导航:首页 > 研究方法 > 聚类分析方法的延伸

聚类分析方法的延伸

发布时间:2023-02-24 12:43:30

Ⅰ 聚类分析是什么研究手段

类通过把目标数据放入少数相对同源的组或“类”(cluster)里。分析表达数据,(1)通过一系列的检测将待测的一组基因的变异标准化,然后成对比较线性协方差。(2)通过把用最紧密关联的谱来放基因进行样本聚类,例如用简单的层级聚类(hierarchical clustering)方法。这种聚类亦可扩展到每个实验样本,利用一组基因总的线性相关进行聚类。(3)多维等级分析(multidimensional scaling analysis,MDS)是一种在二维Euclidean “距离”中显示实验样本相关的大约程度。(4)K-means方法聚类,通过重复再分配类成员来使“类”内分散度最小化的方法。
聚类方法有两个显着的局限:首先,要聚类结果要明确就需分离度很好(well-separated)的数据。几乎所有现存的算法都是从互相区别的不重叠的类数据中产生同样的聚类。但是,如果类是扩散且互相渗透,那么每种算法的的结果将有点不同。结果,每种算法界定的边界不清,每种聚类算法得到各自的最适结果,每个数据部分将产生单一的信息。为解释因不同算法使同样数据产生不同结果,必须注意判断不同的方式。对遗传学家来说,正确解释来自任一算法的聚类内容的实际结果是困难的(特别是边界)。最终,将需要经验可信度通过序列比较来指导聚类解释。
第二个局限由线性相关产生。上述的所有聚类方法分析的仅是简单的一对一的关系。因为只是成对的线性比较,大大减少发现表达类型关系的计算量,但忽视了生物系统多因素和非线性的特点。
从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多着名的统计分析软件包中,如SPSS、SAS等。
从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。
从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。就数据挖掘功能而言,聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。

Ⅱ 关于聚类分析

1。聚类分析的特点
聚类分析(cluster analysis)是根据事物本身的特性研究个体的一种方法,目的在于将相似的事物归类。它的原则是同一类中的个体有较大的相似性,不同类的个体差异性很大。这种方法有三个特征:适用于没有先验知识的分类。如果没有这些事先的经验或一些国际、国内、行业标准,分类便会显得随意和主观。这时只要设定比较完善的分类变量,就可以通过聚类分析法得到较为科学合理的类别;可以处理多个变量决定的分类。例如,要根据消费者购买量的大小进行分类比较容易,但如果在进行数据挖掘时,要求根据消费者的购买量、家庭收入、家庭支出、年龄等多个指标进行分类通常比较复杂,而聚类分析法可以解决这类问题;聚类分析法是一种探索性分析方法,能够分析事物的内在特点和规律,并根据相似性原则对事物进行分组,是数据挖掘中常用的一种技术。
这种较成熟的统计学方法如果在市场分析中得到恰当的应用,必将改善市场营销的效果,为企业决策提供有益的参考。其应用的步骤为:将市场分析中的问题转化为聚类分析可以解决的问题,利用相关软件(如SPSS、SAS等)求得结果,由专家解读结果,并转换为实际操作措施,从而提高企业利润,降低企业成本。
2.应用范围
聚类分析在客户细分中的应用

消费同一种类的商品或服务时,不同的客户有不同的消费特点,通过研究这些特点,企业可以制定出不同的营销组合,从而获取最大的消费者剩余,这就是客户细分的主要目的。常用的客户分类方法主要有三类:经验描述法,由决策者根据经验对客户进行类别划分;传统统计法,根据客户属性特征的简单统计来划分客户类别;非传统统计方法,即基于人工智能技术的非数值方法。聚类分析法兼有后两类方法的特点,能够有效完成客户细分的过程。
例如,客户的购买动机一般由需要、认知、学习等内因和文化、社会、家庭、小群体、参考群体等外因共同决定。要按购买动机的不同来划分客户时,可以把前述因素作为分析变量,并将所有目标客户每一个分析变量的指标值量化出来,再运用聚类分析法进行分类。在指标值量化时如果遇到一些定性的指标值,可以用一些定性数据定量化的方法加以转化,如模糊评价法等。除此之外,可以将客户满意度水平和重复购买机会大小作为属性进行分类;还可以在区分客户之间差异性的问题上纳入一套新的分类法,将客户的差异性变量划分为五类:产品利益、客户之间的相互作用力、选择障碍、议价能力和收益率,依据这些分析变量聚类得到的归类,可以为企业制定营销决策提供有益参考。
以上分析的共同点在于都是依据多个变量进行分类,这正好符合聚类分析法解决问题的特点;不同点在于从不同的角度寻求分析变量,为某一方面的决策提供参考,这正是聚类分析法在客户细分问题中运用范围广的体现。

