目前在实际工作中,通常采用的分析方法有五种:
1、对比分析法
也叫比较分析法,是通过实际数与基数的对比来提示实际数与基数之间的差异,借以了解经济活动的成绩和问题的一种分析方法。在科学探究活动中,常常用到对比分析法,这种分析法与等效替代法相似。对比法, 戏剧常用的一种主要艺术手法。一般有三种对比:人物对比、场面对比、细节对比。
2、因素分析法
又称经验分析法,是一种定性分析方法。该方法主要指根据价值工程对象选择应考虑的各种因素,凭借分析人员的知识和经验集体研究确定选择对象。该方法简单易行,要求价值工程人员对产品熟悉,经验丰富,在研究对象彼此相差较大或时间紧迫的情况下比较适用,缺点是无定量分析、主观影响大。
因素分析法是利用统计指数体系分析现象总变动中各个因素影响程度的一种统计分析方法,包括连环替代法、差额分析法、指标分解法等。 因素分析法是现代统计学中一种重要而实用的方法,它是多元统计分析的一个分支。使用这种方法能够使研究者把一组反映事物性质、状态、特点等的变量简化为少数几个能够反映出事物内在联系的、固有的、决定事物本质特征的因素。
因素分析法的最大功用,就是运用数学方法对可观测的事物在发展中所表现出的外部特征和联系进行由表及里、由此及彼、去粗取精、去伪存真的处理,从而得出客观事物普遍本质的概括。其次,使用因素分析法可以使复杂的研究课题大为简化,并保持其基本的信息量。
3、相关分析法
揭示某一矿区钻孔自然弯曲趋势的另一方法是进行相关分析,又称回归分析,即利用数理统计原理,求出反映钻孔自然弯曲趋势的回归方程。通常设孔深为自变量,顶角和方位角为因变量,建立相关关系式这两个相关关系式就代表钻孔顶角和钻孔方位角随孔深而变化的规律。
4、差额计算法
确定引起某个经济指标变动的各个因素的影响程度的一种计算方法。与"连续替代法"内容相同。在几个相互联系的因素共同影响着某一个经济指标的情况下,可应用这一方法计算各个因素对该经济指标发生变动的影响程度。在衡量某一因素对于一个经济指标的影响时,假定只有这一因素变动,而其余因素不变。确定各个因素替代顺序,然后按照这一顺序进行替代计算。这种方法是假定各个因素依照一定的顺序发生变动而进行替代计算的, 因此分析出来的结果具有一定程度的假定性。
5、比例法
比例法亦称“间接计算法”。它是利用过去两个相关经济指标之间长期形成的稳定比率来推算确定计划期有关指标的一种方法。
(1)时变参数分析方法可用于哪些扩展阅读
分析法是“综合法”的对称。把复杂的经济现象分解成许多简单组成部分,分别进行研究的方法。其实质是: 通过调查研究,找出事物的内在矛盾,并对矛盾的各个方面进行深入研究。剔除那些偶然的、非本质的东西,抽象出必然的、本质的因素,并由此得出一些反映本质的简单规定,以把握矛盾的各个方面的特殊性。
分析法所提供的只是对于经济现象的片面理解,它还不能从总体上、从各个部分之间的相互联系上来把握经济现象。因此,在分析的基础上,还必须运用综合的方法,使分析得到的各个方面的本质规定,按照经济现象内在的逻辑联系,形成有机的体系,这样才能全面、深刻地认识经济现象,提出解决问题的有效办法。
适用范围:不易直接证明结论;从结论很显然能推出明显正确的条件。
② 【数据分析师必备】九大常用数据分析方法汇总(上)
定义: 描述性统计是一类统计方法的汇总,揭示了调查总体的数据分布特性。描述性统计分析要对调查总体所有变量的有关数据进行统计性描述,主要包括数据的频数分析、集中趋势分析、离散程度分析、分布以及一些基本的统计图形。
应用:
①数据的频数分析。在数据的预处理部分,利用频数分析和交叉频数分析可以检验异常值和缺失值。
②数据的集中趋势分析。用来反映数据的一般水平,常用的指标有平均值、中位数和众数等。
③数据的离散程度分析。主要是用来反映数据之间的差异程度,常用的指标有方差和标准差。
④数据的分布。在统计分析中,通常要假设样本所属总体的分布属于正态分布,因此需要用偏度和峰度两个指标来检查样本数据是否符合正态分布。
⑤绘制统计图。用图形的形式来表达数据,比用文字表达更清晰、更简明。在SPSS软件里,可以很容易地绘制各个变量的统计图形,包括条形图、饼图和折线图等。
定义: 回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。回归分析按照涉及的自变量的多少,分为回归和多重回归分析;按照自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
应用:
