可以先观察算式,你可以发现这种要换元法的算式中总是有相同的式子,然后把他们用一个字母代替,算出答案,然后答案中如果有这个字母,就把式子带进去,计算就出来啦。
( 2 )配方法
配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解。配方法使用的最基本的配方依据是二项完全平方公式 (a + b) 2 = a 2 + 2ab + b 2 ,将这个公式灵活运用,可得到各种基本配方形式
6. 构造法与待定系数法
( 1 )构造法所谓构造性的方法就是数学中的概念和方法按固定的方式经有限个步骤能够定义的概念和能够实现的方法。常见的有构造函数,构造图形,构造恒等式。平面几何里面的添辅助线法就是常见的构造法。构造法解题有:直接构造、变更条件构造和变更结论构造等途径。
( 2 )待定系数法:将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。
7. 公式法与反证法
( 1 )公式法
利用公式解决问题的方法。初中最常用的有一元二次方程求根时使用求根公式的方法;完全平方公式的方法等。如下面一组题就是完全平方公式的应用:
( 2 )反证法是“间接证明法”一类,即:肯定题设而否定结论,从而得出矛盾,就可以肯定命题的结论的正确性,从而使命题获得了证明。
初中学数学解题技巧
1. 数学探索题
所谓探索题就是从问题给定的题设条件中探究其相应的结论并加以证明,或从给定的题目要求中探究相应的必需具备的条件、解决问题的途径。
条件探索题:解答策略之一是将题设和结论视为已知,同时推理,在演绎的过程中寻找出相应所需的条件。
结论探索题:通常指结论不确定不唯一,或结论需通过类比、引申、推广,或给出特例需通过归纳得出一般结论。可以先猜测再去证明;也可以寻求具体情况下的结论再证明;或直接演绎推证。
规律探索题:实际就是探索多种解决问题的途径,制定多种解题的策略。
活动型探索题:让学生参与一定的社会实践,在课内和课外的活动中,通过探究完成问题解决。
推广型探索题:将一个简单的问题,加以推广,可产生新的结论,在初中教学中常见。如平行四边形的判定,就可以产生许多新的推广,一方面是自身的推广,一方面可以延伸到菱形和正方形中。
探索是数学的生命线,解探索题是一种富有创造性的思维活动,一种数学形式的探索绝不是单一的思维方式的结果,而是多种思维方式的联系和渗透,这样可使学生在学习数学的过程中敢于质疑、提问、反思、推广。通过探索去经历数学发现、数学探究、数学创造的过程,体会创造带来的快乐。
2. 数学情境题
情境题是以一段生活实际、故事、历史、游戏与数学问题、数学思想和方法于情境中。这类问题往往生动有趣,激发学生强烈的研究动机,但同时数学情景题又有信息量大,开放性强的特点,因此需要学生能从场景中提炼出数学问题,同时经历了借助数学知识研究实际问题的数学化过程。
如老师在讲有理数的混合运算时,
3. 数学开放题
数学开放题是相对于传统的封闭题而言的一种新题型,其特征是题目的条件不充分,或没有确定的结论,也正因为这样,所以开放题的解题策略往往也是多种多样的。
( 1 )数学开放题一般具有下列特征
①不确定性:所提的问题常常是不确定的和一般性的,其背景情况也是用一般词语来描述的,因此需收集其他必要的信息,才能着手解的题目。
②探究性:没有现成的解题模式,有些答案可能易于直觉地被发现,但是求解过程中往往需要从多个角度进行思考和探索。
③非完备性:有些问题的答案是不确定的,存在着多样的解答,但重要的还不是答案本身的多样性,而在于寻求解答的过程中学生的认知结构的重建。
④发散性:在求解过程中往往可以引出新的问题,或将问题加以推广,找出更一般、更概括性的结论。常常通过实际问题提出,学生必须用数学语言将其数学化,也就是建立数学模型。
⑤发展性:能激起多数学生的好奇性,全体学生都可以参与解答过程。
⑥创新性:教师难以用注入式进行教学,学生能自然地主动参与,教师在解题过程中的地位是示范者、启发者、鼓励者、合作者。
( 2 )对数学开放题的分类
从构成数学题系统的四要素(条件、依据、方法、结论)出发,定性地可分成四类;如果寻求的答案是数学题的条件,则称为条件开放题;如果寻求的答案是依据或方法,则称为策略开放题;如果寻求的答案是结论,则称为结论开放题;如果数学题的条件、解题策略或结论都要求解题者在给定的情境中自行设定与寻找,则称为综合开放题。
从学生的学习生活和熟悉的事物中收集材料,设计成各种形式的数学开放性问题,意在开放学生的思路,开放学生潜在的学习能力,开放性数学问题给不同层次的学生学好数学创设了机会,多种解题策略的应用,有力地发展了学生的创新思维,培养了学生的创新技能,提高了学生的创新能力。
( 3 )以数学开放题为载体的教学特征
①师生关系开放:教师与学生成为问题解决的共同合作者和研究者
②教学内容开放:开放题往往条件不完全、或结论不完全,需要收集信息加以分析和研究,给数学留下了创新的空间。
③教学过程的开放性:由于研究的内容的开放性可以激起学生的好奇心、同时由于问题的开放性,就没有现成的解题模式,因此就会留下想象的空间,使所有的学生都可参与想象和解答。
( 4 )开放题的教育价值
有利于培养学生良好的思维品质;
有助于学生主体意识的形成;
有利于全体学生的参与,实现教学的民主性和合作性;
有利于学生体验成功、树立信心,增强学习的兴趣;
有助于提高学生解决问题的能力。
4. 数学建模题(初中数学建模题也可以看作是数学应用题)
数学新课程标准指出 : 要学生会应用所学知识解决实际问题 , 能适应社会日常生活和生产劳动的基本需要。初中数学的学习目的之一 , 就是培养学生解决实际问题的能力 , 要求学生会分析和解决生产、生活中的数学问题 , 形成善于应用数学的意识和能力。从各省市的中考数学命题来看 , 也更关注学生灵活运用数学知识解决实际问题能力的考查 , 可以说培养学生解答应用题的能力是使学生能够运用所学数学知识解决实际问题的基本途径之一
