① 原花青素是怎样提炼除来的
葡萄籽原花青素的提取和检测方法
1 葡萄籽原花青素的概念、性质和安全性
1.1 原花青素的概念
研究表明,葡萄籽中原花色素物质只有原花青素 一种[21。关于原花青素的定义还不统一。原花青素因在 酸性介质中加热产生红色的花青素而得名【3】,而儿茶素 类单体在热酸条件下反应没有花色素现象,所以儿茶 素单体应不属于原花青素。这个概念也得到了美国葡 萄籽方法评定委员会和国内主要生产葡萄籽提取物的企业认可。葡萄籽原花青素是由儿茶素、表儿茶素及其 没食子酸酯通过C4-C 或C4-C。键共价相连组成的多 聚体 ,结构通式见图l【5J。通常把二~四聚体称为低聚 体(OPCs),五聚体及五聚体以上的称为高聚体。
R=3p—OH儿茶素,R=3p—O一没食子酸儿茶素O一没食子酸酯 R-3a-OH表儿茶素。R-3a-O一没食子酸表儿茶素o-没食子酸酯
图1 原花青素的结构及其组成单元
1.2 原花青素的主要性质
原花青素在热酸条件下能够生成红色的花青素,此性质可用于原花青素的定性和定量分析。结构中具 有较多的羟基,具有较大的极性,使其能够很好的溶解 于水、甲醇、丙酮、乙醇等极性溶剂而不溶解于苯、氯 仿、石油醚等非极性物质。较多羟基结构也使其成为良 好的氢原子给予体,具有较强的抗氧化性质。研究表 明,在0 一、·OH、·CH,中,原花青素对0:一·清除能力最 好,而且在聚合度2~5之间范围内,随聚合度增加而增 加柳。对其构效关系分析表明,带有没食子酰基的原花青 素具有更强的抗氧化活性,二聚体的抗氧化活性均比单 体儿茶素的活性强。c 一c 连接的二聚体比c 一c 连 接的二聚体具有更强的抗氧化活性 。原花青素的最大 吸收波长在280 nm附近,使其具有较强的紫外吸收能 力。以上的主要性质使原花青素很好的用于保健食品 和化妆品的开发。
13 原花青素产品的安全性
美国Creighton大学葡萄籽原花青素研究组与美 国环境保护局根据有毒物质控制条例健康效果测试手 册协同进行了葡萄籽原花青素萃取物(GSPE)的一系 列毒性和生物功效研究。结果证明GSPE具有很高的 安全性和很好的清除自由基、抗氧化能力【8】。日本学者 Yamakoshi等也采用一系列毒理性试验确证富含原花 青素的葡萄籽提取物具有很高的安全性。完全可以用 于功能性食品的开发.
2 原花青素的提取方法
提取原花青素常用的方法有水提取法、有机溶剂一 水提取法和仪器辅助提取法。葡萄籽中的原花青素物 质通常以结合态与蛋白质、纤维素结合在一起fl01,一般 不易提出,通常选用有机溶剂或水提取,具有断裂氢键 的作用。同时由于有机溶剂的渗透性较差,一般不单独 使用,常需要水作为传质剂。
2.1 水提取法
Masquelier~l-嘬早从松树皮中用沸水粗提、乙酸乙 酯纯化得到原花青素。选水作为提取剂,浸提耗时长, 温度高,容易造成原花青素的损失。同时水的极性较 大,溶出杂质也较多。
2.2 有机溶剂一水提取法
甲醇、丙酮、乙醇和乙酸乙酯是提取葡萄籽原花青 素常用的有机溶剂,它们对原花青素有很好的溶解性, 它们的极性大II,Jt~序为甲醇>乙醇>丙酮>乙酸乙酯。 乙醇是常用的提取溶剂,价格低廉,来源丰富。乙酸乙 酯提取出的原花青素成分生物活性较好,但是由于极 性较小,对原花青素的提取并不完全。甲醇和丙酮水溶 液(50%~75%)对原花青素都有较好的提取性能,同时也多用做原花青素含量测定时的提取溶剂。熊何 -21比 较了甲醇、乙醇、丙酮水溶液对多酚的提取效果,结果 表明70%丙酮水溶液为最好溶剂。丙酮水溶液提取效 果好的原因:原花青素分子含有多个苯环和醚键,油溶 性较强,同时又有大量的羟基连接在分子骨架上,在水 中具有很好的溶解性,拥有油水双溶性的丙酮与之相 互匹配,原花青素的溶解度自然增加,其提取率相应得 到提高。
2-3 仪器辅助提取法
超临界萃取和超声波辅助提取越来越多的用于葡 萄籽原花青素的提取。超临界CO:萃取率高,而且使原 花青素不受到空气和光的影响,但由于设备昂贵,推广 使用比较困难。超声波法应用比较广泛,超声波产生的 强烈振动、高的加速度、强烈的空化效应、搅拌等特殊 作用,可以破坏植物的细胞壁,使溶剂渗透到细胞中, 令其中的化学成分溶于溶剂中,从而提高提取效率。 在提取原花青素之类的热敏性物质显示出优越的性 能.
