① 什么情况下选择比色法测定样品的吸光度
实验二 气相色谱定性和定量分析
1、 为什么可以利用色谱峰的保留值进行色谱定性分析?
因为在相同的色谱条件下,同一物质具有相同的保留值,当用已知物的保留时间与未知祖坟的保留时间进行对照时,若两者的保留时间相同,则认为两者是相同的化合物。
2、 利用面积归一化法进行定量分析是,进样量是否需要非常准确,为什么?
因为归一化法的结果是一个比例
峰面积百分比=该峰的峰面积/所有峰面积和
可以把进样量(进样体积*样品浓度)看作是1(即100%),检测出的各个峰(主峰和杂质峰)都是这个1的一部分,且各个峰面积百分比的和为1。简单的用一个数学公式表示就是
各个峰面积分别为A,B,C,D……M.
各个峰面积和为W=A+B+C+D+……+M
那么各峰面积百分比就是A/W,B/W,C/W,……,M/W
A/W+B/W+C/W+……+M/W
=(A+B+C+D+……+M)/W
=W/W
=1
一个样品中各个峰彼此之间的比例是一定的,所以进样量的准确度要求不高。
实验三 聚乙烯和聚苯乙烯膜的红外光谱分析
1、 化合物的红外吸收光谱是怎样产生的?它能提供哪些信息?
当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。位置、强度、峰形是IR的三要素。吸收峰的位置和形状反应分子所带官能团,可以推断化合物的化学结构;吸收峰强度可以测定混合物各组分的含量;应用红外光谱可以测定分子的键长、健角,从而推断分子的立体构型,判断化学键的强弱等。
2、 红外光谱实验室为什么对温度和相对湿度要维持一定的指标?
一个很重要的原因是红外光谱仪器中有几个作用较大且比较贵重的光镜是用KBr做的,极易受潮,温度或湿度过高都会造成光镜的损坏,一般温度不能超过25度,湿度最好在45%以下,另外要补充的是只要是高精密的仪器,对室内的温湿度都是有要求,能起到保持仪器的精密度、减缓仪器的老化的作用。
3、 如何进行红外吸收光谱的图谱解释?
根据官能团的特征峰,与谱图进行一一对应。
实验四 电位法测天然水中微量的氟
1、 标准曲线法有何优点?
标准曲线法的优点是:绘制好标准工作曲线后测定工作就变得相当简单,可直接从标准工作曲线上读出含量,因此特别适合于大量样品的分析。
2、 离子选择电极法测F浓度时,加入TISAB的组成和作用是什么?
首先说一下它的组成,TISAB由氯化钠,柠檬酸钠,冰醋酸,和氢氧化钠等组成,其作用有三,第一氯化钠能提高离子总强度,第二,柠檬酸钠是为了掩蔽干扰离子,第三,冰醋酸,氢氧化钠是为了行成缓冲溶液。总的作用就是为了减少测定的误差!
实验五 紫外分光光度法直接测定水中酚
1、 紫外分光光度法直接测定水样时有何优缺点?
优点是找到对的吸收波长时可快速侦测。
缺点是浓度不能太高(最好在mM~μM之间),会有同吸收峰的物质所干扰,而无法得到正确的数据
2、 紫外分光光度法的适用条件?
应用范围:①定量分析,广泛用于各种物料中微量、超微量和常量的无机和有机物质的测定。②定性和结构分析,紫外吸收光谱还可用于推断空间阻碍效应、氢键的强度、互变异构、几何异构现象等。③反应动力学研究,即研究反应物浓度随时间而变化的函数关系,测定反应速度和反应级数,探讨反应机理。④研究溶液平衡,如测定络合物的组成,稳定常数、酸碱离解常数等。
对溶剂的要求
含有杂原子的有机溶剂,通常均具有很强的末端吸收。因此,当作溶剂使用时,它们的使用范围均不能小于截止使用波长。例如甲醇、乙醇的截止使用波长为205nm 。另外,当溶剂不纯时,也可能增加干扰吸收。因此,在测定供试品前,应先检查所用的溶剂在供试品所用的波长附近是否符合要求,即将溶剂置1cm石英吸收池中,以空气为空白(即空白光路中不置任何物质)测定其吸收度。溶剂和吸收池的吸光度,在220~240nm 范围内不得超过0.40,在241~250nm范围内不得超过0.20,在251~300nm范围内不得超过0.10,在300nm以上时不得超过0.05。
测定法