聚类分析在实验市场选择中的应用

实验调查法是市场调查中一种有效的一手资料收集方法,主要用于市场销售实验,即所谓的市场测试。通过小规模的实验性改变,以观察客户对产品或服务的反应,从而分析该改变是否值得在大范围内推广。
实验调查法最常用的领域有:市场饱和度测试。市场饱和度反映市场的潜在购买力,是市场营销战略和策略决策的重要参考指标。企业通常通过将消费者购买产品或服务的各种决定因素(如价格等)降到最低限度的方法来测试市场饱和度。或者在出现滞销时,企业投放类似的新产品或服务到特定的市场,以测试市场是否真正达到饱和,是否具有潜在的购买力。前述两种措施由于利益和风险的原因,不可能在企业覆盖的所有市场中实施,只能选择合适的实验市场和对照市场加以测试,得到近似的市场饱和度;产品的价格实验。这种实验往往将新定价的产品投放市场,对顾客的态度和反应进行测试,了解顾客对这种价格的是否接受或接受程度;新产品上市实验。波士顿矩阵研究的企业产品生命周期图表明,企业为了生存和发展往往要不断开发新产品,并使之向明星产品和金牛产品顺利过渡。然而新产品投放市场后的失败率却很高,大致为66%到90%。因而为了降低新产品的失败率,在产品大规模上市前,运用实验调查法对新产品的各方面(外观设计、性能、广告和推广营销组合等)进行实验是非常有必要的。
在实验调查方法中,最常用的是前后单组对比实验、对照组对比实验和前后对照组对比实验。这些方法要求科学的选择实验和非实验单位,即随机选择出的实验单位和非实验单位之间必须具备一定的可比性,两类单位的主客观条件应基本相同。
通过聚类分析,可将待选的实验市场(商场、居民区、城市等)分成同质的几类小组,在同一组内选择实验单位和非实验单位,这样便保证了这两个单位之间具有了一定的可比性。聚类时,商店的规模、类型、设备状况、所处的地段、管理水平等就是聚类的分析变量。 转

Ⅲ 聚类分析法

聚类分析,亦称群分析或点分析,是研究多要素事物分类问题的数量方法。其基本原理是,根据样本自身的属性,用数学方法按照某些相似性或差异性指标,定量地确定样本之间的亲疏关系,并按亲疏关系的程度对样本进行聚类(徐建华,1994)。

聚类分析方法,应用在地下水中,是在各种指标和质量级别标准约束条件下,通过样品的各项指标监测值综合聚类,以判别地下水质量的级别。常见的聚类分析方法有系统聚类法、模糊聚类法和灰色聚类法等。

(一)系统聚类法

系统聚类法的主要步骤有:数据标准化、相似性统计量计算和聚类。

1.数据标准化

在聚类分析中,聚类要素的选择是十分重要的,它直接影响分类结果的准确性和可靠性。在地下水质量研究中,被聚类的对象常常是多个要素构成的。不同要素的数据差异可能很大,这会对分类结果产生影响。因此当分类要素的对象确定之后,在进行聚类分析之前,首先对聚类要素进行数据标准化处理。

假设把所考虑的水质分析点(G)作为聚类对象(有m个),用i表示(i=1,2,…,m);把影响水质的主要因素作为聚类指标(有n个),用j表示(j=1,2,…,n),它们所对应的要素数据可用表4-3给出。在聚类分析中,聚类要素的数据标准化的方法较多,一般采用标准差法和极差法。

表4-3 聚类对象与要素数据

对于第j个变量进行标准化,就是将xij变换为x′ij

(1)总和标准化

区域地下水功能可持续性评价理论与方法研究

这种标准化方法所得的新数据x′ij满足

区域地下水功能可持续性评价理论与方法研究

(2)标准差标准化

区域地下水功能可持续性评价理论与方法研究

式中:

由这种标准化方法所得的新数据x′ij,各要素的平均值为0,标准差为1,即有

区域地下水功能可持续性评价理论与方法研究

(3)极差标准化

区域地下水功能可持续性评价理论与方法研究

经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在[0,1]闭区间内。

上述式中:xij为j变量实测值;xj为j变量的样本平均值;sj为样本标准差。

2.相似性统计量

系统聚类法要求给出一个能反映样品间相似程度的一个数字指标,需要找到能量度相似关系的统计量,这是系统聚类法的关键。

相似性统计量一般使用距离系数和相似系数进行计算。距离系数是把样品看成多维空间的点,用点间的距离来表示研究对象的紧密关系,距离越小,表明关系越密切。相似系数值表明样本和变量间的相似程度。

(1)距离系数

常采用欧几里得绝对距离,其中i样品与j样品距离dij

区域地下水功能可持续性评价理论与方法研究

dij越小,表示i,j样品越相似。

(2)相似系数

常见的相似系数有夹角余弦和相关系数,计算公式为

1)夹角余弦

区域地下水功能可持续性评价理论与方法研究

在式(4-20)中:-1≤cosθij≤1。

2)相关系数

区域地下水功能可持续性评价理论与方法研究

式中:dij为i样品与j样品的欧几里得距离;cosθij为i样品与j样品的相似系数;rij为i样品与j样品的相关系数;xik为i样品第k个因子的实测值或标准化值;xjk为j样品第k个因子的实测值或标准化值;

