A. 高中数学解题技巧
导语:数学(mathematics或maths),是研究数量樱拦、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
第一个技巧,看清审题与解题
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量?如“至少”,“a>0”,自变量的取值范围等,从中获取尽可能多的信息,才能迅速找准解题方向。
第二个技巧,利用好快与准
只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的,适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
第三种解题技巧:“会做”与“得分”的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点银颂祥往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。这样的失分情况,的确很冤枉,所以高中学习网不希望我们的同学也犯这样的错误!
第四种解题技巧:难题与容易题的关系
一般来说,当我们拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的.顺序作答。但是,近年来考题的顺序并不完全是难易的顺序,因此在答题时要合理安排时间!此外,高中学习方法指导名师建议我们的同学,在解答题时都应设置了层次分明的“台阶”,因为看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。
高考数学十二大临场考试技巧
一、调理大脑思绪,提前进入数学情境
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
二、“内紧外松”,集中注意,消除焦虑怯场
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
三、沉着应战,确保旗开得胜,以利振奋精神
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
四、“六先六后”,因人因卷制宜
在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解锋搏题能力的黄金季节了。这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难。就是先做简单题,再做综合题。应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处。对后者,不要惊慌失措。应想到试题偏难对所有考生也难。通过这种暗示,确保情绪稳定。对全卷整体把握之后,就可实施先熟后生的策略,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
3.先同后异,就是说,先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力。
4.先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基础。
5.先点后面,近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面。
6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
五、一“慢”一“快”,相得益彰
有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。
六、确保运算准确,立足一次成功
数学高考题的容量在120分钟时间内完成大小22个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
七、讲求规范书写,力争既对又全
考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。
八、面对难题,讲究策略,争取得分
会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。
1.缺步解答。对一个疑难问题,确实啃不动时,一个明智的解题策略是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。
2.跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
九、以退求进,立足特殊,发散一般
对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
十、执果索因,逆向思考,正难则反
对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展。顺向推有困难就逆推,直接证有困难就反证。如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。
十一、回避结论的肯定与否定,解决探索性问题
对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。
十二、应用性问题思路:面—点—线
解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”。如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际。
B. 高中数学专题题型及解题技巧
数学作为一门相对抽象化的学科,是很多学生提高成绩的障碍,而习题则为学生提供了提高数学成绩的有效途径.高中数学习题是数学教学中的重要一环下面,下面是我为大家整理的关于高中数学专题题型及解题技巧,希望对您有所帮助。欢迎大家阅读参考学习!
1高中数学专题题型及解题技巧
选择题
选择题是高中数学考试中的较基础题型之一,分为多项选择和单项选择,一般是放在考查的第一部分,是考试重心,在习题练习中也占有较大比例.目前的高中数学选择题倾向于单项选择,表面看来降低了不少难度,但是选项中的相近答案极易给学生以误导.通常来说,选择题的知识覆盖面较广,思维具有跳跃性,题目由浅到深,是检测学生观察、分析以及推理判断能力的有效手段
.如何提高解答选择题正确率,这就要求学生在练习中要充分利用题干中提供的各种信息,排除相似选项的干扰,一方面从题干出发,探求结果,另一方面结合选项,排除矛盾.我们可以采取排除法,概念分析法、图形分析法和 逆向思维 法相结合,灵活运用各种定理概念,做到 发散思维 ,提高解题时效率.如题:设定义在R上的函数f(x)满足f(x)?f(x+2)=13,若f(1)=2,则f(99)等于( ).该题共有四个答案,分别是13、2、 132、213.我们可以通过这样的步骤计算:(1)(x+2)=13f(x),f(x+4)=13f(x+2)=1313f(x)=f(x).(2)函数f(x)为周期函数,且T=4,f(99)=f(4×24+3)=f(3)=13f(1)=132.在这里,我们利用题干中的相关条件,运用函数的周期性这一概念,得到f(x)是周期为4的函数.周期性是解答此题的关键,我们可以利用直接法算出.
