常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。
1、聚类分析(Cluster Analysis)
聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。
2、因子分析(Factor Analysis)
因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。
3、相关分析(Correlation Analysis)
相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。
4、对应分析(Correspondence Analysis)
对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
5、回归分析
研究一个随机变量Y对另一个(X)或一组(X1,X2,?,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。
6、方差分析(ANOVA/Analysis of Variance)
又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显着性检验。由于各种因素的影响,研究所得的数据呈现波动状。
想了解更多关于数据分析的信息,推荐到CDA数据认证中心看看,CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。
❷ 最小二乘法、回归分析法、灰色预测法、决策论、神经网络等5个算法的使用范围及优缺点是什么
最小二乘法:通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。优点:实现简单,计算简单。缺点:不能拟合非线性数据.
回归分析法:指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。在大数据分析中,回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。优点:在分析多因素模型时,更加简单和方便,不仅可以预测并求出函数,还可以自己对结果进行残差的检验,检验模型的精度。缺点:回归方程式只是一种推测,这影响了因子的多样性和某些因子的不可测性,使得回归分析在某些情况下受到限制。
灰色预测法:
色预测法是一种对含有不确定因素的系统进行预测的方法 。它通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。它用等时间距离观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或者达到某一特征量的时间。优点:对于不确定因素的复杂系统预测效果较好,且所需样本数据较小。缺点:基于指数率的预测没有考虑系统的随机性,中长期预测精度较差。
决策树:在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。优点:能够处理不相关的特征;在相对短的时间内能够对大型数据源做出可行且效果良好的分析;计算简单,易于理解,可解释性强;比较适合处理有缺失属性的样本。缺点:忽略了数据之间的相关性;容易发生过拟合(随机森林可以很大程度上减少过拟合);在决策树当中,对于各类别样本数量不一致的数据,信息增益的结果偏向于那些具有更多数值的特征。
神经网络:优点:分类的准确度高;并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系;具备联想记忆的功能。缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。
❸ 什么是算法分析,算法分析的目的
图像分割基本原理:根据图像的组成结构和应用需求将图像划分为若干个互不相交的子区域的过程。这些子区域四某种意义下具有共同属性的像素的连通集合。常用方法有:1)以区域为对象进行分割,以相似性原则作为分割的依据,即可根据图像的灰度、色彩、变换关系等方面的特征相似来划分图像的子区域,并将各像素划归到相应物体或区域的像素聚类方法,即区域法;2)以物体边界为对象进行分割,通过直接确定区域间的边界来实现分割;3)先检测边缘像素,再将边缘像素连接起来构成边界形成分割。具体的阈值分割:阈值分割方法分为以下3类:1)全局阈值:T=T[p(x,y)〕,即仅根据f(x,y)来选取阈值,阈值仅与各个图像像素的本身性质有关。2)局部阈值:T=T[f(x,y),p(x,y)],阈值与图像像素的本身性质和局部区域性质相关。3)动态阈值:T=T[x,y,f(x,y),p(x,y)],阈值与像素坐标,图像像素的本身性质和局部区域性质相关。全局阈值对整幅图像仅设置一个分割阈值,通常在图像不太复杂、灰度分布较集中的情况下采用;局部阈值则将图像划分为若干个子图像,并对每个子图像设定局部阈值;动态阈值是根据空间信息和灰度信息确定。局部阈值分割法虽然能改善分割效果,但存在几个缺点:1)每幅子图像的尺寸不能太小,否则统计出的结果无意义。2)每幅图像的分割是任意的,如果有一幅子图像正好落在目标区域或背景区域,而根据统计结果对其进行分割,也许会产生更差的结果。3)局部阈值法对每一幅子图像都要进行统计,速度慢,难以适应实时性的要求。全局阈值分割方法在图像处理中应用比较多,它在整幅图像内采用固定的阈值分割图像。考虑到全局阈值分割方法应用的广泛性,本文所着重讨论的就是全局阈值分割方法中的直方图双峰法和基于遗传算法的最大类间方差法。在本节中,将重点讨论灰度直方图双峰法,最大类间方差法以及基于遗传算法的最大类间方差法留待下章做继续深入地讨论。参详《数字图像处理》工具:MATLAB或VC++
❹ 算法分析的两个主要方面是
空间复杂性和时间复杂性。
时间复杂度和空间复杂度是衡量算法好差的重要指标,正确性和简洁性、可读性和可运行性是从软件工程角度要求系统实现的目标。
一个算法应包含有限的操作步骤,而不能是无限的,事实上有穷性往往是在合理的范围之内,如果让计算机执行一个历时1000年才结束的算法,这虽然是有穷的,但超过了合理的限度,不能将其视为有效算法。
(4)算法分析方法有哪些扩展阅读:
算法分析注意事项:
循环结构是算法教学的重点和难点,要注意分散此难点,做到循序渐进,逐层深入,例如在教算法含义时先渗透一点循环结构的知识,在教算法3 种基本结构时可先给出循环结构的一些简单的例子,到了教条件语句和循环语句时再逐步加深。
输入数据的长度(通常考虑任意大的输入,没有上界),值域通常是执行步骤数量(时间复杂度)或者存储器位置数量(空间复杂度)。算法分析是计算复杂度理论的重要组成部分。