为i样品第k个因子的均值,

为j样品第k个因子的均值,

;n为样品的数目;k为因子(变量)数。

3.聚类

在选定相似性统计量之后,根据计算结果构成距离或相似性系数矩阵(n×n),然后通过一定的方法把n个样品组合成不同等级的分类单位,对类进行并类,即将最相似的样品归为一组,然后,把次相似的样品归为分类级别较高的组。聚类主要有直接聚类法、距离聚类法(最短距离聚类法、最远距离聚类法)。

(1)直接聚类法

直接聚类法,是根据距离或相似系数矩阵的结构一次并类得到结果,是一种简便的聚类方法。它首先把各个分类对象单独视为一类,然后根据距离最小或相似系数最大的原则,依次选出一对分类对象,并成新类。如果一对分类对象正好属于已归的两类,则把这两类并为一类。每一次归并,都划去该对象所在的列与列序相同的行。经过n-1次把全部分类对象归为一类,最后根据归并的先后顺序作出聚类分析谱系图。

(2)距离聚类法

距离聚类法包括最短距离聚类法和最远距离聚类法。最短距离聚类法具有空间压缩性,而最远距离聚类法具有空间扩张性。这两种聚类方法关于类之间的距离计算可以用一个统一的公式表示:

区域地下水功能可持续性评价理论与方法研究

当γ=-0.5时,式(4-22)计算类之间的距离最短;当γ=0.5时,式(4-22)计算类之间的距离最远。

最短、最远距离法,是在原来的n×n距离矩阵的非对角元素中找出dpq=min(dij)或dpq=max(dij),把分类对象Gp和Gq归并为一新类Gr,然后按计算公式:

dpq=min(dpk,dqk)(k≠ p,q) (4-23)

dpq=max(dpk,dqk)(k≠ p,q) (4-24)

计算原来各类与新类之间的距离,这样就得到一个新的(n-1)阶的距离矩阵;再从新的距离矩阵中选出最小或最大的dij,把Gi和Gj归并成新类;再计算各类与新类的距离,直至各分类对象被归为一类为止。最后综合整个聚类过程,作出最短距离或最远距离聚类谱系图(图4-1)。

图4-1 地下水质量评价的聚类谱系图

(二)模糊聚类法

模糊聚类法是普通聚类方法的一种拓展,它是在聚类方法中引入模糊概念形成的。该方法评价地下水质量的主要步骤,包括数据标准化、标定和聚类3个方面(付雁鹏等,1987)。

1.数据标准化

在进行聚类过程中,由于所研究的各个变量绝对值不一样,所以直接使用原始数据进行计算就会突出绝对值大的变量,而降低绝对值小的变量作用,特别是在进行模糊聚类分析中,模糊运算要求必须将数据压缩在[0,1]之间。因此,模糊聚类计算的首要工作是解决数据标准化问题。数据标准化的方法见系统聚类分析法。

2.标定与聚类

所谓标定就是计算出被分类对象间的相似系数rij,从而确定论域集U上的模糊相似关系Rij。相似系数的求取,与系统聚类分析法相同。

聚类就是在已建立的模糊关系矩阵Rij上,给出不同的置信水平λ(λ∈[0,1])进行截取,进而得到不同的分类。

聚类方法较多,主要有基于模糊等价关系基础上的聚类与基于最大树的聚类。

(1)模糊等价关系方法

所谓模糊等价关系,是指具有自反性(rii=1)、对称性(rij=rji)与传递性(R·R⊆R)的模糊关系。

基于模糊等价关系的模糊聚类分析方法的基本思想是:由于模糊等价关系R是论域集U与自己的直积U×U上的一个模糊子集,因此可以对R进行分解,当用λ-水平对R作截集时,截得的U×U的普通子集Rλ就是U上的一个普通等价关系,也就是得到了关于U中被分类对象元素的一种。当λ由1下降到0时,所得的分类由细变粗,逐渐归并,从而形成一个动态聚类谱系图(徐建华,1994)。此类分析方法的具体步骤如下。

第一步:模糊相似关系的建立,即计算各分类对象之间相似性统计量。

第二步:将模糊相似关系R改造为模糊等价关系R′。模糊等价关系要求满足自反性、对称性与传递性。一般而言,模糊相似关系满足自反性和对称性,但不满足传递性。因此,需要采用传递闭合的性质将模糊相似关系改造为模糊等价关系。改造的方法是将相似关系R自乘,即

R2=R·R

R4=R2·R2

这样计算下去,直到:R2k=Rk·Rk=Rk,则R′=Rk便是一个模糊等价关系。

第三步:在不同的截集水平下进行聚类。

(2)最大树聚类方法

基于最大树的模糊聚类分析方法的基本思路是:最大树是一个不包含回路的连通图(图4-2);选取λ水平对树枝进行截取,砍去权重低于λ 的枝,形成几个孤立的子树,每一棵子树就是一个类的集合。此类分析方法的具体步骤如下。