填空题
选择题在考试中放在选择题后,题量不大,难度相对较低,但是分值也不高,主要是为了考查学生的基本技能和学生的基础能力.学生能够利用基础知识解决和分析问题,在填空题中就不会失去太多分数.填空题与选择题的差别在于:首先,填空题没有选项,在解答问题时缺乏提示,但是同时也排除了相似项的干扰;其次,填空题是在题干中抽出一部分内容由学生填补,结构简单、概念性强;
此外,填空题不要求写出运算过程,是将结论直接填入空位中的求解题.一般来说,填空题的运算量都不算大,学生可以基本采用数形结合法、等价转换法、构造法等,小题小做,提高正确率.如:在△ABC中,角A、B、C所对的边分别为a、b、c,如果a、b、c成等差数列,则cosA+cosC1+cosAcosC=.解这道题有两种 方法 ,首先:我们可以通过取特殊值来计算,例如a=3,b=4,c=5,则cosA=45,cosC=0,cosA+cosC;1+cosAcosC=45;其次:利用角的特殊性,取特殊角A=B=C=π3,cosA=cosC=12,cosA+cosC1+cosAcosC=45.这就要求我们要熟练掌握三角形的概念以及特殊三角形直接的关系,才能在习题练习中节省时间,顺利解答.
2高中数学解题技巧
灵活数学解题技巧的运用目标
所谓灵活的数学解题技巧就是在有效的学习时间内让学生的数学学习效果达到最大化.具体目标是形成与数学课本内容紧密镶嵌的解题模式,改变学生惯有的学习方式,对待不同类型的题目要注意灵活运用.熟练地运用数学解题技巧不是一味地为了技巧而运用技巧,而是在熟练掌握基本的课本知识的同时,在逐渐的积累与实践中掌握不同类型题目的学习规律,让数学解题技巧成为学生的一种辅助工具
比如有的题目可以套用公式,但是同样也可以按照规律进行简便运算,数学解题技巧的运用旨在培养学生独立思考的 逻辑思维 能力和分析能力.不单单要让学生学会应对应试 教育 模式,还要更加注重技巧对学生解题的帮助以及运用数学思维去解决实际问题的能力.
审题技巧
审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和方法的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。(1)条件的分析,一是找出题目中明确告诉的已知条件,二是发现题目的隐含条件并加以揭示。目标的分析,主要是明确要求什么或要证明什么;把复杂的目标转化为简单的目标;
把抽象目标转化为具体的目标;把不易把握的目标转化为可把握的目标。(2)分析条件与目标的联系。每个数学问题都是由若干条件与目标组成的。解题者在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标。(3)确定解题思路。一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁。用哪些联系解题,需要根据这些联系所遵循的数学原理确定。解题的实质就是分析这些联系与哪个数学原理相匹配。有些题目,这种联系十分隐蔽,必须经过认真分析才能加以揭示;有些题目的匹配关系有多种,而这正是一个问题有多种解法的原因。
3数学的解题方法
一“慢”一“快”,相得益彰
有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。
讲求规范书写,力争既对又全
考试的又一个特点是以卷面为依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分” 也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。
确保运算准确,立足一次成功
数学高考题的容量在120分钟时间内完成大小二十多个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
4高中数学具体解题技巧
数形结合法
数学是一门逻辑思维极强的学科,针对数学题目的复杂性、抽象性,绘制图形进行参照是正确解题的重要一步.这种方法一般用于函数图像、几何图形、立体几何等题目的求解中,数形结合法不仅对于解决数学大题至关重要,在选择题领域也有广泛的应用.但要注意的是,在使用数形结合法时,切勿将图形画错而影响题目的正确解答.
直接答题法
直接答题法要求我们直接从题目所给的条件出发,运用相关的概念、性质和公式等知识,在层层推理与运算的基础上,得到题目的正确答案.直接答题法一般常用于涉及概念、性质的考查或者运算相对简单选择题与填空题.例如,在进行“三角函数”的计算时,我们习惯于使用数形结合法对其函数性质进行深入的研究,那么在做题时就难免思维定式,无论多么简单的题目都进行画图求解,这无形中就浪费了很多的答题时间.当进行“三角函数”大小比较时,比如正弦函数与余弦函数的比较过程中,我们往往可以采用直接法进行一次性求解.
特殊代入法
特殊代入法指能够根据题目的具体要求,灵活代入数值,确定图形的特殊关系和位置来取代题目的正规解法,通过得出的特殊答案,对题目的选项进行一一代入筛选,从而做出正确的判断.这种方法常用于题目条件清晰的特殊函数、特殊图形、特殊极值的解答中.例如,在进行含有未知数的等差数列求和时,除了按照等差数列的性质将带有未知数的公式列出来,还可以赋予未知数一个特殊的值,这个值一般为“1”或者是“0”,通过特殊值求出特殊的结果,最后进行整个公式的代入求值.