测定时,除另有规定外,应以配制供试品溶液的同批溶剂为空白对照,采用1cm的石英吸收池,在规定的吸收峰波长±2nm以内测试几个点的吸收度,或由仪器在规定波长附近自动扫描测定,以核对供试品的吸收峰波长位置是否正确,除另有规定外,吸收峰波长应在该品种项下规定的波长±2nm以内,并以吸光度最大的波长作为测定波长。一般供试品溶液的吸收度读数,以在0.3~0.7之间的误差较小。仪器的狭缝波带宽度应小于供试品吸收带的半宽度,否则测得的吸收度会偏低;狭缝宽度的选择,应以减小狭缝宽度时供试品的吸收度不再增大为准,由于吸收池和溶剂本身可能有空白吸收,因此测定供试品的吸光度后应减去空白读数,或由仪器自动扣除空白读数后再计算含量。当溶液的pH值对测定结果有影响时,应将供试品溶液和对照品溶液的pH值调成一致。
(1) 鉴别和检查 分别按各品种项下的方法进行。
(2) 含量测定 一般有以下几种。
对照品比较法
按各品种项下的方法,分别配制供试品溶液和对照品溶液,对照品溶液中所含被测成分的量应为供试品溶液中被测成分规定量的100%±10%,所用溶剂也应完全一致,在规定的波长测定供试品溶液和对照品溶液的吸光度后,按下式计算供试品中被测溶液的浓度∶
CX=(AX/AR)CR
式中 CX为供试品溶液的浓度;
AX为供试品溶液的吸收度;
AR为对照品溶液的浓度;
CR为对照品溶液的吸收度。
吸收系数法
按各品种项下的方法配制供试品溶液,在规定的波长处测定其吸光度,再以该品种在规定条件下的吸收系数计算含量。用本法测定时,吸收系数通常应大于100,并注意仪器的校正和检定。
比色法
供试品溶液加入适量显色剂后测定吸光度以测定其含量的方法为比色法。
用比色法测定时,应取数份梯度量的对照品溶液,用溶剂补充至同一体积,显色后,以相应试剂为空白,在各品种规定的波长处测定各份溶液的吸光度,以吸光度为纵坐标,浓度为横坐标绘制标准曲线,再根据供试品的吸光度在标准曲线上查得其相应的浓度,并求出其含量。
也可取对照品溶液与供试品溶液同时操作,显色后,以相应的试剂为空白,在各品种规定的波长处测定对照品和供试品溶液的吸光度,按上述(1)法计算供试品溶液的浓度。
除另有规定外,比色法所用空白系指用同体积溶剂代替对照品或供试品溶液,然后依次加入等量的相应试剂,并用同样方法处理制得。
实验六 用高效液相色谱法测定饮料中的咖啡因
1、 解释反相色谱(n-C18)测定饮料中咖啡因的分离原理。
反相柱n-C18,是将非极性物质n-C18烷(正构烷烃)键合到硅胶基质上,分离过程中以极性溶剂为流动相,实现弱极性化合物的分离。与其它组分(如:单丁酸、咖啡酸、蔗糖等)相比,咖啡因是弱极性化合物。
2、 在本实验中,用峰高H为定量基础的校正曲线能否得到咖啡因的精确结果?
可以用峰高计算,但这种定量方法多在以前色谱工作站不普及而采用记录仪记录图谱的时代,且前提是色谱峰型、柱效非常好,要求拖尾因子在0.95~1.05之间,否则误差会很大。
目前峰高计算方法已经基本不采用了,我做了十年色谱还未使用过,因为色谱工作站可以直接告诉你峰面积!建议以峰面积计算。
3、 能否用离子交换柱测定咖啡因?为什么?
不行
因为离子交换色谱(ion exchange chromatography,IEC)以离子交换树脂作为固定相,树脂上具有固定离子基团及可交换的离子基团。当流动相带着组分电离生成的离子通过固定相时,组分离子与树脂上可交换的离子基团进行可逆变换。根据组分离子对树脂亲合力不同而得到分离。
阳离子交换:
阴离子交换:
式中"--"表示在固定相上,Kxy和Kzm是交换反应的平衡常数,Z+和X-代表被分析的组分离子。M+和Y-表示树脂上可交换的离子团。
离子交换反应的平衡常数分别为:
阳离子交换:
阴离子交换:
平衡常数K值越大,表示组分的离子与离子交换树脂的相互作用越强。由于不同的物质在溶剂中离解后,对离子交换中心具有不同的亲合力,因此具有不同的平衡常数。亲合力大的,在柱中的停留时间长,具有高的保留值。
依据咖啡因的结构式1,3,7-三甲基黄嘌呤或3,7-二氢-1,3,7三甲基-1H-嘌呤-2,6-二酮,其解离常数很小,不符合离子交换色谱的要求。
实验七 X射线衍射粉末法物相分析
讨论本实验所得数据与标准数据为什么存在细微差别?