如果在回归分析中,只包括一个自变量X和一个因变量Y,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。一个经济指标的数值往往受许多因素影响,若其中只有一个因素是主要的,起决定性作用,则可用一元线性回归进行预测分析。一元线性回归用途广泛,可处理科学技术的实验数据,也能用于经济现象:统计数据的分析预测。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。
使用条件:分析多个自变量X与因变量Y的关系,X与Y都必须是连续型变量,因变量Y或其残差必须服从正态分布。
线性回归模型要求因变量是连续的正态分布变量,且自变量和因变量呈线性关系,而Logistic回归模型对因变量的分布没有要求,一般用于因变量是离散时的情况。常用于预测分类变量,其中主要是二分类变量。
例如,探讨影响用户复购的关键因素,并根据关键因素预测用户复购行为发生的概率等。选择两组人群,一组是复购组,一组是非复购组,两组人群必定具有不同的特征与购买行为等。因此因变量就为是否复购,值为“是”或“否”,自变量就可以包括很多了,如年龄、性别、购买频率、客单价、平均下单周期、购买品类占比情况等。自变量既可以是连续的,也可以是分类的。然后通过logistic回归分析,可以得到自变量的权重,从而可以大致了解到底哪些因素是产生复购行为的关键因素。同时可以根据关键因素预测用户复购的的可能性。从而可以通过运营策略去加大复购的可能性,提升店铺销量。
④其他回归方法:非线性回归、有序回归、Probit回归、加权回归等。
定义 :方差分析用于两个及两个以上样本均数差别的显着性检验。 由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显着影响的变量。
使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。
例如,在饲料养鸡增肥的研究中,某研究所提出的三种饲料配方A、B、C。应该选择哪种饲料,对鸡增肥效果好且便宜?目的是为了比较三种饲料配方下鸡的平均重量是否相等。特选24只相似的雏鸡随机均分为三组,每组各喂一种饲料,60天定期观测它们的重量并记录。得到三组雏鸡重量数据,比较这三组数据之间是否存在显着性差异。若相等,可任选一种饲料,特别是可以选廉价饲料;若不等,应选增肥效果好的饲料。同理,可运用到相似场景中。
应用 :
单因素方差分析是用来研究一个控制变量的不同水平是否对观测变量产生了显着影响。这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。
例如,分析不同施肥量是否给农作物产量带来显着影响,考察地区差异是否影响妇女的生育率,研究学历对工资收入的影响等。这些问题都可以通过单因素方差分析得到答案。
多因素方差分析用来研究两个及两个以上控制变量是否对观测变量产生显着影响。这里,由于研究多个因素对观测变量的影响,因此称为多因素方差分析。多因素方差分析不仅能够分析多个因素对观测变量的独立影响,更能够分析多个控制因素的交互作用能否对观测变量的分布产生显着影响,进而最终找到利于观测变量的最优组合。
例如,分析不同品种、不同施肥量对农作物产量的影响时,可将农作物产量作为观测变量,品种和施肥量作为控制变量。利用多因素方差分析方法,研究不同品种、不同施肥量是如何影响农作物产量的,并进一步研究哪种品种与哪种水平的施肥量是提高农作物产量的最优组合。
通过上述的分析可以看到,不论是单因素方差分析还是多因素方差分析,控制因素都是可控的,其各个水平可以通过人为的努力得到控制和确定。但在许多实际问题中,有些控制因素很难人为控制,但它们的不同水平确实对观测变量产生了较为显着的影响。
例如,在研究农作物产量问题时,如果仅考察不同施肥量、品种对农作物产量的影响,不考虑不同地块等因素而进行方差分析,显然是不全面的。因为事实上有些地块可能有利于农作物的生长,而另一些却不利于农作物的生长。不考虑这些因素进行分析可能会导致:即使不同的施肥量、不同品种农作物产量没有产生显着影响,但分析的结论却可能相反。这个时候就用到协方差分析。
定义: 假设检验(Hypothesis Testing)是数理统计学中根据一定假设条件由样本推断总体的一种方法。具体作法是:根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的 显着性水平进行检验 ,作出拒绝或接受假设H0的判断。常用的假设检验方法有u-检验法、t检验法、χ2检验法(卡方检验)、F-检验法,秩和检验等。
应用:
参数检验对参数平均值、方差进行的统计检验,参数检验是推断统计的重要组成部分。
非参数检验是统计分析方法的重要组成部分,它与参数检验共同构成统计推断的基本内容。参数检验是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法。但是,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为"非参数"检验。