高中数学专题题型及解题技巧相关 文章 :
1. 高中数学常考题型答题技巧与方法及顺口溜
2. 高中数学题型特点以及答题技巧
3. 高中数学21种解题方法与技巧
4. 高考数学常考题型答题技巧与方法有哪些
5. 高中数学解答题8个答题模板与做大题的方法
6. 高考数学必考题型以及题型分析
7. 高考数学题型特点和答题技巧
8. 高中数学六种解题技巧与五种数学答题思路
9. 高中数学50个解题小技巧
10. 高中数学7大学习方法,高考数学命题点及答题技巧
C. 高中数学解题技巧与方法
2019学魁`榜邱崇数学解题技巧(含终极秒杀选填)(16.6G超清视频)
链接:
若资源有问题欢迎追问~
D. 怎样解题 高中数学解题方法与技巧
2019学魁`榜邱崇数学解题技巧(含终极秒杀选填)(16.6G超清视频)
链接:
若资源有问题欢迎追问~
E. 高中解题方法 高中数学解题常用的几种解题思路和技巧
1、方程解题法
很多数学题目中有着复杂的数量关系,而且涉及到许多知识点,当我们在解析题目中的数量关系时,如果直接对其数量关系进行分析,不仅增加我们解题过程,还会提高题目整体难度,这样我们就难以理清题目中的各种关系,给我们有效解决题目带来较大麻烦。
数学题目中的各种数量关系大都具有紧密联系,所以我们可以利用方程解题法建立多种数量关系,简化解题步骤,帮助我们更好解决数学问题。
2、排除解题法
排除解题法一般用于解决数学选择题,当我们应用排除法解决问题时,需掌握各种数学概念及公式,对题目中的答案进行论证,对不符合论证关系的答案进行排除,从而有效解决数学问题。当我们在解决选择题时,必须将题目及答案都认真看完,对其之间的联系进行合理分析,并通过严谨的解题思路将不符合论证关系的条件进行排除,从而选择正确的答案。
排除解题法主要用于缩小答案范围,从而简化我们的解题步骤,提高接替效率,这样方法具有较高的准确率。
F. 高中数学解题套路和技巧有哪些
一.解题时需要注意的问题
1.精选题目,避免题海战术 只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。
2. 认真分析题目 解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。
3. 做好题目总结 解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:
1)在知识方面。题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。
2)在方法方面。如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。
3)能否归纳出题目的类型,进而掌握这类题目的解题方法。
二.数学解题的一些技巧
1.思路思想提炼法 催生解题灵感。“没有解题思想,就没有解题灵感”。但“解题思想”对很多学生来说是既熟悉又陌生的。熟悉是因为教师每天挂在嘴边,陌生就是说不请它究竟是什么。建议同学们在老师的指导下,多做典型的数学题目,则可以快速掌握。
2. 典型题型精熟法 抓准重点考点管理学的“二八法则”说:20%的重要工作产生80%的效果,而80%的琐碎工作只产生20%的效果。数学学习上也有同样现象:20%的题目(重点、考点集中的题目)对于考试成绩起到了80%的贡献。因此,提高数学成绩,必须优先抓住那20%的题目。针对许多学生“题目解答多,研究得不透”的现象,应当通过科学用脑,达到每个章节的典型题型都胸有成竹时,解题时就会得心应手。
3. 逐步深入纠错法 巩固薄弱环节管理学上的“木桶理论”说:一只水桶盛水多少由最短板决定,而不是由最长板决定。学数学也是这样,数学考试成绩往往会因为某些薄弱环节大受影响。因此,巩固某个薄弱环节,比做对一百道题更重要。
G. 高中数学数列解题方法与技巧
高中数学数列方法和技巧:公式法、倒序相加法、错位相减法。
1、公式法
假如一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式。留意等比数列公示q的取值要分q=1和q-1。
数列在数学中的作用:
数列是特殊的函数。它的定义域一般是指非负的正整数,有时也可以为自然数,或者自然数的无限子集。自然数是离散的,数列通常称为离散函数,离散函数是相对定义域为实数或者实数的区间的函数而言的。数列作为离散函数,在数学中有着自己的重要地位。
在高中和大学,除了专门研究数学之外,我们所遇到的函数都是“好的函数”,“好函数”不仅是连续的,而且是可导的,像幂函数、指数函数、对数函数、三角函数等都是好函数,它们具有任意阶导数。数列在研究这些函数中发挥着重要作用。