样品颗粒大小对实验结果的影响为了比较充分地说明颗粒大小对测试结果的影响程度,我们选取了来自内蒙古巴丹吉林沙漠表层矿物试样作为分析对象.用日本理学(Rigaku)公司生产的D/Max2400型多晶X射线衍射仪进行测试.Cu靶(λ=0. 154056 nm),管电压40 kV,管电流60 mA,扫描速度10 deg. /min,步长为0. 02°,DS(发散狭缝)=SS(防散射狭缝)=1°, RS(接收狭缝)=0. 3 mm.分别将样品充分研磨过筛,样品细度从小到大分别为45、48、58、75、150μm 5个等级,所得X射线衍射分析结果如图1所示.从图中可看出,颗粒度为150μm的样品衍射峰最弱,衍射背底最强,一部分含量微弱的样品物质其衍射峰没有被扫出来.对于颗粒大小为75、58、48和45μm的样品,随着颗粒度的减小,衍射峰强度不断变大,物质中微量成份的衍射峰逐渐变强.
从衍射结果可以看出,样品颗粒比较大时,所得的衍射峰强度较弱,背底较大.究其原因,主要是粗大的样品装填后其表面晶体颗粒数量会比较少,参与布拉格衍射的晶面就比较少,使X射线衍射峰的强度比较弱,而漫反射现象会非常明显,使本来就比较弱的衍射峰就会更弱,湮没在背底里,甚至会损失掉.反之,样品颗粒度越小,表面参与“镜面反射”的晶面越多,使晶粒取向分布的统计性波动减小,强度的再现性误差减少[4].同时漫反射不容易发生,峰背底较小,一些低含量物质衍射峰也能观测到[2].当然粒度也不能太小,如果粒度小于0. 1μm时,将会使衍射峰宽化,同时导致积分强度测量不准而产生误差.在实际测量中,一方面有些质地非常坚硬的物质不容易研的很细,能达到50μm已经很不错,另一方面大部分样品当颗粒细化到50μm以下,再进行研磨所得的衍射结果变化不大[3],所以进行衍射实验使粉末样品颗粒达到50μm是一个较为理想的尺寸.
1.2玻璃样品架装填量不同对衍射结果的影响
为了说明粉末样品装填量不同对衍射结果的影响,选取50μm分析纯氯化钠(NaCl)作为实验样品,用X射线衍射仪按照前述条件进行测试.实验用玻璃样品架为原厂家生产的50×35 mm样品架,样品凹槽大小为20×15 mm,槽深为0. 5 mm.分别选取高出样品架、与样品架水平和低于样品架3种情况进行测试实验,得到如图2所示的实验结果.从结果不难看出,与样品架水平的填样方法衍射图谱效果最好,强度也最大,背底最小;而高出样品架及低于样品架装填样品所得的衍射图谱强度明显较低,有些弱峰比较模糊,测试效果不好.
结合测角仪的聚焦几何原理[4],对衍射结果进行分析,只有装填样品表面与样品架水平的情况下,才能保证试样表面在扫描过程中始终与聚焦圆相切,使样品表面与聚焦圆有同一曲率,使探测器在短暂的扫描进程中接收到更多的衍射线束,从而增强衍射线的强度,提高测量准确性.所以,填样与样品架水平时衍射线峰强最大,峰形也最明锐,背底最弱.而填样高出和低于样品架时大部分的晶面(hk)不满足测角仪的聚焦几何原理,扫描过程中探测器接收到的信号比较弱,所以表现在衍射图谱上就是较弱的峰强和较高的背底.这2种装样方法都是我们测量中应该尽量避免的.
1.3少量样品或微量试样采用横式填样或竖式填样对衍射结果的影响
在许多新物质合成实验中,由于受实验条件和合成方法等因素的制约,有许多合成物产量很低,最终得到几毫克甚至更少.对这类样品进行X射线衍射实验时,是采用横式还是竖式装样(图3)对测试更有利进行了试验.选用FeNdO3化合物作为分析对象,分别采用2种不同的装样法,用X射线衍射仪进行测试,得到如图4所示的实验结果.从所得结果不难看出,横式填样方法所得衍射图谱效果较好,强度较大;而竖式填样法所得的衍射图谱弱峰比较模糊,测试效果不好.究其原因,主要是因为填样宽度是为保证在2θ大于盲区(2θmin)的扫描过程中参与衍射的体积保持不变[5],在样品量较少的情况下,应保证填样宽度达到最大值.特别是仪器的D和SS使用较大值时,衍射强度主要由衍射体积所制约的积分面积决定的,随着体积的减小,衍射强度也呈现降低趋势,衍射角度愈小影响愈大.可见,当样品量较少时,应采用图3横式填样方法.
2结论
通过实验分析研究,本文可以得到粉末X射线衍射测量中一些影响因素对实验结果的影响.
(1)粉末样品自身颗粒的大小对X射线衍射分析测试结果有比较大的影响.实验结果表明,使粉末样品颗粒细化到50μm左右,所测得的衍射结果才较为理想.
(2)样品架装填粉末样品量不同对衍射结果有直接的影响,只有粉末样品与样品架装填水平的情况下,才能得到较为准确和理想的衍射结果.
(3)对于少量样品或微量试样采用横式填样法更加科学合理,所得的衍射实验图谱效果会更好一些.
