❶ 怎样用sas分析一组数据并求出均值众数
***对Sashelp.Class数据集,按性别对年龄求均值。并输出到A数据集,平均值变量名 为Age_Mean; Proc Summary Data=Sashelp.Class Nway; Class Sex; Var Age; Output Out=A(Drop=_:) Mean=Age_Mean; Run; Proc Print; Run;
❷ 如何用SAS进行分类数据分析
1.激励的设置
相应于被测试模块的输入激励设置为reg型,输出相应设置为wire类型,双向端口inout在测试中需要进行处理。
方法1:为双向端口设置中间变量inout_reg作为该inout的输出寄存,inout口在testbench中要定义为wire型变量,然后用输出使能控制传输方向。
eg:
inout [0:0] bi_dir_port;
wire [0:0] bi_dir_port;
reg [0:0] bi_dir_port_reg;
reg bi_dir_port_oe;
assign bi_dir_port=bi_dir_port_oe?bi_dir_port_reg:1'bz;
用bi_dir_port_oe控制端口数据方向,并利用中间变量寄存器改变其值。等于两个模块之间用inout双向口互连。往端口写(就是往模块里面输入)
-
❸ SAS的功能模块介绍
SAS (Statistical Analysis System)是一个模块化、集成化的大型应用软件系统。
它由数十个专用模块构成,功能包括数据访问、数据储存及管理、应用开发、图形处理、数据分析、报告编制、运筹学方法、计量经济学与预测等等。
SAS系统基本上可以分为四大部分:SAS数据库部分;SAS分析核心;SAS开发呈现工具;SAS对分布处理模式的支持及其数据仓库设计。
SAS系统主要完成以数据为中心的四大任务:数据访问;数据管理(sas 的数据管理功能并不很出色,而是数据分析能力强大所以常常用微软的产品管理数据,再导成sas数据格式.要注意与其他软件的配套使用);数据呈现;数据分析。当前(2012年)软件最高版本为SAS9.3。其中Base SAS模块是SAS系统的核心。其它各模块均在Base SAS提供的环境中运行。用户可选择需要的模块与Base SAS一起构成一个用户化的SAS系统。
Base SAS
Base SAS作为SAS系统的核心,负责数据管理,交互应用环境管理,进行用户语言处理,调用其它SAS模块。
Base SAS 为SAS系统的数据库提供了丰富的数据管理功能,还支持标准的SQL语言对数据进行操作。Base SAS能够制作从简单列表到比较复杂的统计报表。 Base SAS可进行基本的描述性统计及基相关 系数的计算,进行正态分布检验等。
SAS/GHAPH
SAS/GHAPH可将数据及其包含着的深层信息以多种图形生动地呈现出来,如直方图、圆饼图、星形图、散点相关图、曲线图、三维曲面图、等高线图及地理图等。
SAS/GHAPH提供一个全屏幕编辑器,提供多种设备程序,支持非常广泛的图形输出设备以及标准的图形交换文件。
SAS/ASSIST
SAS/ASSIST为SAS系统提供了面向任务的菜单界面,借助它可以通过菜单系统来使用SAS系统其它产品。它自动生成的SAS程序既可辅助有经验的用户快速编写SAS程序,又可帮助用户学习SAS。
SAS/AF
SAS/AF是一个应用开发工具。用户使用SAS/AF可将包含众多功能的SAS软件作为方法库,利用 SAS/AF的屏幕设计能力以及SCL语言的处理能力来快速开发各种功能强大的应用系统。SAS/AF也了采用了OOP(面向对象编辑)技术,使用户可方便快速开发各类具有图形用户界面(GUI)的应用系统。
SAS/EIS
SAS/EIS是决策工具,也是一个快速应用开发工具。SAS/EIS完全采用新兴的面向对象的编程模式(OOP)。EIS以生动直观的方式(图或表)将关键性或总结性信息呈现给使用者。
SAS/ACCESS
为了对众多不同格式的数据进行查询、访问和分析,SAS/ACCESS提供了与许多流行数据库软件的接口,利用SAS/ACCESS,可建立外部其它数据库的一个统一的公共数据界面。SAS/ACCESS提供的接口是透明的和动态的。用户不必将此文件当作真正存储着数据的SAS数据集一样使用,而只需在SAS中建立对外部的描述(即VIEW)文件,便可将此文件当作真正存储着数据的SAS数据集一样使用。对一些经常使用的外部数据,可以利用SAS/ACCESS将数据真正提取进入SAS数据库。 SAS/ACCESS 提供的接口是双向的,既可将数据读入SAS,也可在SAS中更新外部数据或将SAS数据加载到外部数据库中。
