导航:首页 > 研究方法 > 回归分析在数据处理方法上的应用

回归分析在数据处理方法上的应用

发布时间:2023-03-12 14:32:53

⑴ 数据分析师必须掌握的7种回归分析方法

1、线性回归


线性回归是数据分析法中最为人熟知的建模技术之一。它一般是人们在学习预测模型时首选的技术之一。在这种数据分析法中,由于变量是连续的,因此自变量可以是连续的也可以是离散的,回归线的性质是线性的。


线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。


2、逻辑回归


逻辑回归是用来计算“事件=Success”和“事件=Failure”的概率。当因变量的类型属于二元(1 /0,真/假,是/否)变量时,我们就应该使用逻辑回归.


逻辑回归不要求自变量和因变量是线性关系。它可以处理各种类型的关系,因为它对预测的相对风险指数OR使用了一个非线性的log转换。


为了避免过拟合和欠拟合,我们应该包括所有重要的变量。有一个很好的方法来确保这种情况,就是使用逐步筛选方法来估计逻辑回归。它需要大的样本量,因为在样本数量较少的情况下,极大似然估计的效果比普通的最小二乘法差。


3、多项式回归


对于一个回归方程,如果自变量的指数大于1,那么它就是多项式回归方程。虽然会有一个诱导可以拟合一个高次多项式并得到较低的错误,但这可能会导致过拟合。你需要经常画出关系图来查看拟合情况,并且专注于保证拟合合理,既没有过拟合又没有欠拟合。下面是一个图例,可以帮助理解:


明显地向两端寻找曲线点,看看这些形状和趋势是否有意义。更高次的多项式最后可能产生怪异的推断结果。


4、逐步回归


在处理多个自变量时,我们可以使用这种形式的回归。在这种技术中,自变量的选择是在一个自动的过程中完成的,其中包括非人为操作。


这一壮举是通过观察统计的值,如R-square,t-stats和AIC指标,来识别重要的变量。逐步回归通过同时添加/删除基于指定标准的协变量来拟合模型。


5、岭回归


岭回归分析是一种用于存在多重共线性(自变量高度相关)数据的技术。在多重共线性情况下,尽管最小二乘法(OLS)对每个变量很公平,但它们的差异很大,使得观测值偏移并远离真实值。岭回归通过给回归估计上增加一个偏差度,来降低标准误差。


除常数项以外,这种回归的假设与最小二乘回归类似;它收缩了相关系数的值,但没有达到零,这表明它没有特征选择功能,这是一个正则化方法,并且使用的是L2正则化。


6、套索回归


它类似于岭回归。除常数项以外,这种回归的假设与最小二乘回归类似;它收缩系数接近零(等于零),确实有助于特征选择;这是一个正则化方法,使用的是L1正则化;如果预测的一组变量是高度相关的,Lasso 会选出其中一个变量并且将其它的收缩为零。


7、回归


ElasticNet是Lasso和Ridge回归技术的混合体。它使用L1来训练并且L2优先作为正则化矩阵。当有多个相关的特征时,ElasticNet是很有用的。Lasso会随机挑选他们其中的一个,而ElasticNet则会选择两个。Lasso和Ridge之间的实际的优点是,它允许ElasticNet继承循环状态下Ridge的一些稳定性。


通常在高度相关变量的情况下,它会产生群体效应;选择变量的数目没有限制;并且可以承受双重收缩。


关于数据分析师必须掌握的7种回归分析方法,青藤小编就和您分享到这里了,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的职业前景及就业内容,可以点击本站的其他文章进行学习。

什么是回归分析,运用回归分析有什么作用

回归分析,也有称曲线拟合.当在实验中获得自变量与因变量的一系列对应数据,(x1,y1),(x2,y2),(x3,y3),(xn,yn)时,要找出一个已知类型的函数,y=f(x) ,与之拟合,使得实际数据和理论曲线的离差平方和:∑[yi-f(xi)]^2(从i=1到i=n相加)为最小.这种求f(x)的方法,叫做最小二乘法。求得的函数y=f(x)常称为经验公式,在工程技术和科学研究的数据处理中广泛使用.最普遍的是直线(一次曲线)拟合,在现代质量管理上,对散布图的相关分析上也用此法.当然,以上仅介绍了回归分析的一部分简要内容,要详细了解,应读大学,或自学到这个程度.我是自学的,我想你只要坚持不懈的努力,也是会成功的.