非参数检验不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一般性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。
欢迎前往关注数据宝典公众号,更多数据分析知识分享,以及案例总结分享~~
在数据分析道路上,学无止境,终身成长。
③ 论文常用数据分析方法
论文常用数据分析方法
论文常用数据分析方法,对好的论文分析研究方法应该从哪些方面展开,如何表达才能显得自己对该论文真的有所理解,应该看哪些书呢?下面我整理了论文常用数据分析方法,一起了解看看吧!
论文常用数据分析方法分类总结
1、 基本描述统计
频数分析是用于分析定类数据的选择频数和百分比分布。
描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。
分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的`数据进行汇总统计。
2、 信度分析
信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。
Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。
折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。
重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。
3、 效度分析
效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:
4、 差异关系研究
T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。
当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。
如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。
如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。
5、 影响关系研究
相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。
回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。
回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。
④ 模态参数识别方法是时域法还是频域法
在什么域内对模态参数进行识别就是什么方法,(比如在时域内,也就是坐标轴X轴是时间,进行模态参数识别就属于时域法)具体包括三种大的方法时域法模态参数识别、频域法模态参数识别和联合时频法模态参数识别,其中时域法主要有ITD法、LSCE法、时域总体模态参数辨识法和RFP法;我们比较熟悉的傅里叶变换属于一种频域识别模态参数的方法。模态参数识别方法比较多建议去看《结构动力学》这本书,讲的很好。
⑤ 应用时间序列分析有哪几种方法
时间序列分析常用的方法:趋势拟合法和平滑法。
1、趋势拟合法就是把时间作为自变量,相应的序列观察值作为因变量,建立序列值随时间变化的回归模型的方法。包括线性拟合和非线性拟合。
线性拟合的使用场合为长期趋势呈现出线形特征的场合。参数估计方法为最小二乘估计。
非线性拟合的使用场合为长期趋势呈现出非线形特征的场合。其参数估计的思想是把能转换成线性模型的都转换成线性模型,用线性最小二乘法进行参数估计。实在不能转换成线性的,就用迭代法进行参数估计。
2、平滑法是进行趋势分析和预测时常用的一种方法。它是利用修匀技术,削弱短期随机波动对序列的影响,使序列平滑化,从而显示出长期趋势变化的规律 。
(5)时变参数分析方法可用于哪些扩展阅读
时间序列分析的主要用途:
1、系统描述
根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述。
2、系统分析
当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理。
3、预测未来
一般用ARMA模型拟合时间序列,预测该时间序列未来值。
4、决策和控制
根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必要的控制。