‘壹’ 化学反应工程的应用
主要用于进行工业反应过程的开发、放大和操作优化以及新型反应器和反应技术的开发。
①工业反应过程的开发和放大在化学反应工程学科建立以前,工业界广泛采用的方法是逐级经验放大的方法。其步骤是,首先在小型试验中进行反应器的选型和确定优越的工艺条件(温度、压力、浓度、流速和反应时间度),然后自小至大进行多次中间试验,直至工业规模。由于全部实验带有经验性质,而且试验所用设备的尺寸逐级增大,因而取名为逐级经验放大。中间试验往往耗资大而历时久。化学反应工程学科建立以后,逐步形成一套新的数学模型方法。这种方法是首先在小型试验中确定动力学模型;然后在冷模试验中确定各类候选反应器的传递模型;进而在计算机上进行各候选反应器内反应过程的模拟研究,即在各种不同的工艺条件下对反应器数学模型进行数值求解,预测反应结果,并据此进行反应器的选型,优选工艺条件并设计反应器。采用这种方法时,往往也需要进行适当规模的中间试验,目的是为了“检验”和“修正”模型,以及考察模型中难以包括的因素(如微量杂质的积累,焦油的生成,材质的腐蚀,颗粒粉碎,等等)可能产生影响。而不是为了自小至大进行逐级放大。时下,逐级经验放大和数学模型两种方法同时并存,各有适用范围。但是,即使是逐经级验放大方法,也常是以化学反应工程的理论为指导,而不再是纯经验性的了。
②工业反应过程的操作优化实际工业反应过程未必在最优的条件下操作。即使设计是优化的,在实施时往往有许多难以预料的因素,使原定的优化设计条件对实际操作未必是优化的。运用化学反应工程理论对现行的工业反应过程进行分析,结合模拟研究,可找出薄弱环节之所在和进一步调优的方向,通过调节和改造以获得较大的经济效益。
③新型反应器和反应技术的开发反应工程的理论为新反应器和新反应技术的开发指明了方向,研究者可以据此寻找合理的设备结构和操作方法。例如近几年来出现的新的石油化工裂解技术和各种新型流化床反应器,都得益于反应工程理论的指导。
‘贰’ 怎样提出一个反应的动力学模型
反应动力学是研究化学反应速率以及各种因素对化学反应速率影响的学科。传统上属于物理化学的范围,但为了满足工程实践的需要,化学反应工程在其发展过程中,在这方面也进行了反应动力学大量的研究工作。绝大多数化学反应并不是按化学计量式一步完成的,而是由多个具有一定程序的基元反应(一种或几种反应组分经过一步直接转化为其他反应组分的反应,或称简单反应)所构成。反应进行的这种实际历程称反应机理。
一般说来,化学家着重研究的是反应机理,并力图根据基元反应速率的理论计算来预测整个反应的动力学规律。化学反应工程工作者则主要通过实验测定,来确定反应物系中各组分浓度和温度与反应速率之间的关系,以满足反应过程开发和反应器设计的需要。
按化学反应的不同特点和不同的应用要求,常用的动力学模型有:
基元反应模型根据对反应体系的了解,拟定若干个基元反应,以描述一个复杂反应
反应动力学
(由若干个基元反应组成的反应)。按照拟定的机理写出反应速率方程,然后通过实验来检验拟定的动力学模型,估计模型参数。这样得到的动力学模型称为基元反应模型。合成氨的链反应机理动力学模型即为一例。
分子反应模型根据有关反应系统的化学知识,假定若干分子反应,写出其化学计量方程式。所假设的反应必须足以反映反应系统的主要特征。然后按标准形式(幂函数型或双曲线型)写出每个反应的速率方程。再根据等温(或不等温)动力学实验的数据,估计模型参数。这种方法已被成功地用于某些比较复杂的反应过程,例如乙烷、丙烷等烃类裂解。
经验模型从实用角度出发,不涉及反应机理,以较简单的数学方程式对实验数据进行拟合,通常用幂函数式表示。
对于有成千上万种组分参加的复杂反应过程(如石油炼制中的催化裂化),建立反应动力学
描述每种组分在反应过程中的变化的分子反应模型是不可能的。近年来发展了集总动力学方法,将反应系统中的所有组分归并成数目有限的集总组分,然后建立集总组分的动力学模型。集总动力学模型已成功地用于催化裂化、催化重整、加氢裂化等石油炼制过程。