初中数学应用问题类型
( 1 )探求结论型数学应用问题
根据命题中所给出的条件,要求找出一个或一个以上的正确结论
( 2 )跨学科的数学应用问题
①数学与物理
②数学与生化
以上两题是与生物和化学有关的问题,体现了数学在生化学科的应用。
总之,数学应用问题较好地考察了学生阅读理解能力与日常生活体验,同时又考察了学生获取信息后的抽象概括与建模能力,判断决策能力。中考数学应用问题热点题型主要包括生活、统计、测量、设计、决策、销售、开放探索、跨学科等等,中考在强化学生应用意识和应用能力方面发挥及其良好的导向功能。这就要求我们在平时教学中善于挖掘课本例题、习题的潜在的应用功能。巧妙地将课本中具有典型意义的数学问题回归生活、生产的原型,创设一个实际背景,改造成有深刻数学内涵的实际问题,以增强应用意识,发展数学建模能力。
四、掌握初中数学解题策略提来提高数学学习效率
(1)认真分析问题,找解题准切入点
由于数学问题纷繁复杂,学生容易受定势思维的影响,这样就会响解题思路造成很大的影响。为此,这时教师要给予学生正确指导,帮助学生进行思路的调整,对题目进行重新认真的分析,将切入点找准后,问题就能游刃而解了。例如:已知:AB=DC,AC=DB。求证:∠A=∠D。
此题是一道比较经典的证明全等的题型,主要是对学生对已知条件整合能力和观察识图能力的锻炼。然而,从图形的直观角度来证明∠AOC=∠DOB,这样的思路只会落入题目所设下的陷阱。为此,在对此题的审题时,教师要引导学生注意将题目已知的两个条件充分结合起来考虑,提醒学生可以适当添加一定的辅助线。
(2)发挥想象力,借助面积出奇制胜
面积问题是数学中常出现的问题,在面积定义及相关规律中,蕴含着深刻的数学思想,如果学生能充分了解其中的韵味,能够熟练的掌握其中的数学论证思维,就有可能在其他数学问题中借助面积,出奇制胜顺利实现解题。由于几何图形的面积与线段、角、弧等有密切的联系,所以用面积法不但可证各种几何图形面积的等量关系,还可证某些线段相等、线段不等、角的相等以及比例式等多种类型的几何题。例1、 若E、F分别是矩形ABCD边AB、CD的中点,且矩形EFDA与矩形ABCD相似,则矩形ABCD的宽与长之比为( ) (A) 1∶2(B) 2∶1(C) 1∶2(D) 2∶1
由上题已知信息可知,矩形ABCD的宽AD与AB的比,就是矩形EFDA与矩形ABCD的相似比。解:设矩形EFDA与矩形ABCD的相似比为k。因为E、F分别是矩形ABCD的中点,所以S矩形ABCD=2S矩形EFDA。所以S矩形EFDA∶S矩形ABCD=k2。所以k=1∶2。即矩形ABCD的宽与长之比为1∶2;故选(C)。
此题利用了“相似多边形面积的比等于相似比平方”这一性质,巧妙解决相似矩形中的长与宽比的问题。事实上,借助面积,形成解题思路的过程,就是学生思维转换的过程。
(3)巧取特殊值,以简代繁
初中数学虽然是基础数学,但是这并不意味着就没有难度,特别是在素质教育下,从培养学生综合素质能力的角度出发,初中数学越来越重视数学思维的培养,因此在很多数学问题的设置上,都进行了相当难度的调整,使得数学问题显得较为繁杂,单一的思维或者解题方式,在有些题目面前会显得较为艰难。如有些数学问题是在一定的范围内研究它的性质,如果从所有的值去逐一考虑,那么问题将不胜其繁甚至陷入困境。在这种情况下,避开常规解法,跳出既定数学思维,就成了解题的关键。
例2、分解因式:x2+2xy-8y2+2x+14y-3。
思路分析:本题是二元多项式,从常规思路进行解题也未尝不可,但是从锻炼学生思维能力的角度出发,教师可以在立足常规解法的基础上,引导学生进行其他方面解题思路的探索。如从巧取特值的角度出发,把其中的一个未知数设为0,则可以暂时隐去这个未知数,而就另一个未知数的式子来分解因式,达到化二元为一元的目的。
解:令y=0,得x2+2x-3=(x+3)(x-1);令x=0,得:-8y2+14y-3=(-2y+3)(4y-1)。当把两次分解的一次项的系数1、1;-2、4。可知,1×4+(-2)×1正好等于原式中xy项的系数。因此,综合起来有:x2+2xy-8y2+2x+14y-3=(x-2y+3)(x+4y-1)。
其实,用特殊值法,也叫取零法。这种方法在因式分解中可以发挥很大的作用,帮助学生找到其他的解题思路。一般来说其步骤是:A、把多项式中的一个字母设为0所得的结果分解因式,B、把多项中的另一个字母设为0所得的结果分解因式,C、把上两步分解的结果综合起来,得出原多项式的分解结果。但要注意:两次分解的一次因式的常数项必须相等,如本题中,x+3的3和-2y+3的3相等,x-1的-1和4y-1的-1相等。否则,在综合这两步的结果时就无所适从了。
(4)巧妙转换,过渡求解法
在解数学题时,即要对已知的条件进行全面分析,还要善于将题目中的隐性条件挖掘出来,将数学中各知识之间的联系巧妙的运用起来,用全面、全新的视角来解决问题。
例如:已知:AB为半圆的直径,其长度为30 cm,点C、D是该半圆的三等分点,求弦AC、AD与弧CD所围成的图形的面积。
本题需要解出的是一个不规则图形的面积,可能大多数同学的思维就是将CD连结起来,将其转变为一个角形和弓形,两者面积之和就为该题需要解决的问题。这时,教师就要引导学生学会对半径这一已知条件加以利用,帮助其将另外两条OC、OD辅助线连结起来,将题目要求解的不规则图形的面积,转化成求扇形OCD的面积,这样该题的解题思维就能一目了然了。
综上所述,初中数学解题存在很强的灵活性。有的数学题不只一种解法,而有多种解法,有的数学题用常规方法解决不了,要用特殊方法。因此,解数学题要注意它的灵活性和技巧性。解题技巧在升学考试中至关重要,不能忽视。初中数学教师要注意对解题技巧的钻研,并鼓励学生发散思维,寻找解题技巧,提高解题效率,增强学习数学的能力。
猜你喜欢:
1. 初中数学规律题公式
2. 初中数学学习方法与技巧
3. 关于初中数学的学习方法有哪些
4. 初一数学解题技巧
5. 初中数学学习方法的六大要点