H. 高中数学的解题的方法和学好数学的技巧
数学是应用性很强的学科,想要学好数学就要知到一些解题的方法,下面是我给大家带来的有关于高中数学的解题的方法介绍,希望能够帮助到大家。
1、首先是精选题目,做到少而精。
只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。
2、其次是分析题目。
解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。
3、最后,题目总结。
解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:
①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。
②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。
③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。
④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。
学会听课
数学的学习是需要老师的引导,在引导下,高一学生根据自己的情况做一些相应的练习来掌握知识,巩固知识,要想提高数学学习效率,就需要高一学生做到以下一些:
1、做好预习,提出问题,进行多次阅读数学课本,查阅相关资料,回答自己提出的问题,力争在老师讲新课前尽可能的掌握更多的数学知识,如果不能回答的问题可以在老师讲课中去解决。
2、学会听课,在高一的教学中老师经常会把一个知识点进行多次的讲解和通过大量的练习让高一学生去掌握,可是到高中以后,老师对于一个数学知识点就不会再通过大量的练习来让高一学生去掌握,而是通过一些相关知识的讲解去引导高一学生明白这个知识是怎么来的,又如何用这个知识解答一些相关的疑惑,如果高一学生能明白的话就能在自己的数学知识下通过课后的练习去巩固这些知识,同时高一学生也可以根据老师的引导去扩展数学知识。
当然,对于自己在听课过程中一下子不能明白的数学知识,可以通过举手让老师再进行一次分析讲解,也同时做好相关的记录,以备在课后去进一步弄明白;对于自己在预习中提出的问题,如果老师没有解决的话,可以利用课余时间请教老师解答,这样学习数学就可能学习到更多的知识。
3、敢于发表自己的想法,在高一数学学习中,高一学生会遇到很多解题技巧,可能这种方法你知道,另外的人不是很熟悉。那么就需要高一学生敢于发表自己的想法,这样就能让大家掌握更多的技巧。也同样能激发同学学习的兴趣,如果一节课都是老师讲的话,课堂气氛也是很闷的,高一学生学习数学的效率也是很低的。
4、听好每一分钟,尤其是老师讲课的开头和结束
老师讲课开头,一般是概括前节课的要点指出本节数学课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲数学知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。
课后巩固
很多高一学生在学习过程中没有重视课后的巩固,只是觉得在课堂上掌握一些数学知识就够了,其实这是错误的。高中数学的知识很多,并且不像初中数学那么浅显,而是有很多的内涵,如果不能进一步挖掘其数学内涵,那么只是掌握这个知识的表面,于是在自己做练习时就不知道如何去解了,也不能运用这个数学知识的。
做练习是需要的,可是有些高一学生只是为了练习去做练习,而不是为了巩固这个知识,扩展这个知识去做练习,经常是做完这个练习后算做完了,这样跟初中的做题是没有区别的。其实,我们还应该把这个练习中使用到的数学知识串起来,这样我们就能明白那些知识在运用,也能掌握更多的知识。也同样能发现那个知识点是重点,也能发现难题是如何把相关数学知识串起来的。
听好课
在课堂上集中注意力是想要学好一门科目的关键,高中数学课也不例外。数学也是一门极难学懂的课程,所以学生在课上课下都要花费大量的时间,数学也不是一门只要掌握好方法就能学懂的学科,所以在高中数学的学习上,一定要好好听课,汲取老师的经验,转化为自己知识,才能把握住一些技巧性的东西,从而提高自己数学的分数。
勤做题
相信很多学生在高三的时候都经历了疯狂做题的阶段,每天几套几套的卷子,做的学生心理疲惫。但是题海战术面对我国现在高中生的普遍水平还是很管用的。如果你不像其他学霸那样有着过人的天分,那么在高中数学的学习上,就一定要多做题、勤做题。把每个你不会的题型都多做几遍,做的多了,数学的水平自然也就上去了。
会归纳