3 葡萄籽原花青素的检测
由于葡萄籽和葡萄籽提取物中大多数多酚是原花 青素(一般占70%~85%),所以很多厂家使用原花青 素来标定其中有效成分的含量。原花青素含量是反映 葡萄籽提取物或葡萄籽质量的关键指标,主要有两个 指标,分别为原花青素值和原花青素含量。
3.1 原花青素值的测定
原花青素值的测定采用Bates—smith法和Poaer 法。原理:原花青素在酸性条件下加热转化为红色的花 青素,而儿茶素、表儿茶素等黄烷一3一醇单体没有此反 应(图2)。它们测出的结果是原花青素的相对含量,分 别用原花青素指数和PVU表示,是根据经验公式求得 的。葡萄籽提取物中的原花青素指数一般在80~100之 间,PVU一般在250~350之间。
原花青素值只是相对含量,并非原花青素的真实 含量。据调查,同为原花青素值95的产品,多酚含量相 差15%,质量大相径庭四。很多生产厂家使用原花青素 指数来表示葡萄籽提取物中原花青素的百分含量是错误的。
图2 花青素生成反应 Fig.2 Reaction ofprocing cyaniding
3.2 原花青素含量的测定
原花青素的含量测定方法很多,也比较混乱。常用 的有以下几种方法。
3.2.1 铁盐催化法
此方法的反应原理与原花青素值测定原理相 同,在计算原花青素的含量时使用了原花青素标准 品。Fe¨、盐酸为常用的催化剂和酸解剂。由于水、乙 醇为反应介质时吸光值很低,一般采用正丁醇为反 应介质【15-161。通常的具体操作:取1.0 mL样液(或原花 青素溶液)于10 mL刻度试管中,加入6.0 mL正丁醇一 浓盐酸(95:5)与2% 硫酸铁铵溶液(溶解于2 mol/L 盐酸)0.2mL,混匀,置于沸水浴中加热40min后,立即 取出用冰水快速冷却至室温,在550 Nm处测定吸光值。
此方法较简便,而且对原花青素的选择性反应较 好。铁盐催化法对反应体系中的含水量和Fe 浓度要求 比较严格,一般要求含水量6%,Fe 浓度4.5x10 %, 而且过高的Fe¨浓度对反应没有影响【l51。傅武胜【l61 研究表明3%~4%为合适的含水量,Fe 浓度选择在 9.OxlO %左右。但是也有学者总结分析2%~6%含 水量对花青素的形成有抑制作用,稍高的Fe¨浓度 (>15 g/L)也抑制花青素的生成.