② 求概率的常见方法有哪些,初中数学的
一、列表法求概率 1、列表法 用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。 2、列表法的应用场合 当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
二、树状图法求概率 1、树状图法 就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。 2、运用树状图法求概率的条件 当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果 ,通常采用树状图法求概率。
三、利用频率估计概率 1、利用频率估计概率 在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。 2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。 3、随机数 在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。把这些随机产生的数据称为随机数。
③ 初中数学常用的解题方法集锦
数学的大题部分是有一定的学习方法的,下面就为大家来整理一些关于初中数学常用的解题方法集锦。
因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
函数与方程的思想
函数 与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。
填空题的基本解法
1.直接法:根据题干所给条件,直接经过计算、推理或证明,得出正确答案。
2.图解法:根据题干提供信息,绘出图形,从而得出正确的答案。
填空题虽然多是中低档题,但不少考生在答题时往往出现失误,这要引起我们的足够重视的。
判别式法与韦达定理
一元二次方程 ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
以上就是初二网我为大家整理的初中数学常用的解题方法集锦。
④ 初中数学常用思想方法有哪些
初中数学思想方法“思”是指学生思维。没有思维,就发挥不了学生的主体作用。在思维方法指导时,应使学生注意:(1)多思、勤思,随听随思。(2)深思,即追根溯源地思考,善于大胆提出问题(3)善思,由听和观察去联想、猜想、归纳(4)树立批评意识,学会反思。可以说“听”是“思”的基础,思是 听 的深化,是学习方法的本质的内容,会思维才会学习。“记”是指学生课堂笔记。初一学生一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”代替“听”和“思”。有的笔记虽然记得很全,但效果不是很好,因此在指导学生作笔记时应要求学生:(1)记笔记服从听讲,要掌握记录时机;(2)记要点、记疑问、记解题思路和方法。使学生明确“记”是为“听”和“思”服务的。掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。课堂学习指导是学法中最重要的。同时还要结合不同的授课内容进行相应的学法指导。2数学思想方法一数集的每一次扩充都是解决实际问题和解决数学自身矛盾的需要。有理数概念的建立,有理数性质的介绍,有理数运算法则的规定,这一切都为同学们进一步学习代数做了必要的准备。同学们在学习有理数一章时,希望大家要有意识地培养自己逻辑推理能力,使自己会观察、比较、分析、综合、抽象和概括,会用归纳和类比的方法进行推理。另外要特别重视提高运算能力,有过硬的运算基本功。为此,不仅能根据法则、运算规律、公式等正确地进行运算,而且理解运算的算理,能够根据题目条件,使运算“合理、简捷、准确”。为了解决用算术方法解应用题的局限性,人们想出用字母表示未知数,把问题中的相等关系平铺直叙地用代数方程式表达出来。由于表示未知数的字母也是数,因此,它们也可以按照数的运算的通性、通法进行运算,从而求得未知数所应有的值。同学们要充分注意这一“历史性”的突破。为此,不仅要熟练掌握含数字的算术的变形和计算,更要切实掌握好含字母的代数式(目前主要是整式)的变形和计算,解方程的基本方法和步骤,这一切都是为列方程解应用题而展开的。通过列方程解应用题的学习,体会如何把实际问题抽象成数学问题,用方程思想处理数学问题,形成用数学的意识,培养我们自己分析问题和解决问题的能力。3数学思想方法二升入初中如果再沿用小学的学习方法和方式,显然无法适应。这时需要我们摆脱对老师的依赖,做到自主主动的学习。一是积极适应新的授课方式。初中往往集中讲解重点,难点,要点,而且每课内容多,信息量大,所以要上课用心听,用心记。积极适应新老师的授课方式,包括语音,板书,思路,要求等。同时还要勤学好问,主动接触老师。二是制定科学的学习计划,包括长期计划(比如期中期末要达到什么水平,各科的目标是什么)和短期计划,即周计划、日计划(比如,怎么按排自己的一天活动)。此外可以找个竞争对手来激励自己。三要摸索适合自己的学习方法。学习不能停留在被动听课和机械地做作业上,要用心学,主动学,优选学,特别要讲究方法,把握好预习,听课、复习、做作业四个方面。4数学思想方法三对于刚上初一的孩子,改变习惯是最困难也是最有必要的一步。很多家长片面地让孩子多关注知识点、请很多家教,可孩子的成绩却不见提高,这时就要思考一下,孩子的学习习惯是否成为了他成绩提升的拦路虎。好的习惯,大的方面应该包括课堂注意听讲、认真记笔记、每天和每周固定时间复习和预习、为学习做好规划等等,这些任务在老师和家长的督促下也能顺利做好。
⑤ 初中数学解题思路和方法
初中阶段学生数学学习成绩两极分化非常严重,学习差的学生占的比例较大,如果学生在解题过程中没有机会尝尽为求解而奋斗的喜怒哀乐,那么他的数学解题训练就在最重要的地方失败了。那么有哪些解题思路可以帮助初中数学提高得分呢?
