统计是要分析数据的,但首先需要考察的是,数据的是否合适,实验采集的数据是否符合分析的目的和要求。
所谓实验设计就是指设计实验的合理程序,使得收集得到的数据符合统计分析方法的要求,以便得出有效的客观的结论。它主要适用于自然科学研究和工程技术领域的统计数据搜集。
实验设计要遵循的三个基本原则:
(1)重复性原则:即允许在相同条件下重复多次实验。好处是:其一可以获得更加精确的有效估计量;其二,可以获得实验误差的估计量。这些都是提高估计精度或缩小误差范围所需要的。
(2)随机化原则:是指在实验设计中,对实验对象的分配和实验次序都是随机安排的。是实验设计的重要原则。
(3)区组化原则:即利用类型分组技术,对实验对象按有关标志顺序排除,然后依次将各单位随机地分配到各处理组,使各处理组组内标志值的差异相对扩大,而处理组组间的差异相对缩小,这种实验设计安排称为随机区组设计。
2.大量观察
大量观察法是统计学所特有的方法。所谓大量观察法,是指对所研究的事物的全部或足够数量进行观察的方法。统计描述
统计描述是指对由实验或调查而得到的数据进行登记、审核、整理、归类、计算出各种能反映总体数量特征的综合指标,并加以分析,从中抽出有用的信息,用表格或图像把它表示出来。是统计研究的基础。它通过对分散无序的原始资料的整理归纳,运用分组法和综合指标法得到现象总体的数量特征,揭露客观事物内在数量规律性,达到认识的目的。
㈡ “统计学”的基本方法有哪几种
“统计学”的基本方法有:
(一)大量观察法。
(二)统计分组法。
(三)综合指标法。
(四)时间数列分析法。
(五)指数分析法。
(六)相关分析法。
第三类是为了进行理论性推理而采用的例示性的数字。配第把这种运用数字和符号进行的推理称之为“代数的算法”。
从配第使用数据的方法看,“政治算数”阶段的统计学已经比较明显地体现了“收集和分析数据的科学和艺术”特点,统计实证方法和理论分析方法浑然一体,这种方法即使是现代统计学也依然继承。
配第在书中使用的数字有三类:
第一类是对社会经济现象进行统计调查和经验观察得到的数字。因为受历史条件的限制,书中通过严格的统计调查得到的数据少,根据经验得出的数字多;
第二类是运用某种数学方法推算出来的数字。其推算方法可分为三种:
(1)以已知数或已知量为基础,循着某种具体关系进行推算的方法。
(2)通过运用数字的理论性推理来进行推算的方法。
(3)以平均数为基础进行推算的方法”。
㈢ 统计学的研究方法有哪些
统计学作为一门方法论科学,具有自己完善的方法体系。统计研究的具体方法有很多,这将在后续课程中学习,而从大的方面看,其基本研究方法有:
一、大量观察法
这是统计活动过程中搜集数据资料阶段(即统计调查阶段)的基本方法:即要对所研究现象总体中的足够多数的个体进行观察和研究,以期认识具有规律性的总体数量特征。大量观察法的数理依据是大数定律,大数定律是指虽然每个个体受偶然因素的影响作用不同而在数量上几存有差异,但对总体而言可以相互抵消而呈现出稳定的规律性,因此只有对足够多数的个体进行观察,观察值的综合结果才会趋向稳定,建立在大量观察法基础上的数据资料才会给出一般的结论。统计学的各种调查方法都属于大量观察法。
二、统计分组法
由于所研究现象本身的复杂性、差异性及多层次性,需要我们对所研究现象进行分组或分类研究,以期在同质的基础上探求不同组或类之间的差异性。统计分组在整个统计活动过程中都占有重要地位,在统计调查阶段可通过统计分组法来搜集不同类的资料,并可使抽样调查的样本代表性得以提高(即分层抽样方式);在统计整理阶段可以通过统计分组法使各种数据资料得到分门别类的加工处理和储存,并为编制分布数列提供基础;在统计分析阶段则可以通过统计分组法来划分现象类型、研究总体内在结构、比较不同类或组之间的差异(显着性检验)和分析不同变量之间的相关关系。统计学中的统计分组法有传统分组法、判别分析法和聚类分析法等。