在铁盐催化反应的基础上,杨大进【l I等人利用高 效液相色谱法检测了原花青素含量。该方法将原花青 素在上述铁盐催化条件下生成的深红色花青素离子 进行高效液相色谱分析,从而确定原花青素的含量。 此方法能够排除部分杂质的影响,具有定性定量准确 的优点。
3.2.2 香草醛法
测定原理:原花青素和儿茶素类单体的A环的化 学活性较高,在酸性条件下,其上的问苯二酚或间苯 三酚与香草醛发生缩和,产物在浓酸作用下形成红色 的正碳离子,样品的浓度与产生的颜色呈正相关,在500 llm波长下测定其吸收光值【l91(图3)
图3 酚醛缩合反应
香草醛法测定时,一般以儿茶素为标准物,以甲醇为溶剂。盐酸、硫酸均可作为反应过程的催化剂,但在 使用硫酸时,浓度不易过高,过高的硫酸易使香草 醛发生自缩合反应和氧化分解 。具体的操作方式 较多:1 mL试液+2.5 mL 1%香草醛甲醇溶液+2.5 mL 25%硫酸或8%盐酸(均溶解于甲醇),30。【二下反应 15 min~20 min【2l。丑 ;1 mL试液+6 mL 4%香草醛甲醇 溶液+3 mL浓盐酸,室温下反应15 minL231;有的更是在 2O℃下反应15 h[241。操作方式差别较大,不利于使用 者的选择,有待于统一。
3.2_3 紫外分光光度法
原花青素为无色物质,在可见光区无特征吸收峰, 在紫外区有唯一特征吸收峰,最大吸收波长在280 Nm 处。尽管此方法简单快捷,但是此方法只适用于原花青 素含量纯度特别高的产品,不适合一般原料中原花青 素的检测。这是因为儿茶素类在280 Nm处也有最大吸 收,V 、Vc、Ve。、Ve 、芦丁、B一胡萝卜素等物质在此波长 处都有明显的吸收.
3.2.4 Folin—Ciocaheau与HPLC结合法
此方法为美国葡萄籽方法评定委员会推荐使用的 方法。Folin—Ciocaheau法测定的是多酚含量,一般以没 食子酸为对照物。在碱性溶液中,多酚可以将钨钼酸还 原,生成蓝色的化合物,在760 Nm处有最大吸收。葡萄 籽提取物中的多酚含量一般在75%~95%之间。利用 HPLC测定没食子酸、儿茶素、表儿茶素、表儿茶素没 食子酸酯四种单体的含量来代表单体的总量。这是因 为它们四种单体的含量占到了葡萄籽提取物中单体含 量的90.0%以上。原花青素的含量则为多酚含量与单 体含量相减之差。
此方法缺点是蛋白质、氨基酸、核酸、抗坏血酸等 易被氧化的物质也参与Folin—Ciocalteau反应。同时由 于葡萄籽提取物中没食子酸含量甚微(0%~1.2%),与 儿茶素(1.5%~7.3%)和表儿茶素(2.0%~5.1%)含量 相差悬殊四,原花青素含量用没食子酸量来表示缺乏 代表性。
3.2.5 钼酸铵分光光度法
它是基于邻苯二酚与钼酸铵在弱酸性介质中生成 黄色钼酸酯,反应产物在333 nm波长处具有最大吸收。 马亚军 寸检测条件进行了简单摸索:取0.08 mol,L钼 酸铵1 mL溶液置于25mL比色管,加人适量试液,用 1.OxlO mol/L盐酸冲至刻度,反应瞬间完成。
根据反应原理,花色素、没食子酸、儿茶素类都具 有邻苯二酚结构,也参与钼酸酯的生成,测定原花青素 的选择性不高,受到杂质影响较大。
3.2.6 其它测定方法
马亚军 对原花青素含量测定方法进行了研究: 高铁盐一铁氰化钾分光光度法,它是基于原花青素能将 Fe 还原成Fe ,Fe 与铁氰化钾生成可溶性深蓝色配 位化合物,在710 nm处有最大吸收的原理;硫酸高铈 铵分光光度法,它是基于原花青素与Ce“在强酸性介 质中反应生成无色的Ce ,Ce“在319 nm波长处具有 最大吸收,通过测定黄色高铈盐的吸光度,间接测定原 花青素。另外还有流动注射一抑制化学发光法[271:在碱 性条件下,利用原花青素还原H:O:可抑制鲁米诺一 H20 体系的化学发光,其抑制的程度与原花青素浓度 之间呈线性关系。这三种方法如同Folin—Ciocaheau法 利用多酚的还原性质测定多酚含量的原理,结果都扩 大了原花青素的含量。