一、如何获得数学解题思路
解题思路的获得,一般要经历三个步骤:1.从理解题意中提取有用的信息,如数式特点,图形结构特征等;2.从记忆储存中提取相关的信息,如有关公式,定理,基本模式等;3.将上述两组信息进行有效重组,使之成为一个合乎逻辑的和谐结构。
数学的表达,有3种方式:1.文字语言,即用汉字表达的内容;2.图形语言,如几何的图形,函数的图象;3.符号语言,即用数学符号表达的内容,比如AB∥CD。
在初中学段中,不仅要学好数学知识,同时也要注意数学思想方法的学习,掌握好思想和方法,对数学的学习将会起到事半功倍的良好效果。
其中整体与分类、类比与联想、转化与化归和数形结合等不仅仅是学好数学的重要思想,同时对您今后的生活也必将起重要的作用。
先来看转化思想:
我们知道任何事物都在不断的运动,也就是转化和变化。
在生活中,为了解决一个具体问题,不论它有多复杂,我们都会把它简单化,熟悉化以后再去解决。
体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。
如方程的学习中,一元一次方程是学习方程的基础,那么在学习二元一次方程组时,可以通过加减消元和代入消元这样的手段把二元一次方程组转化为一元一次方程来解决,
转化(加减和代入)是手段,消元是目的;在学习一元二次方程时,可以通过因式分解把一元二次方程转化为两个一元一次方程,在这里,转化(分解因式)是手段,降次是目的。
把未知转化为已知,把复杂转化为简单。
同样,三元一次方程组可以通过加减和代入转化为二元一次方程组,再转化为一元一次方程。
在几何学习中,三角形是基础,可能通过连对角线等作辅助线的方法把多边形转化为多个三角形进行问题的解决。
所以,在数学学习和生活中都要注意转化思想的运用,解决问题,转化是关键。
二、初中数学学生必备的解题理念
1.如果把解题比做打仗,那么解题者的“兵器”就是数学基础知识,“兵力”就是数学基本方法,而调动数学基础知识、运用数学思想方法的数学解题思想则正是“兵法”。
2.数学家存在的主要理由就是解决问题。
因此,数学的真正的组成部分是问题和解答。
“问题是数学的心脏”。
3.问题反映了现有水平与客观需要的矛盾,对学生来说,就是已知和未知的矛盾。
问题就是矛盾。
对于学生而言,问题有三个特征:
(1)接受性:学生愿意解决并且具有解决它的知识基础和能力基础。
(2)障碍性:学生不能直接看出它的解法和答案,而必须经过思考才能解决。
(3)探究性:学生不能按照现成的的套路去解,需要进行探索,寻找新的处理方法。
4.练习型的问题具有教学性,它的结论为数学家或教师所已知,其之成为问题仅相对于教学或学生而言,包括一个待计算的答案、一个待证明的结论、一个待作出的图形、一个待判断的命题、一个待解决的实际问题。
5.“问题解决”有不同的解释,比较典型的观点可归纳为4种:
(1)问题解决是心理活动。
面临新情境、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理办法的一种活动。
(2)问题解决是一个探究过程。
把“问题解决”定义为“将先前已获得的知识用于新的、不熟悉的情境的过程”。
这就是说,问题解决是一个发现的过程、探索的过程、创新的过程。
(3)问题解决是一个学习目的。
“学习数学的主要目的在于问题解决”。
因而,学习怎样解决问题就成为学习数学的根本原因。
此时,问题解决就独立于特殊的问题,独立于一般过程或方法,也独立于数学的具体内容。
(4)问题解决是一种生存能力。
重视问题解决能力的培养、发展问题解决的能力,其目的之一是,在这个充满疑问、有时连问题和答案都是不确定的世界里,学习生存的本领。
6.解题研究存在一些误区,首先一个表现是,用现成的例子说明现成的观点,或用现成的观点解释现成的例子。
其次一个表现是,长期徘徊在一招一式的归类上,缺少观点上的提高或实质性的突破。
第三个表现是,多研究“怎样解”,较少问“为什么这样解”。
在这些误区里,“解题而不立法、作答而不立论”。
7.人的思维依赖于必要的知识和经验,数学知识正是数学解题思维活动的出发点与凭借。
丰富的知识并加以优化的结构能为题意的本质理解与思路的迅速寻找创造成功的条件。
解题研究的一代宗师波利亚说过:“货源充足和组织良好的知识仓库是一个解题者的重要资本”。
8.熟练掌握数学基础知识的体系。
对于中学数学解题来说,应如数学家珍说出教材的概念系统、定理系统、符号系统。
还应掌握中学数学竞赛涉及的基础理论。
深刻理解数学概念、准确掌握数学定理、公式和法则。
熟悉基本规则和常用的方法,不断积累数学技巧。
9.数学的本质活动是思维。
思维的对象是概念,思维的方式是逻辑。
当这种思维与新事物接触时,将出现“相容”和“不容”的两种可能。
出现“相容”时,产生新结果,且被原概念吸收,并发展成新概念;当出现“不容”时,则产生了所谓的问题。
这时,思维出现迂回,甚至暂时退回原地,将原概念扩大或将原逻辑变式,直到新思维与事物相容为止。
至此,也产生新的结果,也被原思维吸收。
这就是一个思维活动的全过程。
10.解题能力,表现于发现问题、分析问题、解决问题的敏锐、洞察力与整体把握。
其主要成分是3种基本的数学能力(运算能力、逻辑思维能力、空间想象能力),核心是能否掌握正确的思维方法,包括逻辑思维与非逻辑思维。
其基本要求包括:
(1)掌握解题的科学程序;
(2)掌握数学中各种常用的思维方法,如观察、试验、归纳、演绎、类比、分析、综合、抽象、概括等;
(3)掌握解题的基本策略,能“因题制宜”地选择对口的解题思路,使用有效的解题方法、调动精明的解题技巧;
(4)具有敏锐的直觉。
应该明白,我们的数学解题活动是在纵横交错的数学关系中进行的,在这个过程中,我们从一种可能性过渡到另一种可能性时,并非对每一个数学细节都洞察无遗,并非总能借助于“三段论”的桥梁,而是在短时间内朦胧地插上幻想的翅膀,直接飞翔到最近的可能性上,从而达到对某种数学对象的本质领悟:
11.解题具有实践性与探索性的特征,“就像游泳,滑雪或弹钢琴一样,只能通过模仿和实践来学到它……你想学会游泳,你就必须下水,你想成为解题的能手,你就必须去解题”,“寻找题解,不能教会,而只能靠自己学会”。
12.所谓解题经验,就是某些数学知识、某些解题方法与某些条件的有序组合。
成功是一种有效的有序组合,失败是一种无效的无序组合(它从反面向我们提供有效的有序组合)。
成功经验所获得的有序组合,就好像建筑上的预制构件(或称为思维组块),遇到合适的场合,可以原封不动地把它搬上去。
13.认为解题纯粹是一种智能活动显然是错误的;决心与情绪所起的作用非常重要。
教育学生解题是一种意志教育。