三、综合指标法
统计研究现象的数量方面的特征是通过统计综合指标来反映的。所谓综合指标,是指用来从总体上反映所研究现象数量特征和数量关系的范畴及其数值,常见的有总量指标、相对指标,平均指标和标志变异指标等。综合指标法在统计学、尤其是社会经济统计学中占有十分重要的地位,是描述统计学的核心内容。如何最真实客观地记录、描述和反映所研究现象的数量特征和数量关系,是统计指标理论研究的一大课题。
四、统计模型法
在以统计指标来反映所研究现象的数量特征的同时,我们还经常需要对相关现象之间的数量变动关系进行定量研究,以了解某一(些)现象数量变动与另一(些)现象数量变动之间的关系及变动的影响程度。在研究这种数量变动关系时,需要根据具体的研究对象和一定的假定条件,用合适的数学方程来进行模拟,这种方法就叫做统计模型法。
五、统计推断法
在统计认识活动中,我们所观察的往往只是所研究现象总体中的一部分单位,掌握的只是具有随机性的样本观察数据,而认识总体数量特征是统计研究的目的,这就需要我们根据概率论和样本分布理论,运用参数估计或假设检验的方法,由样本观测数据来推断总体数量特征。这种由样本来推断总体的方法就叫统计推断法。统计推断法已在统计研究的许多领域得到应用,除了最常见的总体指标推断外,统计模型参数的估计和检验、统计预测中原时间序列的估计和检验等,也都属于统计推断的范畴,都存在着误差和置信度的问题。在实践中这是一种有效又经济的方法,其应用范围很广泛,发展很快,统计推断法已成为现代统计学的基本方法。
㈣ 统计研究的基本方法有哪几种
抽样平均误差是测定抽样误差的基本指标。它是随机抽样可变总体平均数(抽样平均数的所有可能值)与全及平均数之间离差...这个指标反映抽样平均数的所有可能值对全及平均数的平均离散程度,即反映误差平均值的大小
分布数列是统计整理的一种重要形式,是统计描述和统计分析的一种重要方法,它可以说明总体的分布特征、内部结构,并可据以研究总体某一标志值的平均水平及其变动的规律性。
1、统计学:是运用数理统计的基本原理和方法研究预防医学和卫生事业管理中资料的收集,整理和分析的一门应用科学。具体地讲,是按照设计方案去收集、整理、分析数据,并对数据结果进行解释,从而做出比较正确的结论。
2、总体:是根据研究目的确定同质的所有观察单位某种变量的集合。
3、变异:同一性质的事物,其观察值(变量值)之间的差异。
4、抽样研究:从所研究的总体中随机抽取一部分有代表性的样本进行研究,用样本指标推论总体,最终达到了解总体的目的。这种用样本指标推论总体参数的方法称为抽样研究。
5、统计描述:用统计图表或计算统计指标的方法表达一个特定群体的某种现象或特征。
6、统计推断:根据样本资料的特性对总体的特性作估计或推论的方法称统计推断,常用方法是参数估计和假设检验。
7、概率:是指某事件出现可能性大小的度量,以符号P表示。
8、医学参考值范围:参考值范围又称正常值范围。医学上常把包括绝大多数人某项指标的数值范围称为该指标的参考值范围。
9、正态分布规律:实际工作中,经常需要了解正态曲线下横轴上的一定区域的面积占总面积的百分数,用以估计该区间的观察例数占总例数的百分数,或变量值落在该区间的频数或概率。
10、可比性:是指对研究结果有影响的非处理因素在各处理组之间尽可能相
同或相近。
11、动态数列:是一系列按时间顺序排列起来的统计指标,包括绝对数、相对数或平均数,用以说明事物在时间上的变化和发展趋势。
12、抽样误差:在同一总体中随机抽取样本含量相同的若干样本时,样本指标之间的差异以及样本指标与总体指标的差异。
13、标准误:表示样本均数间变异程度。
14、率的抽样误差:抽样过程中产生的同一总体中均数之间的差异称为均数的抽样误差,率之间的差异称为率的抽样误差。
15、参数估计:是指用样本指标(称为统计量)估计总体指标(称为参数)。