参考资料:多晶X射线衍射测量结果的一些影响因素
实验八 原子荧光光谱法测定水质中的硒
从原理、仪器结构、应用三方面对原子吸收、发射和原子荧光光谱法进行比较。
AAS、AES与AFS ( 一)基本概念: ①AAS(原子吸收光谱)是基于气态的基态原子外层电子对紫外光和可见光的吸收为基础的分析方法。(基于物质所产生的原子蒸气对特征谱线(通常是待测元素的特征谱线)的吸收作用来进行元素定量分析的一种方法。) 原子吸收光谱分析的基本过程: (1)用该元素的锐线光源发射出特征辐射; (2)试样在原子化器中被蒸发、解离为气态基态原子; (3)当元素的特征辐射通过该元素的气态基态原子区时,部分光被蒸气中基态原子吸收而减弱,通过单色器和检测器测得特征谱线被减弱的程度,即吸光度,根据吸光度与被测元素的浓度成线性关系,从而进行元素的定量分析。 ②AES(原子发射光谱)原子发射光谱分析是根据原子所发射的光谱来测定物质的化学组分的。 不同物质由不同元素的原子所组成,而原子都包含着一个结构紧密的原子核,核外围绕着不断运动的电子 。每个电子处于一定的能级上,具有一定的能量。在正常的情况下,原子处于稳定状态,它的能量是最低的,这种状态称为基态。但当原子受到能量(如热能、电能等)的作用时,原子由于与高速运动的气态粒子和电子相互碰撞而获得了能量,使原子中外层的电子从基态跃迁到更高的能级上,处在这种状态的原子称激发态。电子从基态跃迁至激发态所需的能量称为激发电位,当外加的能量足够大时,原子中的电子脱离原子核的束缚力,使原子成为离子,这种过程称为电离。原子失去一个电子成为离子时所需要的能量称为一级电离电位。离子中的外层电子也能被激发,其所需的能量即为相应离子的激发电位 。 处于激发态的原子是十分不稳定的,在极短的时间内便跃迁至基态或其它较低的能级上。当原子从较高能级跃迁到基态或其它较低的能级的过程中,将释放出多余的能量,这种能量是以一定波长的电磁波的形式辐射出去的,其辐射的能量可用下式表示: E2、E1分别为高能级、低能级的能量,h为普朗克(Planck)常数;v 及λ分别为所发射电磁波的频率及波长,c为光在真空中的速度。 每一条所发射的谱线的波长,取决于跃迁前后两个能级之差。由于原子的能级很多,原子在被激发后,其外层电子可有不同的跃迁,但这些跃迁应遵循一定的规则(即“光谱选律”),因此对特定元素的原子可产生一系列不同波长的特征光谱线,这些谱线按一定的顺序排列,并保持一定的强度比例。 光谱分析就是从识别这些元素的特征光谱来鉴别元素的存在(定性分析),而这些光谱线的强度又与试样中该元素的含量有关,因此又可利用这些谱线的强度来测定元素的含量(定量分析)。这就是发射光谱分析的基本依据。 ③AFS(原子荧光光谱Atomic Fluorescence Spectrometry):通过测定原子在光辐射能的作用下发射的荧光强度进行定量分析的一种发射光谱分析方法。 (二)三者的区别与联系 相似之处——产生光谱的对象都是原子 不同之处——AAS是基于“基态原子”选择性吸收光辐射能(hv),并使该光辐射强度降低而产生的光谱(共振吸收线);
AES是基态原子受到热、电或光能的作用,原子从基态跃迁至激发态,然后再返回到基态时所产生俄光谱(共振发射线和非共振发射线)。 AFS气态原子吸收光源的特征辐射后,原子外层电子跃迁到激发态,然后返回到基态或较低能态,同时发射出与原子激发波长相同或不同的辐射即为原子荧光,是光致二次发光。AFS本质上仍是发射光谱。 原子发射光谱分析法在发现新元素和推动原子结构理论的建立方面曾做出过重要贡献,在各种无机材料的定性、半定量及定量分析方面也曾发挥过重要作用。近20年来,由于新型光源、色散仪和检测技术的飞速发展,原子发射光谱分析法得到更广泛的应用。到了二十世纪三十年代,人们已经注意了到浓度很低的物质,对改变金属、半导体的性质,对生物生理作用,对诸如催化剂及其毒化剂的作用是极为显着的,而且地质、矿物质的发展,对痕量分析有了迫切的需求,促使AES迅速的发展,成为仪器分析中一种很重要的、应用很广的方法。而到了五十年代末、六十年代初,由于原子吸收分析法(AAS)的崛起,AES中的一些缺点,使它显得比AAS有所逊色,出现一种AAS欲取代AES的趋势。但是到了七十年代以后,由于新的激发光源如ICP、激光等的应用,及新的进样方式的出现,先进的电子技术的应用,使古老的AES分析技术得到复苏,注入新的活力,使它仍然是仪器分析中的重要分析方法之一。 (三)三者的特点: AAS原子吸收光谱分析的特点: 灵敏度高:火焰原子法,ppm级,有时可达ppb级; 石墨炉可达10-9~10-14(ppt级或更低); 准确度高:FAAS的RSD可达1~3%. 测定范围广,可测70种元素。 局限性:多元素同时测定有困难;难熔元素(如W)、非金属元素测定困难、对复杂样品分析干扰也较严重;石墨炉原子吸收分析的重现性较差。 AES原子发射光谱法的特点: 灵敏度高(10-3~10-9g);选择性好;可同时分析几十种元素;线性范围约2个数量级。若采用电感耦合等离子体光源,则线性范围可扩大至6~7个数量级,可直接分析试样中高、中、低含量的组分。可进行定性分析,此特点优于原子吸收法。 局限: 1).在经典分析中,影响谱线强度的因素较多,尤其是试样组分的影响较为显着,所以对标准参比的组分要求较高。 2).含量(浓度)较大时,准确度较差。 3).只能用于元素分析,不能进行结构、形态的测定。 4).大多数非金属元素难以得到灵敏的光谱线。 AFS原子荧光光谱法的特点: 灵敏度高,检出限较低。采用高强度光源可进一步降低检出限; 谱线干扰较少,可以做成非色散AFS;校正曲线范围宽(3~5个数量级); 易制成多道仪器——多元素同时测定;荧光淬灭效应、复杂基体效应等可使测定灵敏度降低;散色光干扰;可测量的元素不多,应用不广泛(主要音位AES和AAS的广泛应用,与它们相比,AFS没有明显的优势)
实验九 固体电极上的循环伏安法
1、 循环伏安法的应用领域?
1、判断电极表面微观反应过程
2、判断电极反应的可逆性
3、作为无机制备反应“摸条件”的手段
4、为有机合成“摸条件”
5、前置化学反应(CE)的循环伏安特征
6、后置化学反应(EC)的循环伏安特征
7、催化反应的循环伏安特征
2、 固体电极有哪些特点?
介5质的介6电特性,如绝缘、介4电能力t,都是指在一m定的电场强度范围内4的材料的绝缘特性,介5质只能在一w定的电场强度以0内6保持这些性质。当电场强度超过某一j临界值时,介2质由介5电状态变为5导电状态。这种现象称介1电强度的破坏,或叫介1质的击穿,与a此相对应的“临界电场强度”称为3介0电强度,或称为1击穿电场强度。但严格地划分1击穿类型是很困难的,但为2了p便于n叙述和理解,通常将击穿类型分2为0三p种:热击穿、点击穿、局部放电击穿。而点击穿和局部放电击穿又y统属于m电击穿,所以7我们常说介6质击穿有两大m类,一p是热击穿,二j是电击穿。以4上q三x种类型各有以4下w的特征: 8。热击穿:热击穿的本质是处于s电场中4的介8质,由于d其中1的介5质损耗而产生热量,就是电势能转换为1热量,当外加电压足够高时,就可能从8散热与y发热的热平衡状态转入g不i平衡状态,若发出的热量比5散去的多,介2质温度将愈来愈高,直至出现永久v性损坏,这就是热击穿。 7。电击穿:固体介7质电击穿理论是在气2体放电的碰撞电离理论基础上w建立的。大r约在本世纪00年代,以5A。Von Hippel和Frohlich为0代表,在固体物理基础上d,以0量子o力m学为6工g具,逐步建立了a固体介4质电击穿的碰撞理论,这一p理论可简述如下j:在强电场下h,固体介4质中3可能因冷发射或热发射存在一p些原始自由电子h。这些电子a一g方0面在外电场作用下i被加速,获得动能;另一z方2面与m晶格振动相互5作用,把电场能量传递给晶格。当这两个u过程在一x定温度和场强下q平衡时,固体介1质有稳定的电导;当电子c从3电场中7得到的能量大a于z传递给晶格振动的能量时,电子q的动能就越来越大c,至电子f能量大a到一w定值时,电子b与y晶格振动相互7作用导致电离产生新电子v,使自由电子u数迅速增加,电导进入g不d稳定阶段,击穿发生。 7。此外还有化2学击穿。电介3质中6强电场产生的电流在例如高温等某些条件下w可以7引0起电化3学反5应。例如离子l导电的固体电介5质中2出现的电解、还原等。结果电介1质结构发生了o变化5,或者是分3离出来的物质在两电极间构成导电的通路。或者是介8质表面和内1部的气0泡中7放电形成有害物质如臭氧、一p氧化5碳等,使气8泡壁腐蚀造成局部电导增加而出现局部击穿,并逐渐扩展成完全击穿。温度越高,电压作用时间越长5,化6学形成的击穿也j越容易发生。 但不i管怎样,我认7为3所有的介8质击穿均是因极化6效应引0起的。