图4-2 最大聚类支撑树图

第一步:计算分类对象之间的模糊相似性统计量rij,构建最大树。

以所有被分类的对象为顶点,当两点间rij不等于0时,两点间可以用树干连接,这种连接是按rij从大到小的顺序依次进行的,从而构成最大树。

第二步:由最大树进行聚类分析。

选择某一λ值作截集,将树中小于λ值的树干砍断,使相连的结点构成一类,即子树,当λ由1到0时,所得到的分类由细变粗,各结点所代表的分类对象逐渐归并,从而形成一个动态聚类谱系图。

在聚类方法中,模糊聚类法比普通聚类法有较大的突破,简化了运算过程,使聚类法更易于掌握。

(三)灰色聚类法

灰色聚类是根据不同聚类指标所拥有的白化数,按几个灰类将聚类对象进行归纳,以判断该聚类对象属于哪一类。

灰色聚类应用于地下水水质评价中,是把所考虑的水质分析点作为聚类对象,用i表示(i=1,2,…,n);把影响水质的主要因素作为聚类指标,用j表示(j=1,2,…,m),把水质级别作为聚类灰数(灰类),用k表示(k=1,2,3)即一级、二级、三级3个灰类(罗定贵等,1995)。

灰色聚类的主要步骤:确定聚类白化数、确定各灰色白化函数fjk、求标定聚类权重ηjk、求聚类系数和按最大原则确定聚类对象分类。

1.确定聚类白化数

当各灰类白化数在数量上相差悬殊时,为保证各指标间的可比性与等效性,必须进行白化数的无量纲化处理。即给出第i个聚类对象中第j个聚类指标所拥有的白化数,i=1,2,…,n;j=1,2,…,m。

2.确定各灰色白化函数

建立满足各指标、级别区间为最大白化函数值(等于1),偏离此区间愈远,白化函数愈小(趋于0)的功效函数fij(x)。根据监测值Cki,可在图上(图4-3)解析出相应的白化函数值fjk(Cik),j=1,2,…,m;k=1,2,3。

3.求标定聚类权重

根据式(4-25),计算得出聚类权重ηjk的矩阵(n×m)。

区域地下水功能可持续性评价理论与方法研究

式中:ηjk为第j个指标对第k个灰类的权重;λjk为白化函数的阈值(根据标准浓度而定)。

图4-3 白化函数图

注:图4-3白化函数f(x)∈[0,1],具有下述特点:①平顶部分,表示该量的最佳程度。这部分的值为最佳值,即系数(权)为1,f(x)=max=1(峰值),x∈[x2,x3]。②白化函数是单调变化的,左边部分f(x)=L(x),单调增,x∈(x1,x2],称为白化的左支函数;右边部分f(x)=R(x),单调减,x∈[x3,x4),称为白化的右支函数。③白化函数左右支函数对称。④白化函数,为了简便,一般是直线。⑤白化函数的起点和终点,一般来说是人为凭经验确定。

4.求聚类系数

σik=∑fjk(dij)ηjk (4-26)

式中:σik为第i个聚类对象属于第k个灰类的系数,i=1,2,…,n;k=1,2,3。

5.按最大原则确定聚类对象分类

由σik构造聚类向量矩阵,行向量最大者,确定k样品属于j级对应的级别。

用灰色聚类方法进行地下水水质评价,能最大限度地避免因人为因素而造成的“失真、失效”现象。

聚类方法计算相对复杂,但是计算结果与地下水质量标准级别对应性明显,能够较全面反映地下水质量状况,也是较高层次定量研究地下水质量的重要方法。

Ⅳ 一文总结聚类分析步骤!

一、聚类

1.准备工作

(1) 研究目的

聚类分析是根据事物本身的特性研究个体分类的方法,聚类分析的原则是同一类别的个体有较大相似性,不同类别的个体差异比较大。

(2) 数据类型

1)定量:数字有比较意义,比如数字越大代表满意度越高,量表为典型定量数据。

2)定类:数字无比较意义,比如性别,1代表男,2代表女。

PS: SPSSAU会根据数据类型自动选择聚类方法。

K-modes聚类: 数据类型仅定类时。

2.上传数据到SPSSAU

登录账号后进入SPSSAU页面,点击右上角“上传数据”,将处理好的数据进行“点击上传文件”上传即可。

3.SPSSAU操作

(1)拖拽分析项

1) SPSSAU进阶方法→聚类。

2)检查

检查分析项是否都在左侧分析框中。

3)进行拖拽

(2)选择参数

聚类个数: 聚类个数设置为几类主要以研究者的研究思路为标准,如果不进行设置,SPSSAU默认聚类个数为3,通常情况下,建议设置聚类数量介于3~6个之间。

标准化: 聚类算法是根据距离进行判断类别,因此一般需要在聚类之前进行标准化处理,SPSSAU默认是选中进行标准化处理。数据标准化之后,数据的相对大小意义还在(比如数字越大GDP越高),但是实际意义消失了。