当学生求解那些对他来说并不太容易的题目时,他学会了败而不馁,学会了赞赏微小的进展,学会了等待主要念头的萌动,学会了当主要念头出现后如何全力以赴,直扑问题的核心或主干;当一旦突破关卡,如何去占领问题的至高点,并冷静地府视全局,从而得到问题的完善解决。
如果学生在解题过程中没有机会尝尽为求解而奋斗的喜怒哀乐,那么他的数学解题训练就在最重要的地方失败了。
14.教师的例题教学要暴露自己思维的真实过程,老师备课时,遇上的曲折和错误不能随草纸扔到废纸堆。
如果教师掩瞒了解题中的曲折,自己在讲台装神弄巧,得心应手,左右逢源,把自己打扮成超人,将给学生的学习产生误导。
这样的教师越高明,学生越自卑。
三、浅议初中生数学学习差的原因
一、造成分化的原因
1、被动学习。
许多同学进初中入后,还像小学那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。
表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。
2、学不得法。
老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。
而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。
也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
3、不重视基础。
一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。
到正规作业或考试中不是演算出错就是中途“卡壳”。
4、思维方式和学习方法不适应数学学习要求。
初二阶段是数学学习分化最明显的阶段。
一个重要原因是初中阶段数学课程对学生抽象逻辑思维能力要求有了明显提高。
而初二学生正处于由直观形象思维为主向以抽象逻辑思维为主过渡的又一个关键期,没有形成比较成熟的抽象逻辑思维方式,而且学生个体差异也比较大,有的抽象逻辑思维能力发展快一些,有的则慢一些,因此表现出数学学习接受能力的差异。
除了年龄特征因素以外,更重要的是教师没有很好地根据学生的实际和教学要求去组织教学活动,指导学生掌握有效的学习方法,促进学生抽象逻辑思维的发展,提高学习能力和学习适应性。
二、减少学习分化的教学对策
1、培养学生学习数学的兴趣兴趣是推动学生学习的动力,学生如果能在学习数学中产生兴趣,就会形成较强的求知欲,就能积极主动地学习。
培养学生数学学习兴趣的途径很多,如让学生积极参与教学活动,并让其体验到成功的.愉悦;创设一个适度的学习竞赛环境;发挥趣味数学的作用;提高教师自身的教学艺术等等。
2、教会学生学习
(1)加强学法指导,培养良好学习习惯反复使用的方法将变成人们的习惯行为。
什么是良好的学习习惯?我向学生做了如下具体解释,它包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
(2)制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。
⑥ 初中数学常用教学方法有哪些
在新课程标准下,对于数学的 教学 方法 ,教学模式是多样的、灵活的、应变的。在一堂课中所运用的方法也不是单一的。下面是我整理的初中数学常用教学方法有哪些,欢迎大家阅读分享借鉴。
更多教学方法相关内容推荐↓↓↓
常见的教学方法有哪些
好的教学方法有哪几种
教学手段和教学方法的区别
教学方法的种类和手段有哪些
初中数学常用教学方法
一、自主探究式学习法
自主探索是让学生自主学习、自主探索、自主研究的一种课堂教学模式,充分体现了学生的主体地位。在新课程标准实施以来在各学科都应用得较为广泛,且在教学中能更好地激发学生的学习积极性、主动性,让学生自己去探讨新知识的来由并研究其特征,探索其在实际生活中的应用价值。锻练了学生的思维能力、理解能力,增强了学生学好数学的自信心。学生会把自主学习结果看成是一种成功,从而产生一种成就感和喜悦感,激发了学生对整个学习过程的坚强自信心和自主探索、自觉钻研的兴趣,培养创新精神。使学生明白数学中看似深奥的知识,只要积极探索,认真思考就能很快解决。数学来源于生活,又更好地应用于生活。
二、小组讨论学习法
这种模式以学生为主,让学生分组共同协作商量和讨论教师提出的问题,与教师形成一种互动的方式,小组讨论有利于培养学生集体主义思想,课堂上小组讨论有利于在学习数学的过程中分类思想、综合思维能力、理解能力的培养。同时也能培养学生与学生、学生与教师相互交流的能力,能增进同学之间、师生之间的感情,通过小组讨论可从多角度获得解题思路和思维途径,往往是讨论和交流融为一体,在讨论中理解,在交流中加深印象。这样可以增强课堂教学效果,比教师直接讲授要好得多,对学生的学习起到推动作用,教师也能从中得出意想不到的收获。
三、发现式 学习方法
发现式学习方法是继自主探索式学习法、小组讨论学习法之后的又一种以学生为主体的教学模式和方法,通过阅读教材来发现新知识、发现新问题、发现新的解题思路和解题方法、发现数学规律、发现学生容易出问题的地方。这样学生对新的知识有一种优先掌握的心理,且学生对自己所发现的知识、问题、思路和方法有较深刻的印象,对学生掌握知识很重要,找到了发现知识的 渠道 。有时候,还可能会使学生突发奇想,象某些数学家一样提出一些稀奇古怪的数学问题。还会促进学生学习数学的学习积极性,有利于提高课堂教学的质量。
四、演示与表演学习法
演示教学法是数学教学乃至所有学科的教学最基本的、最普遍使用的一种模式。主要是教师演示课堂教学内容和讲述新的知识内容。有的教学内容无需学生去进行探究和发现,如定义、概念和公理等。这些内容我们都是直接讲述或借助教学用具进行演示或说明理论知识的形成。
五、寓教于乐的游戏学习法
新版数学教材安排的内容生动有趣,课题就像一个香饽饽,很诱人的。如:有趣的七巧板,日历中的方程,一百万有多大等等。教学内容也变得具有很强的趣味性、游戏性,如: 台球 桌面上的角,变化的鱼。很多教学内容穿插了游戏内容,如:游戏公平吗,一定能摸到红球吗等等。教材内容更加符合中学生好动好玩的心理特点。利用游戏既可锻练学生的胆量,调动学生的学习积极性,培养集体主义思想。游戏可以让学生放松学习压力,以轻松的心情进入学习状态,从游戏中获取知识,又把知识运用于游戏之中。
六、问题式教学法
问题式教学方法是将需要学习的新知识编排成一个个联系密切的问题,让学生对每一个问题进行思索、讨论、最后作答。学生在讨论过程中同样有相关的问题提出,问题提得越多,对知识掌握越牢固,教师在其中起引导点拨的作用。
七、反馈训练教学法