⑶ 多元回归分析的应用

回归分析有很广泛的应用,例如实验数据的一般处理,经验公式的求得,因素分析,产品质量的控制,气象及地震预报,自动控制中数学模型的制定等等。
多元回归分析是研究多个变量之间关系的回归分析方法,按因变量和自变量的数量对应关系可划分为一个因变量对多个自变量的回归分析(简称为“一对多”回归分析)及多个因变量对多个自变量的回归分析(简称为“多对多”回归分析),按回归模型类型可划分为线性回归分析和非线性回归分析。
本“多元回归分析原理”是针对均匀设计3.00软件的使用而编制的,它不是多元回归分析的全面内容,欲了解多元回归分析的其他内容请参阅回归分析方面的书籍。
本部分内容分七个部分,§1~§4介绍“一对多”线性回归分析,包括数学模型、回归系数估计、回归方程及回归系数的显着性检验、逐步回归分析方法。“一对多”线性回归分析是多元回归分析的基础,“多对多”回归分析的内容与“一对多”的相应内容类似,§5介绍“多对多”线性回归的数学模型,§6介绍“多对多”回归的双重筛选逐步回归法。§7简要介绍非线性回归分析。
§1 一对多线性回归分析的数学模型
设随机变量与个自变量存在线性关系:
,(1.1)
(1.1)式称为回归方程,式中为回归系数,为随机误差。
现在解决用估计的均值的问题,即

且假定,,是与无关的待定常数。
设有组样本观测数据:
其中表示在第次的观测值,于是有: 重难点:了解聚类分析的基本思想、方法及其简单应用;了解回归的基本思想、方法及其简单应用.
考纲要求:①了解聚类分析的基本思想、方法及其简单应用.
②了解回归的基本思想、方法及其简单应用.

⑷ 多元线性回归分析可以应用在哪些方面

(1)确定几个特定的变量之间是否存在相关关系,如果存在的话,找出它们之间合适的数学表达式;

(2)根据一个或几个变量的值,预测或控制另一个变量的取值,并且可以知道这种预测或控制能达到什么样的精确度;

(3)进行因素分析。

例如在对于共同影响一个变量的许多变量(因素)之间,找出哪些是重要因素,哪些是次要因素,这些因素之间又有什么关系等等

多元线性回归简介

在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。

以上内容参考网络-多元线性回归

⑸ 回归分析的基本过程及其应用意义

回归分析(英语:Regression Analysis)是一种统计学上分析数据的方法,目的在于了解两个或多个变量间是否相关、相关方向与强度,并建立数学模型以便观察特定变量来预测研究者感兴趣的变量。回归分析是建立因变量Y(或称依变量,反应变量)与自变量X(或称独变量,解释变量)之间关系的模型。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对具有相关关系的现象,择一适当的数学关系式,用以说明一个或一组变量变动时,另一变量或一组变量平均变动的情况,这种关系式称为回归方程。

⑹ 什么是回归分析,运用回归分析有什么作用

回归分析(regressionanalysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。

运用十分广泛,回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多重线性回归分析。

(6)回归分析在数据处理方法上的应用扩展阅读:

回归分析步骤

1、确定变量

明确预测的具体目标,也就确定了因变量。如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。

2、建立预测模型

依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。

3、进行相关分析

回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。只有当自变量与因变量确实存在某种关系时,建立的回归方程才有意义。因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。

4、计算预测误差

回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。

5、确定预测值

利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。

⑺ 回归分析法的应用

趋势分析法总体上分四大类:(一)纵向分析法;(二)横向分析法;(三)标准分析法;(四)综合分析法。此外,趋势分析法还有一种趋势预测分析。趋势预测分析运用回归分析法、指数平滑法等方法来对财务报表的数据进行分析预测,分析其发展趋势,并预测出可能的发展结果。以下先简要介绍如何运用趋势线性方程来作趋势预测分析,其它四类方法后面分别介绍。趋势线性方程是作趋势分析时,预测销售和收益所普遍采用的一种方法。公式表示为:y=a+bx.其中:a和b为常数,x表示时期系数的值,x是由分配确定,并要使∑x=0。为了使∑x=0。当时期数为偶数或奇数时,值的分配稍有不同

阅读全文

与回归分析在数据处理方法上的应用相关的资料

热点内容
治疗股骨头康复的方法 浏览:409
如何diy宝宝棉鞋方法图解 浏览:358
海竿连接鱼钩方法 浏览:411
姜汁沉淀问题解决方法 浏览:508
居住用地土壤检测方法和标准 浏览:7
受贿罪的研究方法 浏览:609
美安钙粉使用方法儿童 浏览:306
水平安装接地体的方法 浏览:961
用绳子做电梯简单方法 浏览:303
魅蓝6手机usb在哪里设置方法 浏览:979
审计的技术方法内容是什么意思 浏览:993
假性分手的最佳方法 浏览:274
膝盖长骨刺治疗方法 浏览:430
妇科念珠菌治疗方法 浏览:479
手机360清理缓存在哪里设置方法 浏览:474
谐波治理方法有哪些 浏览:52
查找问题最常用的两种方法 浏览:360
千层南瓜馒头的制作方法和步骤 浏览:872
髋关节炎的症状和治疗方法 浏览:821
赵州桥哪里用了什么说明方法 浏览:632