SAS/ACCESS支持的数据库主要有:IML-DL/I, SQL/DS, DB2, ADABAS, Rdb, ORACLE, Sybase, INGRES, Informix, DBF/DIF,ODBC等。
SAS/STAT
SAS/STAT覆盖了所有的实用数理统计分析方法,是国际统计分析领域的标准软件。SAS/STAT提供了八十多个过程,可进行各种不同模型或不同 特点数据的回归分析,如正交回归/面回归、响应面回归、logistic回归、非线性回归等,且具有多种模型选择方法。 可处理的数据有实型数据、有序数据和属性数据,并能产生各种有用的统计量和诊断信息。
在方差分析方面, SAS/STAT为多种试验设计模型提供了方差分析工具。
另外,它还有处理一般线性模型和广义线性模型的专用过程。在多变量统计方面, SAS/STAT为主成分分析、典型相关分析、判别分析和因子分析提供了许多专用过程。SAS/STAT还包含多种聚类准则的聚类分析方法。
SAS/QC
SAS/QC为全面质量管理提供了一系列工具。它也提供一套全屏幕菜单系统引导用户进行标准的统计过程以及试验设计。SAS/QC提供了多种不同类型控制图的制作与分析。Pareto图(排列图)可用于发现需优先考虑的因素,Ishikawa图(鱼骨图)可用于直观地进行因果分析。
SAS/ETS
SAS/ETS提供丰富的计量经济学和时间序列分析方法,是研究复杂系统和进行预测的有力工具。它提供方便的模型设定手段、多样的参数估计方法。
SAS/OR
SAS/OR提供全面的运筹学方法,是一种强有力的决策支持工具。它辅助人们实现对人力、时间以及其它各种资源的最佳利用。 SAS/OR包含通用的线性规划、混合整数规划和非线性规划的求解,也为专门的规划问题提供更为直接的解决办法,如网络流问题、运输问题、分配问题等。
SAS/IML
SAS/IML提供功能强大的面向矩阵运算的编程语言,帮助用户研究新算法或解决SAS中没有现成算法的专门问题。SAS/IML中的基本数据元素是矩阵。它包含大量的数学运算符、函数和例行程序,用户用很少的语句便可执行很复杂的计算过程。
SAS/WA
SAS/WA(Warehouse Administrator)是建立数据仓库的集成工具,它在其它SAS软件的基础上提供了一个建立数据仓库的管理层,包括:定义数据仓库和主题,数据转换和汇总,汇总数据的更新,Metadata的建立、管理和查询,Data marts和Info marts的实现。
SAS/MDDB Server
SAS/MDDB Server是SAS的多维数据库产品,主要用于在线分析处理(OLAP),可将从数据仓库或其它数据源来的数据以立体阵列的方式存储,以便于用多维数据浏览器等工具快速和方便地访问。
SAS/IntrNet
SAS/IntrNet为SAS Web应用提供了数据服务和计算服务,包括htmSQL,它为一UNIX Web服务器的CGI程序,使得能通过支持Web浏览器动态查询SAS数据或外部的关系型数据库;SAS ODBC Driver使得能通过支持ODBC的Windows Web服务器来访问SAS数据;SAS Driver for JDBC使得可以通过Java applet来查询SAS数据; SAS/IntrNet Application Dispatcher使得可以通过Web浏览器动态地递交SAS程序到SAS应用服务器执行,并将结果返回浏览器。
SAS/GIS
SAS/GIS集地理位置系统功能与数据的显示分析于一体。它提供层次化的地理信息,每一层可以是某些地理元素,也可与用户定义的主题(例如:人口、产值等)相关联。用户可交互式地缩小或放大地图,设定各层次显示与否,并利用各种交互式工具进行数据显示与分析。
SAS/ITSV
IT Service Vision(ITSV)是企业的全面IT服务的性能评估和管理的软件,这些IT服务包括计算机系统、网络系统、Web服务器和电话系统等。ITSV将不同来源的数据进行整理和组织,存放于性能数据仓库中,用GUI或批处理的方式产生组织任意层面的报告。系统程序员及网络工程师能借此识别、研究并解决有关问题,业务分析人员能借此制定资源管理的总体策略,CIO和数据中心经理能借此定期地得到所需的IT运作的汇总和分析报告。
SAS/CFO Vision
SAS/CFO Vision用于财务整合和报告,内部包含了会计知识,为日常财务工作提供了现成的程序,并提供了访问所有主要数据源的接口。它主要用于;访问财务和非财务的有关住处整合财务数据,通过一个财务信息仓库来管理业务结构,通过财务报告和分析帮助理解财务的结果,并在组织内交流关键的业务结果信息。
❹ 数据分析需要掌握些什么知识