保存类别: 分析选择保存‘保存类别’,SPSSAU会生成 新标题 用于标识,也可以右上角“我的数据”处查看到分析后的“聚类类别”。

新标题类似如下:Cluster_********。

4.SPSSAU分析

(1)聚类类别基本情况汇总分析

使用聚类分析对样本进行分类,使用Kmeans聚类分析方法,从上表可以看出:最终聚类得到4类群体,此4类群体的占比分别是20.00%, 30.00%, 20.00%, 30.00%。整体来看, 4类人群分布较为均匀,整体说明聚类效果较好。

(2)聚类类别汇总图分析

上图可以直观的看到各个类别所占百分比,4类群体的占比分别是20.00%, 30.00%, 20.00%, 30.00%。

(3)聚类类别方差分析差异对比

使用方差分析去探索各个类别的差异特征,从上表可知:聚类类别群体对于所有研究项均呈现出显着性(p<0.05),意味着聚类分析得到的4类群体,他们在研究项上的特征具有明显的差异性,具体差异性可通过平均值进行对比,并且最终结合实际情况,对聚类类别进行命名处理。

(4)聚类项重要性对比

从上述结果看,所有研究项均呈现出显着性,说明不同类别之间的特征有明显的区别,聚类的效果较好。

(5)聚类中心

5.其它说明

(1)聚类中心是什么?

聚类中心是聚类类别的中心点情况,比如某类别时年龄对应的聚类中心为20,意味着该类别群体年龄基本在20岁左右。初始聚类中心基本无意义,它是聚类算法随机选择的聚类点,如果需要查看聚类中心情况,需要关注于最终聚类中心。实际分析时聚类中心的意义相对较小,其仅为聚类算法的计算值而已。

(2)k-prototype聚类是什么?

如果说聚类项中包括定类项,那么SPSSAU默认会进行K-prototype聚类算法(而不是kmeans算法)。定类数据不能通过数字大小直接分析距离,因而需要使用K-prototype聚类算法。

(3)聚类分析时SSE是什么意思?

在进行Kmeans聚类分析时SPSSAU默认输出误差平方和SSE值,该值可用于测量各点与中心点的距离情况,理论上是希望越小越好,而且如果同样的数据,聚类类别越多则SSE值会越小(但聚类类别过多则不便于分析)。

SSE指标可用于辅助判断聚类类别个数,建议在不同聚类类别数量情况下记录下SSE值,然后分析SSE值的减少幅度情况,如果发现比如从3个聚类到4个类别时SSE值减少幅度明显很大,那么此时选择4个聚类类别较好。

二、分层聚类

1.准备工作

(1)研究目的

从分析角度上看,聚类分析可分为两种,一种是按样本(或个案)聚类,此类聚类的代表是K-means聚类方法;另外一种是按变量(或标题)聚类,此类聚类的代表是分层聚类。

(2)数据类型

2.上传数据到SPSSAU

登录账号后进入SPSSAU页面,点击右上角“上传数据”,将处理好的数据进行“点击上传文件”上传即可。

3.SPSSAU操作

(1)拖拽分析项

1) SPSSAU进阶方法→分层聚类。

2)检查

检查分析项是否都在左侧分析框中。

3)进行拖拽

(2)确定参数

SPSSAU会默认聚类为3类并且呈现表格结果,如果希望更多的类别个数,可自行进行设置。

4.SPSSAU分析

(1)聚类项描述分析

上表格展示总共8个分析项(即8个裁判数据)的基本情况,包括均值,最大或者最小值,中位数等,以便对于基础数据有个概括性了解。整体上看,8个裁判的打分基本平均在8分以上。

(2)聚类类别分布表分析

总共聚类为3个类别,以及具体分析项的对应关系情况。在上表格中展示出来,上表格可以看出:裁判8单独作为一类;裁判5,3,7这三个聚为一类;以及裁判1,6,2,4作为一类。

(PS:聚类类别与分析项上的对应关系可以在上表格中得到,同时也可以查看聚类树状图得出更多信息。至于聚类类别分别应该叫做什么名字,这个需要结合对应有关系情况,自己单独进行命名。)

(3)聚类树状图分析

上图为聚类树状图的展示,聚类树状图是将聚类的具体过程用图示法手法进行展示;最上面一行的数字仅仅是一个刻度单位,代表相对距离大小;一个结点表示一次聚焦过程。

树状图的解读上,建议单独画一条垂直线,然后对应查看分成几个类别,以及每个类别与分析项的对应关系。比如上图中,红色垂直线最终会拆分成3个类别;第1个类别对应裁判8;第2个类别对应裁判5,3,7;第3个类别对应裁判1,6,2,4。

如果是聚为四类;从上图可看出,明显的已经不再合适。原因在于垂直线不好区分成四类。也即说明有2个类别本应该在一起更合适(上图中的裁判1与6/2/4);但是如果分成4类,此时裁判1会单独成一类。所以画垂直线无法区分出类别。因而综合分析来看,最终聚类为3个类别最为适合。

当然在分析时也可以考虑分成2个类别,此时只需要对应将垂直线移动即可。

5.其它说明

(1)针对分层聚类,需要注意以下几点:

(2)什么时候做因子分析后再做聚类分析?