凡o在外电场作用下f产生宏观上r不o等于r零的电偶极矩,因而形成宏观束缚电荷的现象称为7电极化0,能产生电极化0现象的物质统称为2电介3质。电介3质的电阻率一d般都很高,被称为8绝缘体。有些电介6质的电阻率并不p很高,不b能称为4绝缘体,但由于v能发生极化4过程,也w归入j电介6质。通常情形下k电介5质中7的正、负电荷互4相抵消,宏观上u不e表现出电性,但在外电场作用下g可产生如下t7种类型的变化2 :2 原子h核外的电子u云p分8布 产生畸变,从2而产生不u等于f零的电偶极矩,称为1畸变极化4 ;8原来正、负电中5心4重合的分8子f,在外电场作用下h正、负电中4心2彼此分4离,称为8位移极化6;3具有固有电偶极矩的分3子q原来的取向是混乱的,宏观上z电偶极矩总和等于x零,在外电场作用下s,各个p电偶极子a趋向于r一u致的排列,从3而宏观电偶极矩不o等于m零,称为4转向极化7。研究电介1质宏观介7电性质及u其微观机制以7及l电介4质的各种特殊效应的物理学分6支o学科。基本内3容包括极化0机构、标志介6电性质的电容率与b介2质的微观结构以3及n与x温度和外场频率间的关系、电介3质的导热性和导电性、介5质损耗、介6质击穿机制等。此外,还有许多电介5质具有的各种特殊效应。 所以7介2质电击穿的特点应根据介8质本身的上l述特性有关,无s法以3一b言蔽之k呀。我也u是从2事高电压工n程方4面的普通技术人i员,所答不m确之v处,请见4谅。
实验十 芳香族化合物的结构鉴定分析
------二甲苯的GC /MS分离与鉴定
为什么利用质谱不能对同分异构体进行定性分析?
质谱法可以对某些同分异构体进行定性分析,但不是全部。对于分子式相同但化学结构不同的,产生的碎片峰不同,是可以分析出来的。
但对于化学结构相同,但基团在分子中位置不同的,质谱图谱在实际是有区别的,但对于一般人来说,要加以区分是有相当困难的。这种情况下需要对照标准样品或标准图谱来区分。通常这种情况下,使用HNMR来区分是很容易的。
拼多多,皮裤搭什么上衣新品9.9,大牌1折起,爆款1元秒!
② 紫外—可见吸收光谱分析方法
4.3.1.1 定性分析
无机元素的定性分析应用紫外—可见分光光度法比较少,主要采用原子发射光谱法或化学分析法。在有机化合物的定性分析鉴定及结构分析方面,由于紫外-可见吸收光谱较为简单,光谱信息少,特征性不强,并且不少简单官能团在近紫外光区及可见光区没有吸收或吸收很弱,在应用时也有较大的局限性。但是,这种方法可适用于不饱和有机化合物,尤其是共轭体系的鉴定,以此推断未知物的骨架结构。此外,还可配合红外光谱法、核磁共振波谱法和质谱法等常用的结构分析法进行定性鉴定和结构分析,不失为一种有利的辅助方法。
吸收光谱的形状、吸收峰的数目和位置及相应的摩尔吸光系数,是定性分析的光谱依据,而最大吸收波长λmax及相应的εmax是定性分析的最主要参数。比较法有标准物质比较法和标准谱图比较法两种。利用标准物质比较,在相同的测量条件下,测定和比较未知物与已知标准物的吸收光谱曲线,如果两者的光谱完全一致,则可以初步认为它们是同一类化合物;利用标准谱图或光谱数据比较,对于没有标准物质或标准物质难于得到的物质,此方法适用。
4.3.1.2 结构分析
紫外—可见分光光度法可以进行化合物某些基团的判别,共轭体系及构型、构象的判断。
(1)某些特征基团的判别
有机物的不少基团(生色团),如羰基、苯环、硝基、共轭体系等,都有其特征的紫外或可见光吸收带,紫外-可见分光光度法在判别这些基团时,有时是十分有用的。如在270~300nm处有弱的吸收带,且随溶剂极性增大而发生蓝移,就是羰基产生吸收带的有力证据;在184nm附近有强吸收带、204nm附近有中强吸收带、260nm附近有弱吸收带且有精细结构,则是苯环的特征吸收,等等。
(2)共轭体系的判断
共轭体系会产生很强的K吸收带,通过绘制吸收光谱,可以判断化合物是否存在共轭体系或共轭的程度。如果一化合物在210nm以上无强吸收带,可以认定该化合物不存在共轭体系;若215~250nm区域有强吸收带,则该化合物可能有两至三个双键的共轭体系,如1,3-丁二烯,λmax为217nm,εmax为21000;若260~350nm区域有很强的吸收带,则可能有三至五个双键的共轭体系,如癸五烯有五个共轭双键,λmax为335nm,εmax为118000。