要想成为一名专业的数据分析师,就需要满足数据分析师的职业要求。数据分析师的职业要求可以总结为以下几个方面。
(1)掌握统计相关的数学知识
和统计相关的数学知识是数据分析师需要具备的基础知识,数据分析师可以根据自己的能力和水平学习相关的统计学知识,初级数据分析师和高级数据分析师需要对统计学知识掌握的程度是不一样的。
如果你是初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力就可以,如果了解常用的统计模型算法那会是你的加分项。
对高级数据分析师来说,只了解基础的统计学知识是不够的。统计模型的相关知识是高级数据分析师必备的能力,最好对线性代数(主要是矩阵计算相关知识)也有一些了解。
“工欲善其事,必先利其器”,要成为一名合格的数据分析师,会使用数据分析工具非常重要。这里所说的工具也就是数据分析软件,例如Excel、SPSS、SAS等。由于Excel通用性强、使用门槛低、功能强大,所以深受数据分析人员的喜爱,也是数据分析师必须掌握的一个数据分析工具,本书所涉及的数据分析内容均使用Excel进行讲解。当然,数据分析师也可以根据自己的能力选择性的掌握SPSS和SAS等进行高级数据分析的工具。
对于初级数据分析师来说,掌握Excel是硬性要求,必须能熟练使用数据透视表和公式,会使用VBA(一种宏语言)的话则是你的加分项。
对于高级数据分析师来说,使用数据分析工具是核心能力。VBA是必备技能,至少熟练使用SPSS/SAS/R其中的一种,可以根据具体情况选择掌握其他分析工具(MATLAB)。
不过,电商数据分析人员除了掌握Excel、SPSS和SAS等本地软件外,还需要掌握像生意参谋、京东商智等专门的电商数据获取和分析工具。
(3)理解业务
对业务的理解是数据分析师所有工作的基础,无论是数据获取方案、指标的选取还是得出最终结论,都依赖于数据分析师对业务本身的理解。
但是要学习和掌握业务知识需要长时间的积累,成为业务专家非常不易,数据分析师则是在业务专家之上的更深层次的思考和总结,否则在数据分析工作中谁指导谁都是个问题。
学习业务知识的方法有很多,以前的分析报告和取数案例都可以拿来研究,当然这也是一个循序渐进的过程。
(4)掌握数据分析方法
做数据分析一定要了解数据分析的方法、应用场景、使用过程以及优缺点,能够根据具体情况在实际工作中灵活应用,确保数据分析工作能够有效开展。
基本的数据分析方法有:平均分析法、分组分析法、对比分析法、交叉分析法、结构分析法、综合评价分析法、矩阵关联分析法等。
高级的数据分析方法包括:聚类分析法、回归分析法、类别分析法、因子分析法、对应分析法等。在做数据分析时,应该在明确目的的前提下选择适合的分析方法。
(5)了解基本设计原则
数据分析师需要通过图表把自己的分析结论和观点展现出来,根据相关的设计原则对图表进行调整,可以使数据分析结果一目了然。
❺ sas标准化数据是用的哪种标准化
sas标准化数据是用的是原始数据标准化。
数据标准化是企业或组织对数据的定义、组织、监督和保护进行标准化的过程。数据标准化分为开发(D)、候选(C)、批准(A)驳回(R)、归档(X)几个过程。数据标准化的分类有Min-max标准化和z-score标准化。
评价是现代社会各领域的一项经常性的工作,是科学做出管理决策的重要依据。随着人们研究领域的不断扩大,所面临的评价对象日趋复杂,如果仅依据单一指标对事物进行评价往往不尽合理,必须全面地从整体的角度考虑问题,多指标综合评价方法应运而生。所谓多指标综合评价方法,就是把描述评价对象不同方面的多个指标的信息综合起来,并得到一个综合指标,由此对评价对象做一个整体上的评判,并进行横向或纵向比较。
而在多指标评价体系中,由于各评价指标的性质不同,通常具有不同的量纲和数量级。当各指标间的水平相差很大时,如果直接用原始指标值进行分析,就会突出数值较高的指标在综合分析中的作用,相对削弱数值水平较低指标的作用。因此,为了保证结果的可靠性,需要对原始指标数据进行标准化处理。目前数据标准化方法有多种,归结起来可以分为直线型方法(如极值法、标准差法)、折线型方法(如三折线法)、曲线型方法(如半正态性分布)。不同的标准化方法,对系统的评价结果会产生不同的影响,然而不幸的是,在数据标准化方法的选择上,还没有通用的法则可以遵循。
在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,再加总才能得出正确结果。数据无量纲化处理主要解决数据的可比性。数据标准化的方法有很多种,常用的有“最小—最大标准化”、“Z-score标准化”和“按小数定标标准化”等。经过上述标准化处理,原始数据均转换为无量纲化指标测评值,即各指标值都处于同一个数量级别上,可以进行综合测评分析。