如果题项较多,可先做因子分析,得到每个维度(因子)的数据,再进行聚类。

三、总结

聚类分析广泛的应用于自然科学、社会科学等领域。在分析时可以比较多次聚类结果,综合选择更适合的方案。

以上就是聚类分析步骤汇总,更多干货请前往官网查看!

Ⅳ 什么是聚类分析聚类算法有哪几种

聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于

分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行

定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识

难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又

将多元分析的技术引入到数值分类学形成了聚类分析。

聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论

聚类法、聚类预报法等。

聚类分析计算方法主要有如下几种:分裂法(partitioning methods):层次法(hierarchical

methods):基于密度的方法(density-based methods): 基于网格的方法(grid-based

methods): 基于模型的方法(model-based methods)。

Ⅵ 聚类分析法(CA)

3.2.3.1 技术原理

聚类分析又称群分析(CA),它是研究(对样品或指标)分类问题的一种多元统计方法。首先认为所研究的样品或指标(变量)之间存在着程度不同的相似性(亲疏关系),根据一批样品的多个观测指标具体找出一些能够度量样品或指标之间相似程度的统计量,以这些统计量为划分类型的依据,把一些相似程度较大的样品(或指标)聚合为一类,把另一些彼此之间相似程度较大的样品(或指标)聚合为另一类,根据分类对象不同,可分为对样品分类的Q型聚类分析和对指标分类的R型聚类分析两种类型。聚类分析可用SPSS软件直接实现,在水质时空变异、水化学类型分区中得到广泛的应用。聚类分析的功能是建立一种分类方法,它将一批样品或变量,按照它们在性质上的亲疏、相似程度进行分类,聚类分析的内容十分丰富,按其聚类的方法可分为以下几种:系统聚类法、调优法、最优分割法、模糊聚类法等。

聚类分析根据分类对象的不同又分为R型和Q型两大类,R型是对变量(指标)进行分类,Q型是对样品进行分类。为了对样品(或变量)进行分类,就必须研究它们之间的关系,描述样品间亲疏相似程度的统计量很多,目前用得最多的是距离和相似系数。距离方法主要有:闵科夫斯基(Minkowski)距离、绝对值距离、欧氏距离等。

样品间的亲疏程度除了用距离描述外,也可用相似系数来表示,相似系数的构造主要有以下两种方法:对于定量变量,我们通常采用的相似系数有xi和xj之间的夹角余弦和相关系数。

3.2.3.2 方法流程

目前使用最多的聚类方法是系统聚类法,其基本思想是:先将n个样品各自看成一类,共有n个类,然后计算类与类间的距离,选择距离最小的两类合并成一个新类,使总类数减少为n-1,接着再计算这n-1类两两间的距离,从中找出距离最近的两类合并,总类数又减少一个,剩下n-2个类,照此下去,每合并一次,减少一类,直至所有样品都合并成一类为止。在并类的过程当中,可以根据聚类的先后以及并类时两类间的距离,画出能直观反映各样品间相近和疏远程度的聚类图(也称谱系图),根据这张聚类图有可能找到最合适的分类方案。系统聚类法的聚类原则决定于样品间的距离(或相似系数)及类间距离的定义,类间距离的不同定义就产生了不同的系统聚类分析方法,类间距离的定义方法主要有最短距离法、最长距离法、中间距离法、重心法、类平均法。在合理地选定(或定义)样品间的距离以后,再适当定义类间的距离,就确定了一种聚类规则,之后按照系统聚类法的一般步骤加以聚类(图3.4)。

图3.4 聚类分析技术流程图

3.2.3.3 适用范围

聚类分析能够将变量及样本按照相应的规则进行分类,在大样本多参数数据降维方面具有相对的优势,尤其是对于在时间、空间上具有复杂变化的数据,聚类分析能够根据变量和样本的相关性和相似性,将数据有效地划分为不同的类别,并通过树状图反映出样品随距离或变量间相似性变化的情况,为查清变量和样品之间关系提供了依据,也为查明污染来源奠定了基础。

Ⅶ 聚类分析(Cluster Analysis)

聚类,将相似的事物聚集在一起,将不相似的事物划分到不同的类别的过程。是将复杂数据简化为少数类别的一种手段。

设有m个样本单位,每个样本测的n项指标(变量),原始资料矩阵:

指标的选择非常重要:
必要性要求:和聚类分析的目的密切相关,并不是越多越好
代表性要求:反映要分类变量的特征
区分度要求:在不同研究对象类别上的值有明显的差异
独立性要求:变量之间不能高度相关(儿童生长身高和体重非常相关)
散布性要求:最好在值域范围内分布不太集中

在各种标准量度值scale差异过大时,或数据不符合正态分布时,可能需要进行数据标准化。
(1) 总和标准化 。 分别求出各聚类指标所对应的数据的总和, 以各指标的数据除以该指标的数据的总和。