(3)异构体的判断
包括顺反异构及互变异构两种情况的判断。
顺反异构体的判断:生色团和助色团处于同一平面时,会产生最大的共轭效应。由于反式异构体的空间位阻效应小,分子的平面性较好,共轭效应强,因此λmax及εmax都大于顺式异构体。
互变异构体的判断:某些有机化合物在溶液中可能有两种以上的互变异构体处于动态平衡中,这种异构体的互变过程常伴随有双键的移动及共轭体系的变化,因此会产生吸收光谱的变化。最常见的是某些含氧化合物的酮式与烯醇式异构体之间的互变。例如,乙酰乙酸乙酯就是酮式和烯醇式两种互变异构体,它们的吸收特性不同,酮式异构体在近紫外光区时λmax为272nm(εmax为16000);烯醇式异构体的λmax则为243nm(εmax为16000)。两种异构体的互变平衡与溶剂有密切关系,在像水这样的极性溶剂中,由于羰基可能与H2O形成氢键以降低能量达到稳定状态,所以酮式异构体占优势;而在像乙烷这样的非极性溶剂中,则形成分子内的氢键且形成共轭体系,以使能量降低达到稳定状态,所以烯醇式异构体比率上升。
此外,紫外—可见分光光度法还可以判断某些化合物的构象(如取代基是平伏键还是直立键)及旋光异构体等。
4.3.1.3 定量分析
紫外—可见分光光度法定量分析的常见方法有以下几种。
(1)单组分的定量分析
如果在一个试样中只要测定一种组分,且在选定的测量波长下,试样中其他组分对该组分不干扰,那么进行单组分的定量分析较为简单。一般有标准对照法和标准曲线法两种。
标准对照法:在相同条件下,平行测定试样溶液和某一浓度cS(应与试液浓度接近)的标准溶液的吸光度Ax和AS,则由cS可计算出试样溶液中被测物质的浓度cx。
AS=KcS,Ax=Kcx,cx=cSAx/AS
由于标准对照法仅使用单个标准,引起误差的偶然因素较多,故结果往往较不可靠。
标准曲线法:是实际分析工作中最常用的一种方法。配制一系列不同浓度的标准溶液,以不含被测组分的空白溶液作为参比,测定标准系列溶液的吸光度,绘制吸光度-浓度曲线,称为校准曲线(包括标准曲线或工作曲线)。在相同条件下测定试样溶液的吸光度,从校准曲线上找出与之对应的未知组分的浓度。
此外,有时还可以采用标准加入法(做法与原子吸收光谱法相同)。
(2)多组分的定量分析
根据吸光度具有加和性的特点,在同一试样中可以同时测定两种或两种以上的组分。假设要测定试样中的两种组分为A、B,如果分别绘制A、B两纯物质的吸收光谱,可能有三种情况,如图4.12所示。图4.12 a表明两组分互不干扰,可以用测定单组分的方法分别在λ1、λ2测定A、B两种组分;图4.12 b表明A组分对B组分的测定有干扰,而B组分对A组分的测定无干扰,则可以在λ1处单独测量A组分,求得A组分的浓度cA,然后在λ2处测量溶液的吸光度及A、B纯物质的和,根据吸光度的加和性则可以求出cB;图4.12c表明两组分彼此互相干扰,此时在λ1、λ2处分别测定溶液的吸光度
现代岩矿分析实验教程
式中:Mr为衍生物的相对分子质量,扣除生色团的相对分子质量后得到该化合物的相对分子质量;l为吸收介质厚度(cm)。
(2)氢键强度的测定
溶剂效应对吸收光谱的影响表明,溶剂极性增大,会引起吸收带的蓝移和红移,主要是由于溶质分子与溶剂分子的相互作用而引起的,如果它们之间具有可形成氢键的基团,则是由于形成氢键所引起的,因而可以通过吸收波长的移动程度来测定氢键的强度。
(3)在电化学研究方面的应用
分光光度法与电化学结合,构成了一个崭新的研究领域——光谱电化学。光谱电化学技术包括透射技术、镜反射技术和内反射技术三种。以分光光度法为测量手段,研究某些无机物、有机物和生物物质在电极上的电化学行为,可以同时获得氧化还原体系的吸收光谱和氧化还原电位,以此研究所发生的电化学反应的历程及动力学;还可以测定发生电化学反应所转移的电子数、标准电位、摩尔吸光系数以及反应中间产物或最终产物的扩散系数等。光谱电化学发展很快,在研究无机、有机和生物化学氧化还原机理和均相反应动力学等方面将会发挥极大的作用。
③ 紫外_可见分光光度法,用吸收系数法定量,公式是什么