为了检验学生对于课堂知识的掌握情况,有必要对照所学知识的掌握程度和应用情况进行及时的反馈。反馈训练是课堂教学的重要组成部分,反馈题的设计至关重要,反馈题的设计要适量,难易适度,可以根据不同学生的学习水平层次设计适合每个学生的反馈训练题,学生还可以根据自己的学习水平层次自己设计反馈题,自行解答,在反馈过程中,发现问题并及时解决。
反馈训练能弥补学生学习中的不足和失误。当学生新知识有困难时就会体现在反馈训练中,反馈的形式有通过观察口头表达、动手操作、通过演示过程、推理论证等。反馈可以矫正学生的 学习态度 (粗心、片面思维)同时能增强学生对知识的理解,学生易于接受,效果较好。教学有法,但无定法。上好一堂课,并不是单独采用某一方法,而是根据知识特点和学生心理特点,采用多种方法进行教学。在新的课程标准下,采用新的教学模式和教学方法,都应以学生为主体,要学生多动手、多动脑。将来源于生活的数学知识更好地运用于生活实际,解决生活实际中的相关问题。教学方法是多种多样的,以上几种方法只是其中之皮毛,更多的教学方法还需我们在长期的教学中探索、 总结 ,让我们共同走进新课程。
初中数学高效教学技巧
1、体现学生的主体地位,让学生自主学习
新课程理念下的数学教学,应注重培养和提高学生的学习兴趣,增强学生学习的主动性和探究的欲望。因此,教学过程中,教师要相信学生,信任学生。不能总以为学生能力不足,解决不了这样的问题,从而把知识或问题嚼得细细的喂给学生,担心哪一细节学生理解不了,这种传统的知识讲授方式不利于学生学习兴趣的提高和学习自主性的增强。应把适当的问题交给学生,让学生带着问题去学习,这些问题不能太难,要让大多数学生经过自己努力,解决得了,以便学生体验到成功的喜悦,这样也提高了学生们的学习兴趣。教师要把课堂交给学生,把方法传给学生,真正体现学生的主体地位,和教师的主导作用。比如,教师应引导学生进行自卞学习,或小组合作探究学习。
2、启发引导,解决问题
在初中数学课堂教学中,教师要善于启发引导学生参与探究、尝试知识形成的过程,对探究的结论进行归纳总结,从而使问题得到解决。在此过程中,要给学生创设思维的空间,促进学生思维的发展,解决“善于学习”的问题。在此环节中,教师要引导学生落实重点,突破难点,起到画龙点睛之功效。教师在启发引导时,要善于在知识生长点上设疑,特别是当学生不能凭借原有知识和方法解决新的问题,陷入迷惑不解的困境时,这里既是新旧知识发生矛盾的焦点,又是教师进行启发引导的最佳情境,更是学生思维发展的良好契机。教师在设计课堂教学时,一要注意暴露学生学习过程的困难、障碍、错误和疑问,并且启发引导学生自己尝试、发现和解决;二要注意寻找学生思维的闪光点,及时画龙点睛,鼓励学生提出创造性见解,增强学生的自我意识和自信心,进一步激发学生的创造性;三要注意加强操作、思维、语言的有机结合,先从操作中获得大量的感性材料,形成表象,在此基础上让学生进行认真的对比、分析、判断和综合等思维活动,再启发引导学生把思维过程或总结概括的结论用简炼的语言,有层次地准确表述出来。这样,既加强了学生的动手操作,又发展了思维和语言,有利于培养学生的思维能力。
3、通过范例和解题教学,综合运用数学思想方法
一方面要通过解题和 反思 活动,从具体数学问题和范例,总结归纳解题方法,并提炼和抽象成数学思想;另一方面在解题过程,充分发抨数学思想方法对发现解题途径的定向、联想和转化功能,举一反三,触类旁通,以数学思想观点为指导,灵活运用数学知识和方法分析问题、解决问题。范例教学通过选择具有典型性、启发性、创造性和市美性的例题和练习进行。要注意设计具有探索性的范例和能从,抽象一般和特殊规律的范例,在对其分析和思考的过程,展现数学思想和具有代表性的数学方法,提高学生的思维能力。例如,对某些问题,要引导学生尽可能运用多种方法,从各条途径寻求答案,找出最优方法,培养学生的变通性;对某些问题可以进行由简到繁、由特殊到一般的推论,让学生大胆联系和猜想,培养其思维的广阔性;对某些问题可以分析其特殊性,克服惯性思维束缚,培养学生思维的灵活性。
初中数学教学的困惑
1.精心设计 课前预习
课前预习是学生主动汲取知识的发端,是教学中互动的前提,直接关系着师生互动的质量和效果。从以下两方面进行指导,首先,课前预习题设计重视基础知识,学生通过独立学习、思考就能达标。其次,预习设计要集中体现重难点。预习中的疑问和不解,课堂上自然要提出来,找同学或老师弄明白,这样生生、师生的双边活动水到渠成。课堂教学的效率及效果何愁不高?同时让学生养成了主动学习的习惯,激发了学生积极思考的热情。
2.重视独立思考,选择合作时机
苏霍姆林斯基这样说过:“一定要给学生留有思考的时间,要让每一个学生都独立地弄懂教师所讲的东西。有 经验 的教师都认为,让学生思考和理解教科书,是上课的一个最重要的阶段。”学生的独立思考,是合作学习的前提。课上要保证每个学生都有充裕的时间来思考。当他们在心求通而未得、口欲言而不能达之际,再来组织合作学习,在合作中交流各自的看法,并在交流中反思,使自己的见解更丰富、更全面,最后让学生形成正确的认识。这样做也给那些不爱动脑筋思考或学习上有一定困难的学生提供了思维的机会,提高了小组合作学习的效益。这样的讨论才会引起学生间思维的碰撞,迸发思想的火花,这样的合作才是有实效的。但一节课中不宜安排过多的小组合作学习次数和时间,防止随意性与形式化,有效避免由于时间短,合作学习只停留在表面,时间长了,却常完不成教学任务的现象。
3.发挥教师在互动中的作用
教师在合作学习中的作用可以体现在:指导、组织、倾听、挑战、帮助、捕捉资源、激励和评价、引发质疑、总结和引起反思等方面。指导学生在合作学习中学会倾听、学会交流、学会合作的小策略;营造小组合作的环境,组织小组活动的进行;认真倾听小组中学生的发言,了解学生小组合作的合作的情况和不同学生的思考状况情况;适当提出一些问题,挑战学生的思维,激发学生的深入思考;帮助学生们了解小组合作的任务,在学生思路受阻时给予适当的帮助;在观察学生中捕捉资源,保证全班交流中不同观点的碰撞和启发;鼓励学生们以小组的名义表达小组的成果,并给予激励性的评价;组织不同小组进行合理的质疑,使全班同学学会从其他小组的发言中获益;对小组合作和交流的结果给予总结,明晰重要的内容,同时鼓励学生反思。
综上所述,课堂教学需要师生互动。新课程标准理念下,促成学生自主探究学习的教学“互动”,既是一门学问,也是一种艺术。作为教师要不断反思、改进,使自己逐步走向成熟,适应新课程的教学。
初中数学常用教学方法有哪些相关 文章 :
★ 初中数学教学方法有哪些
★ 初中数学常用教学方法是什么
★ 常用的数学教学方法有哪些
★ 中学数学常用教学方法
★ 初中数学教学方法与策略有哪些?