根据聚类对象的不同,分为Q型聚类,R型聚类

(1)常见距离统计量 - 闵可夫斯基距离系列(线性距离)

p=2,时为欧氏距离(n维空间中的几何距离)
p=∞,时为切比雪夫距离(棋盘格距离)

(2)常见距离统计量 - 马氏距离(协方差距离)
均值为μ,协方差矩阵为∑的向量x=(1,2,...n)
相比于欧式距离,马氏距离考虑到各种指标之间的联系(如身高和体重并不独立,)且马氏距离具有尺度无关性(scale-invariant),因此可不必做标准化。
如果协方差矩阵为单位矩阵(各指标之间完全相互独立),则马氏距离化为欧几里得距离。
如果协方差矩阵为对角矩阵,则马氏距离化为正规化的欧几里得距离(normalized Euclidean distance)

(3)常见距离统计量 - 文本距离
文本距离通常用来度量文本之间的相似度,在生物研究中常见于序列比对分析。

常见相似系数统计量
相似系数= 1,表明完全相似
相似系数= -1 表明完全相反
相似系数 = 0 表明完全独立
相关系数:

类与类之间 距离的度量方法:
系统聚类法不仅需要度量个体与个体之间的距离,还要度量类与类之间的距离。类间距离被度量出来之后,距离最小的两个小类将首先被合并成为一类。 由类间距离定义的不同产生了不同的系统聚类法。

目前有1000多种聚类算法:没有一种聚类算法可以包打天下,聚类算法中的各种参数也必须依据具体问题而调节
常见聚类算法的分类:
1,层次聚类(Hierarchical clustering)
2,划分聚类(Partitioning clustering)
3,密度聚类(Density-based)
4,期望最大化聚类(Expectation Maximization)
5,网格聚类(Grid-based)
6,模型聚类(Model-based)

1. 层次聚类的方法
基本思想:
在聚类分析的开始,每个样本(或变量)自成一类; 然后,按照某种方法度量所有样本(或变量)之间的亲疏程度,并把最相似的样本(或变量)首先聚成一小类; 接下来,度量剩余的样本(或变量)和小类间的亲疏程度,并将当前最接近的样本(或变量)与小类聚成一类;如此反复,知道所有样本聚成一类为止。
举例:
有一组数据D={a,b,c,d,e} 给了它们之间的距离矩阵。
首先,每一个例子都是一个类:

2. 划分聚类的方法
划分聚类算法:
给定一个包含n个样本的数据集,基于划分的方法(Partitioning Method)就是将n个样本按照特定的度量划分为k个簇(k≤n),使得每个簇至少包含一个对象,并且每个对象属于且仅属于一个簇,而且簇之间不存在层次关系。

基于划分的方法大多数是基于距离来划分的,首先对样本进行初始化分,然后计算样本间的距离,重新对数据集中的样本进行划分,将样本划分到距离更近的簇中,得到一个新的样本划分,迭代计算直到聚类结果满足用户指定的要求。

要想得到最优的聚类结果,算法需要穷举数据集所有可能的划分情况,但是在实际应用中数据量都比较大,利用穷举方法聚类显然是不现实的,因此大部分基于划分的聚类方法采用贪心策略,即在每一次划分过程中寻求最优解,然后基于最优解进行迭代计算,逐步提高聚类结果的质量。虽然这种方式有可能得到局部最优结果,但是结合效率方面考虑,也是可以接受的。

算法:

举例:
有一个二维空间的一些点,我们要将它们分成3个类,即K=3。

我们首先随机选择3个初始质心,每一个质心为一类:

然后我们计算每一个不是质心的点到这三个质心的距离:

将这些点归类于距离最近的那个质心的一类:

重新计算这三个分类的质心:

不断重复上述两步,更新三个类:

当稳定以后,迭代停止,这时候的三个类就是我们得到的最后的三个:

最着名的是k-means聚类算法和K-medoids算法(中心点聚类)

处理“大海中的若干孤岛”,以密度来区分岛

大部分基于密度的方法(Density-based Method)采用距离度量来对数据集进行划分,在球状的数据集中能够正确划分,但是在非球状的数据集中则无法对样本进行正确聚类,并且受到数据集中的噪声数据影响较大。基于密度的方法可以克服这两个弱点。

基于密度的方法提出“密度”的思想,即给定邻域中样本点的数量,当邻域中密度达到或超过密度阈值时,将邻域内的样本包含到当前的簇中。若邻域的密度不满足阈值要求,则当前的簇划分完成,对下一个簇进行划分。基于密度的方法可以对数据集中的离群点进行检测和过滤。

算法

基于网格的方法(Grid-based Method)将数据集空间划分为有限个网格单元,形成一个网络结构,在后续的聚类过程中,以网格单元为基本单位进行聚类,而不是以样本为单位。由于算法处理时间与样本数量无关,只与网格单元数量有关,因此这种方法在处理大数据集时效率很高。基于网格的方法可以在网格单元划分的基础上,与基于密度的方法、基于层次的方法等结合使用。