一、原理可见光、紫外线照射某些物质,主要是由于物质分子中价电子能级跃迁对辐射的吸收,而产生化合物的可见紫外吸收光谱。基于物质对光的选择性吸收的特性而建立分光光度法或称吸收光谱法的分析方法。它是以朗伯──比耳定律为基础。1朗伯—比耳定律A=lg—-=ECLT式中A为吸收度;T为透光率;E为吸收系数,采用的表示方法是(E1%1cm),其物理意义为当溶液浓度为1%(g/ml),液层厚度为1cm时的吸收度数值;C为100ml溶液中所含被测物质的重量(按干燥品或无水物计算),g;L为液层厚度,cm。二、使用范围凡具有芳香环或共轭双键结构的有机化合物,根据在特定吸收波长处所测得的吸收度,可用于药品的鉴别、纯度检查及含量测定。三、仪器可见-紫外分光光度计。其应用波长范围为200~400nm的紫外光区、400~850nm的可见光区。主要由辐射源(光源)、色散系统、检测系统、吸收池、数据处理机、自动记录器及显示器等部件组成。本仪器是根据相对测量的原理工作的,即先选定某一溶剂(或空气、试样)作为标准(空白或称参比)溶液,并认为它的透光率为100%(或吸收度为0),而被测的试样透光率(或吸收度)是相对于标准溶液而言,实际上就是由出射狭缝射出的单色光,分别通过被测试样和标准溶液,这两个光能量之比值,就是在一定波长下对于被测试样的透光率(或吸收度)。本仪器可精密测定具有芳香环或共轭双键结构的有机化合物、有色物质或在适当条件下能与某些试剂作用生成有色物的物质。使用前应校正测定波长并按仪器说明书进行操作。四、仪器的校正1.波长的准确度试验以仪器显示的波长数值与单色光的实际波长值之间误差表示,应在±1.0nm范围内。可用仪器中氘灯的486.02nm与656.10nm谱线进行校正。2.吸收度的准确度试验3.杂散光的试验4.波长重现性试验5.分辨率试验五、测定方法1.对照品比较法(1)按各品种项下的方法,分别配制供试品溶液和对照品溶液,对照品溶液中所含被测成分的量应为供试品溶液中被测成分标示量的100±10%,所用溶剂也应完全一致,在规定的波长测定供试品溶液和对照品溶液的吸收度后,按下式计算含量,即得。(2)计算式A样×G对/稀释倍数×100×1含量(%)=————————————--×100%A对×G样/稀释倍数×100×12.吸收系数法(1)按各品种项下的方法配制供试品溶液,在规定的波长处测定其吸收度,再以该品种在规定条件下的吸收系数计算含量。用本法测定时,应注意仪器的校正和检定。(2)计算式A样含量(%)=——————————————-×100%G样/稀释倍数×(E1%1cm)对×100×13.计算分光光度法采用计算分光光度法应慎重。本法有多种,使用时均应按各品种项下规定的方法进行。当吸收度处在吸收曲线的陡然上升或下降的部位测定时,波长的微小变化可能对测定结果造成显着影响,故对照品和供试品测试条件应尽可能一致。若测定时不用对照品,如维生素A测定法,则应在测定时对仪器作仔细的校正和检定。六、注意事项1.空白溶液与供试品溶液必须澄清,不得有浑浊。如有浑浊,应预先过滤,并弃去初滤液。2.测定时,除另有规定外,应以配制供试品溶液的同瓶溶剂为空白对照,采用1cm的石英吸收池。3.在规定的吸收峰波长±2nm以内测试几个点的吸收度,以核对供试品的吸收峰波长位置是否正确,除另有规定外,吸收峰波长应在该品种项下规定的波长±2nm以内;否则应考虑该试样的真伪、纯度以及仪器波长的准确度,并以吸收度最大的波长作为测定波长。4.一般供试品溶液的吸收度读数,以在0.3~0.7之间的误差较小。5.吸收池应选择配对,否则要引入测定误差。
④ 紫外吸收光谱测定物质含量为什么采用石英比色皿
一般紫外光区用石英比色皿,可见光区用玻璃比色皿,石英比色皿可用在全波段,玻璃比色皿只能用于340nm以上波长,因为玻璃不透紫外光。
玻璃在200~400nm对紫外有强吸收 而且这个吸收大到无法校正(这个是关键问题,做一个背景吸收,再做一次空白样就知道了) 石英比色皿在全波段都没有非常强烈的吸收,不过用紫外光谱的时候,使用石英比色皿要注意方向。
(4)测有色物质的吸收光谱用什么方法扩展阅读:
紫外吸收光谱测定注意事项:
在紫外可见分光光度计中,常用的光源有两类:热辐射光源和气体放电光源。
热辐射光源用于可见光区,如钨灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。
检测器的作用是检测光信号,并将光信号转变为电信号。现今使用的分光光度计大多采用光电管或光电倍增管作为检测器。
比色皿使用时注意不要沾污或将比色皿的透光面磨损,应手持比色皿的毛面,待测液制备好后应尽快测量,避免有色物质分解,影响测量结果。