★ 初中数学教学方法有哪些?
★ 初中有哪些常见的教学方法
★ 初中教师数学教学方法有哪些
★ 中学课堂里常用的数学教学方法
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();⑦ 初中数学几何题解题技巧
立体几何是初中数学中的重要内容,也是学习的难点,而且在中考中立体几何属于必考点,通常在一个题目中会包含多个立体几何的考查点,掌握立体几何解题技巧至关重要。那么接下来给大家分享一些关于初中数学几何题解题技巧,希望对大家有所帮助。
一.添辅助线有二种情况
1按定义添辅助线:
如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:
每个几何定理都有与它相对应的几何图形,我们 把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下:
(1)平行线是个基本图形:
当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线
(2)等腰三角形是个简单的基本图形:
当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:
出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形
出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形
几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:
全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加 方法 是将四个端点两两连结或过二端点添平行线
(7)相似三角形:
相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。
(8)特殊角直角三角形
当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明
(9)半圆上的圆周角
出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。
二.基本图形的辅助线的画法
1.三角形问题添加辅助线方法
方法1:有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。 方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于
第一条线段,而另一部分等于第二条线段。
2.平行四边形中常用辅助线的添法
平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:
(1)连对角线或平移对角线:
(2)过顶点作对边的垂线构造直角三角形
(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线
(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
(5)过顶点作对角线的垂线,构成线段平行或三角形全等.
3.梯形中常用辅助线的添法
梯形是一种特殊的四边形。它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:
(1)在梯形内部平移一腰。
(2)梯形外平移一腰
(3)梯形内平移两腰
(4)延长两腰
(5)过梯形上底的两端点向下底作高
(6)平移对角线
(7)连接梯形一顶点及一腰的中点。
(8)过一腰的中点作另一腰的平行线。
(9)作中位线
当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。
4.圆中常用辅助线的添法
在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的。
(1)见弦作弦心距
有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。
(2)见直径作圆周角
在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。
(3)见切线作半径
命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。
(4)两圆相切作公切线
对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。
(5)两圆相交作公共弦
对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。
初中几何常见辅助线作法歌诀汇编
人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭 经验 。图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。 假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。 解题还要多心眼,经常 总结 方法显。切勿盲目乱添线,方法灵活应多变。 分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。
几何证题难不难,关键常在辅助线;知中点、作中线,中线处长加倍看; 底角倍半角分线,有时也作处长线;线段和差及倍分,延长截取证全等; 公共角、公共边,隐含条件须挖掘;全等图形多变换,旋转平移加折叠; 中位线、常相连,出现平行就好办;四边形、对角线,比例相似平行线; 梯形问题好解决,平移腰、作高线;两腰处长义一点,亦可平移对角线; 正余弦、正余切,有了直角就方便;特殊角、特殊边,作出垂线就解决;
实际问题莫要慌,数学建模帮你忙;圆中问题也不难,下面我们慢慢谈; 弦心距、要垂弦,遇到直径周角连;切点圆心紧相连,切线常把半径添; 两圆相切公共线,两圆相交公共弦;切割线,连结弦,两圆三圆连心线; 基本图形要熟练,复杂图形多分解;以上规律属一般,灵活应用才方便。
初中数学几何题解题技巧相关 文章 :
★ 初中数学解题技巧与方法
★ 做题技巧数学初中几何证明题
★ 初中数学常用的解题技巧
★ 初中数学里常用的十种经典解题方法
★ 初中数学解题方法大汇总
★ 初中数学几何变换法解题方法
★ 初中数学需要掌握的解题方法和思路
★ 初中数学的各题型解题方法
★ 初中数学几何的学习方法
⑧ 初中数学常用的十一种思想方法介绍
数学的思想和方法是初中数学的基础知识。数学学习中要提高我们分析问题的能力,形成用数学的意识决问题,这些都离不开数学思想和数学方法。我们在初中的数学学习中,学到了很多处理数学问题的思想和方法,下面,本人就教学过程中常用的数学思想方法介绍如下:
一、数形结合思想
根据数学问题的条件和结论之间内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起一,并充分得漏丛薯用这种结合,寻求解题思路,使问题得到解决。
二、联系与转化的思想
事物之间是相互联系,相互制约的。是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化特殊与一般的转化、具体抽象的转化、部分与整体的转化、动与静的转化等等。
三、分类讨论的思想
在数学中,我们常常需要根据研究对象性质的差异,分各种不同的情况予以考查,这种分类思考的方法是一一种重要的数学思想方法。同时也是一种重要的解题策略。
四、待定系数法