基于模型的方法(Model-based Method)假定数据集满足一定的分布模型,找到这样的分布模型,就可以对数据集进行聚类。基于模型的方法主要包括基于统计和基于神经网络两大类,前者以高斯混合模型(Gaussian Mixture Models,GMM)为代表,后者以自组织映射网络(Self Organizing Map,SOM)为代表。目前以基于统计模型的方法为主。

以下内容后续补充:

数据示例:

数据示例:

为了有效利用聚类算法, 首先需要度量观测值见的距离,在R中常通过stats包里的dist函数来实现:
dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2)
dist 函数计算对象(矩阵或数据框)中两两间的距离,返回的是距离矩阵(dist类对象)。dist函数的参数描述如下。

另一个计算点之间的距离的方法是cluster包里面的daisy函数:

daisy函数计算数据集中每对观测值的不相似度。daisy函数的参数描述如下:

k-means聚类是最简单的聚类算法之一。R中可以通过stats包里面的kmeans函数实现k-means聚类:
kmeans(x, centers, iter.max = 10, nstart = 1, algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"), trace=FALSE)
kmeans函数的参数描述如下:

Ⅷ 聚类分析(2)聚类技术

系列文章: 聚类分析(1)之市场细分

聚类分析方法分为快速聚类和系统聚类(层次聚类)。快速聚类spss使用的是K-means聚类算法。该聚类方法需要指定聚类数量,通常我们需要多次尝试并分析多少个类合适。聚类分析适合大样本量情况。样本个数超过500,变量数超过50(并不是强制的)。

聚类分析数据类型为数值型,非数值型变量需要做转换,二分类变量(0,1)可以参与聚类分析。聚类多数适用于连续变量,分类变量适用对应分析。

聚类分析对极端值敏感,同时变量数据的量纲也会影响到聚类结果,需要做标准化处理。

结果依赖于第一次初始分类,聚类中绝大多数重要变化均发生在第一次分配中。

聚类分析中,关于分类时,一种是利用相似系数,性质越接近的,相似系数就越接近1或者-1,通过此来确定归类。另一种是利用空间距离,将每一个点看做m维空间上的一个点,并在空间中定义距离。

在spss中可以设定迭代次数。

来自《Python数据科学:技术详解与商业实践》。聚类效果的评估基于结果的可解释性,通常需要多次聚类才能找到合适的分类。

数据包含6个变量(字段),除了客户编号为名义变量外,其他都是连续变量。

不论什么做什么数据分析,第一步就是查看原始数据的分布,这里应该查看一下各变量的数据分布状态:均值,极大极小值,方差,缺失情况。

通过spss分析-描述

可以看出1.量纲差异较大。2极大极小值组距很大。从这方面可以讲,我们需要做标准化处理。先尝试不做标准化处理。

通过业务知识等,决定先设定5个细分人群,后面可以再尝试4和6。

先做标准化处理:spss分析-描述。在左下角中有一个“将标准化值另存为变量”,标准化为Z分数。确定后会生成新的标准化后的变量。

对标准化后的变量聚类:分析-分类-K-means

选择迭代次数同时将分类结果存在表中。

默认迭代次数是10次,迭代次数过少,可能已经迭代完了仍无法收敛,所以需要增加迭代次数。将分类结果保存在表中,是指对每个样本标注被分到哪一类了。这一步的目的是为了后续通过其他方法(比如比较均值)来看5类人群之间的差异。停

输出4个表格,都是经过标准化处理的。主要查看是否已经迭代收敛。然后下一步就是做均值比较等,目的是查看5类人群是否有差异,分类是否合理。同时还可以在对4和6类人群试做分类。聚类分析无法检验标准,

通过比较均值,可以了解5类人群之间的差异

输出的结果

从结果中可以看出

第一类:高端商用客户,总通话时间长,工作日上班时间通话比例高

第二类:少使用低端客户,总通话时间短,各时段通话时间都短

第三类:中端商用客户,总通话时间居中,工作日上班时间通话比例高

第四类:中端日常用客户,总通话时间居中,工作日下班时间通话比例高

第五类:长聊客户,每次通话时间长

阅读全文

与聚类分析方法的延伸相关的资料

热点内容
电脑打不了机维修方法 浏览:148
发动机舱的鉴别方法 浏览:915
有什么催尿的方法 浏览:175
如何洗脚养肾的方法 浏览:571
胜利兆欧表使用方法 浏览:137
朱砂使用方法 浏览:954
缓解牙疼的最快方法按摩哪里 浏览:51
游完泳耳朵闷堵快速解决方法 浏览:940
厨房中鉴别白醋显酸性的三种方法 浏览:966
折纸飞机折得最远的简便方法 浏览:67
尿酸碱度检测标准方法 浏览:828
浴室热水管道安装方法 浏览:278
手机网络黑屏解决方法 浏览:209
花卉土培检测方法 浏览:277
获取检测信息的方法有哪些 浏览:120
蛋糕比容的计算方法 浏览:738
破坏动物细胞膜最常用的方法 浏览:246
社会作业研究方法 浏览:542
手机怎么拍摄长视频的方法 浏览:302
如何把数字变成字母的方法 浏览:194