16、可信区间:总体参数的所在范围通常称为参数的可信区间或置信区间,即该区间以一定的概率(如95%或99%)包含总体参数。
17、I型错误:拒绝了实际撒谎能够成立的H0,这类“弃真”的错误称为I型错误。
18、II型错误:接受了实际撒谎能够不成立的H0,这类“存伪”的错误称为II型错误。
19、检验效能:1-b称为检验效能又称为把握度。它的含义是:当两总体确实有差别时,按规定的检验水准a,能够发现两总体间差别的能力。
20、四格表资料:两个样本率的资料又称为四格表资料,在四格表资料中两个样本的实际发生频数和实际未发生频数为基本数据,其他数据均可由这四个基本数据推算出来。
21、列联表资料:对同一样本资料按其两个无序分类变量(行变量和列变量)归纳成双向交叉排列的统计表,其行变量可分为R类,列变量可分为C类,这种表称为R*C列联表。
22、参数检验:是一种要求样本来自总体分布型是已知的(如正态分布),在这种假设的基础上,对总体参数(如总体均数)进行统计推断的假设检验。
23、非参数检验:是一种不依赖总体分布类型,也不对总体参数(如总体均数)进行统计推断的假设检验。
24、秩次:即通常意义上的序号,实际上就是将观察值按顺序由小到大排列,并用序号代替了变量值本身。
25、直线相关系数:它是说明具有直线关系的两个变量间,相关关系的密切程度与相关方向的统计指标。相关系数没有单位,取值范围是-1〈=r〈=1,r的绝对值越大表明两变量的关系越密切。
26、完全负相关:这是一种极为特殊的负相关关系,从散点图上可以看出,由x与y构成的散点完全分布在一条直线上,x增加,y相应减少,算得的相关系数r=-1。
27、正相关:它是说明具有直线关系的两个变量间,存在有正的相关方向,即当x增加时,y有相应增大的趋势,所算得的相关系数r为正值。
28、等级相关:是对等级数据作相关分析,它又称为秩相关,是一种非参数统计方法。
29、评价:是通过对某些标准来判断观测结果,并赋予这种结果以一定的意义和价值的过程。
30、综合评价:是指人们根据不同的评价目的,选择相应的评价形式,据此选择多个因素或指标,并通过一定的数学模型,将多个评价因素或指标转化为能反映评价对象总体特征的信息。
31、优序法:为了比较某几个事物或方案的优劣,在选定各项评价指标后,将待评价的对象或方案就各项评价指标的测量值大小分别排列,并分别对各序号(等级)以相应的评分值即优序数,然后综合诸评价指标,分别计算评价对象的总赋优序数,并按总赋优序大小评定其优顺序的方法即优序法。
32、Topsis:Topsis法常用于系统工程中有限方案多目标决策分析,此外,也可用于效益评价、卫生决策和卫生事业管理等多领域。
33、根本死因:WHO规定,根本死因是指:“(a)引起直接导致死亡的一系列病态事件的那些疾病或损伤,或者(b)造成致命损伤的事故或暴力的情况。”
34、卫生服务需要:是指人们因疾病影响健康,引起人体正常活动的障碍,实际应当接受各种卫生服务的需要(如预防保健、治疗、康复)。
35、卫生服务调查统计:是卫生统计的主要内容之一,卫生服务调查统计是从卫生服务资料的设计、收集、整理、分析的角度,来阐述卫生服务研究的特点、研究方法和注意事项,以便使卫生服务研究服务更具有科学性。
36、卫生服务调查:是指对卫生服务状况、人群健康的危险因素、人群卫生服务的需求和利用、卫生服务资源的分配和利用所进行的一种社会调查。
37、统计表:是以表格的形式列出统计指标,它是对资料进行统计描述时的一种常用手段。
38、统计图:是以各种几何图形(如点、线、面或立体)显示数据的大小、升降、分布以及关系等,它也是对资料进行统计描述时的一种常用手段。
39、均数的抽样误差:统计学上,对于抽样过程中产生的同一总体中均数之间的差异称为均数的抽样误差。
㈤ 统计分析方法有哪些