当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母的值就可以,为此,把已知道条件代入特定形式的式子中,往往会得到含待定字母的方和或方程组就使问题得到解决。待定系数法是一种重要的数学解题方法,在代数式恒等变形及研究函数中有着广泛的应用。
五、配方法
把一个代数式设法构造成平方式,然后再进行所需要的变形,配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
六、换元法
在解题过程中,把某个(或某些)字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题从而过郑御到化繁为简、化难为易的'目的。
七、分析法
在研究或证明一个命题时,由结论向己知条件追溯,即从结论升始,推求它成立的充分条件,这个条件的成立如果还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件(或己知的事实)为止,从而使命题得到证明,这种方法叫佬分析法。这种思维过程通常称为“执果寻因”。初中阶段只用分析法求解题,证题的思路,一般不要求用分析法解答或证明命题。
八、综合法
在研究或证明命题时,如果推理的方向是从已知条件中(或已知事实)开始,逐步推导得到结论,这种方法叫综合法。这种思维方块字程通常简称为“自由导果”。我们通常解题或证题所用的方法就是综合法。
九、演绎法
演绎法是由一般事物具有某种性质推出特殊事物也具有某种性质的推理方法,简而言之,由一般到特殊的推理方法叫做演绎推陈出新理。演绎推陈出新理的主要形式是“三段论”式,即由一个大前提和一个结论组成,三段论的理论依据是逻辑公理。初中阶段彩的是演绎推理解答或证明数不命题。
十、归纳法
归纳法是由特殊事物具有某种性质推出一般事物也是具有某种性质的推理方法,简言之,由特殊到一般的推理方法叫做归纳法,也叫归纳推理。又分为:完全归纳法和不完全归纳法。
十一、类比法
在众多的客观事物中,存在着一些相互之间有相似属性的事物,在两面三刀个(或两类)事物之间,根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法叫做类比法,也叫做类比推理。类比法既可能是特殊到特殊返者,也可能是一般到一般的推理。
⑨ 初中数学解题技巧及口诀 常用方法推荐
数学学习时间总是很紧张的,很多知识要点需要背诵,但是总是边学边忘,给很多同学造成困扰。下面我就大家整理一下初中数学解题技巧及口诀,仅供参考
有理数加法运算
同号两数来相加,绝对值加不变号
异号相加大减小,大数决定和符号
互为相反数求和,结果是零须记好
【注】“大”减“小”是指绝对值的大小
解方程已知未知闹分离,分离要靠移完成
移加变减减变加,移乘变除除变乘
平方差公式两数和乘两数差,等于两数平方差
积化和差变两项,完全平方不是它
配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是 数学 中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
填空题解题方法直接法
直接法是解填空题最基本的方法,它要求同学们直接从题设条件出发,利用定义、定理、性质、公式等知识。通过推理和运算等过程,直接得到结果。
数形结合法
数形结合是一种重要的数学方法,它要求同学们在解题时,根据题目条件的具体特点,做出符合题意的图形,从而做到数中想形,以形助数。
通过对图像的观察、分析和研究。启发解题恩路,找出问题的隐含条件,从而简化解题过程,检验解题结果。
以上就是我为大家整理的初中数学解题技巧及口诀。
⑩ 初中数学常用教学方法是什么_初中数学要怎么学
数学是一门非常重要的学科,俗话说:“学会数理化,走遍天下都不怕。”虽然有些夸张,但也从侧面反映了数学的重要性。因此,数学教学方法的掌握对于老师来说非常重要。接下来我在这给大家带来初中数学常用教学方法,接下来一起来看看吧!
初中数学常用教学方法
一、课前预习
数学的预习不单单只是说看一遍就了事,一个好的预习要善于发现本章学习的重难点,并提出有用的解决方法。当然,对于刚步入初中的学生来说,这是有一定难度的。我们可以要求同学们根据成绩的好坏均匀分配,形成学习小组,让他们自行探讨,对于各自发现的问题集小组意见找到合适的解决办法,对于整个小组都无法解决的问题,留到课堂上全班讨论,老师再进行点评并采取合理措施。这样一来,既保障了学生的课堂主体地位,也确保了学生的个性发展,有利于培养学生对数学这门学科的兴趣,并使得学生形成多思、善问、大胆质疑的学习性格,有利于学生素质教育的全面发展。
二、课堂学习
首先,我们应当加以利用的是学习的内容框架,这是数学学习的一大法宝。从整个初中数学,到这本书,再到某个单元的框架。比如,初中数学的整体框架大致由数,几何图形,统计与概率构成,而数又分为式子,方程与不等式,函数;几何分为线,角(三角形,四边形,多边形)以及图形变换。初一上册的框架是:数,分为有理数和整式加减;方程,由一元一次和二元一次方程;图形,分为线的认识、同一平面内线的关系(平行和相交)以及坐标系和三角形。再说第一单元有理数,分为认识正负数,和有理数的加减乘除及乘方运算。让学生做到,若干年后,即使他不记得数学学习的内容,但还记得学习框架,那便成功了。
再者,课堂学习氛围是学习效率的重要因素,一个好的学习氛围不仅能够带动同学们的学习热情,学习兴趣,更有甚者决定了同学们的学习效率以及学习成果。或许会有人说,数学不过是理性的合集,又不是凭空的想象,亦不是诗词歌赋的景物变化或者情感互动,那该怎样去营造一个好的数学学习氛围呢?在这里提出两点:一是动手实验,又有人会说了,数学不是物理可以借助器材实验,又不是化学利用药物进行反应,该怎么实验呢?其实不然,数学也有可以动手实验的地方,比如,在找角度规律或者进行定理推断时,我们完全可以借助量角器,直尺,圆规等进行有效的探索,反推其证明过程,这样更有利于同学们对公示定理的记忆;二是知识竞赛,我们可以分阶段进行,在某一阶段的知识点学习完了之后,设置一些竞赛题,课堂进行比赛,让同学们在兴趣中学习,在竞争中进步。
最后,绝大部分同学甚至老师都会认为数学的学习最重要也是最基础的就是练习,只要你练得多了,就什么都不怕了。当然,习题的练习对数学来说是非常重要的,练习的多了,见题型醒就多了,同学们更能理解,这一点毋庸置疑,但我们不能说练习就是学数学的唯一。数学笔记也是数学学习的重要方法,我把数学笔记分为两块内容,一是课堂笔记,这是同学们自己根据自己预习的成果对自己知识内容的强化,可以找相对于个人来讲的重难点,当然,不要是全程都在记笔记,那样老师所授知识点没听进去还浪费时间,记了和没记一个样,要学会挑点记,让学生自己选择不熟的,不太会的,掌握起来有难度的知识点记;二是错题笔记,要让学生自己学会记住教训,错过的题不能再继续错下去,将错题整理,分析原因,找出所用知识点,以及正确解法都整理好写在笔记本上,多看,吸取教训,让学生告诫自己,下次不能再犯。
三、课后辅导
没有谁是天生就会学习数学的,在经过了预习及课堂的学习后,还要让同学们学会课后学习,我们作为老师不可能针对每一个学生进行辅导,但我们可以让同学们自己组织起来,建立学习交流小组亦或是一对一辅导,同时采用竞争奖励机制,对整体小组成绩好的,有进步的或是一对一辅导取得了最有效果的同学按照他们的最后成果进行奖励。这样有助于营造一个良好的学习氛围且有助于班级整体成绩的提升。同时,要注重培养学生的个性发展,让同学们学会思考,学会质疑,学会问问题,学会建立在数学基础之上的想象力,让同学们在兴趣中学习,在个性发展中进步。
初中数学学习是学生学习生涯的一个重点,作为老师,我们要善于引导学生的课前预习,注重课堂学习的效率,以及课后的学习思考,培养学生的学习兴趣,引领学生的个性发展。在新课标的见证下,提升自我教学素质的修养,以身作则,引导学生素质教育的全面发展。
初中数学学习技巧
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。