综上所述,原花青素值的测定只是根据经验公式, 并不是原花青素真实含量,与现代检测方法相落伍。铁 盐催化法测定原花青素专属性较强,有很好的应用前 景,但仍需要进一步的研究与改进。香草醛法测定的是 原花青素和黄烷一3一醇单体的总量,与HPLC法检测黄 烷一3一醇单体:儿茶素、表儿茶素含量相结合起来可以 计算原花青素的含量。但是香草醛法操作方式较多,不 利于使用者选择,具体操作方法还需要进行统一。国外 有学者利用HPLC/MS技术分析和检测原花青素,过程 比较复杂,技术要求高,不能广泛应用于原花青素产品 的测定。
4 展望
葡萄籽原花青素拥有高效的抗衰老、抗心血管疾 病、抗癌功能,此外还具有抗辐射、抗疲劳,改善记忆力 等作用,显示出了无比的优越生物活性和安全性。目前 我国生产和销售葡萄籽提取物就有50多家,年生产能 力超过80 t。因此,为了与葡萄籽提取物行业的蓬勃发 展相适应,迫切需要建立起统一的葡萄籽及其产品中 原花青素含量的测定方法,以利于企业的生产贸易、产 品的质量控制和顾客的消费指导。
② 如何提取花青素
蓝晓科技花青素提取树脂介绍
花青素提取纯化方法较多,但受保健食品与化妆品行业对原料溶剂残留的严格限制要求,目前行业使用较为普遍的是水提+大孔吸附树脂吸附的工艺,即将植物原料在常压或高压下用水浸提,经必要的过滤预处理后,提取清液采用非极性大孔吸附树脂吸附富集,再用乙醇解吸。
为了达到更好的分离纯化效果,需要选择不同类型的吸附树脂进行富集纯化,蓝晓科技在多年的花青素树脂分离纯化研究与工业实践过程中,自主研发出了适用不同原料进行花青素提取的树脂系列:
▲XDA-6和LSA-12 主要应用于越橘、黑加仑、蓝莓、浆果类来源花青素等提取。
▲LSA-10 主要用于葡萄籽、松树皮、花生衣等来源花青素提取。
▲LX-32 主要用于紫薯、紫甘蓝、萝卜等蔬菜类来源花青素的提取。
③ 花青素的纯化方法
原花青素(简称PC)是植物界中广泛存在的一大类多酚类化合物。植物化学家通常将从植物中 分离得到的一切无色的,在无机酸存在和加热处理下能产生红色的花青素(cyanidin)的一类多酚化 合物统称为原花青素。从20世纪60年代初至今,原花青素抗氧化、清除自由基等一系列化学反应已 被初步揭示,这类天然产物在医药、食品、日用化 学品等领域的应用日益广阔。全世界对原花青素的研究越来越深入,其中对原花青素提取、分离、纯 化方法的研究是一大重点,现将原花青素提取、分 离、纯化方法综述如下。
1 原花青素的提取方法
植物材料中原花青素的提取率与材料的状况和 提取条件密切相关。植物材料的贮存、干燥、粉碎 度,提取溶剂、温度等都可能导致原花青素化学结 构的变化和提取率的改变,从而改变原花青素的理化性质和生物活性.
当测定原材料中的原花青素含量时,贮存时间 越长,可能会导致测定结果降低。同时样品中的水 分含量也会导致测定结果降低。而且干燥条件的不 同也会导致提取率的变化,最好是采用冷冻干燥, 避免高温。
样品提取前一般要经过粉碎,通常较细的粉末 有利于提取,但过细时提取率反而会降低。
提取剂的选择也是影响提取率的关键因素。因 为原花青素在植物体内通常与蛋白质、多糖等以氢 键和疏水键形式形成稳定的分子复合物,原花青素 分子间也是如此。因此原花青素的提取剂,不仅要 求对其有很好的溶解性,而且还必须有氢键断裂作 用。因此有机溶剂和水的复合体系(有机溶剂占总 体积的50%~70%)最适合提取。有机溶剂的提 取能力顺序为丙醇<乙醇<甲醇<丙酮<四氢呋喃,其中应用较多的是丙酮一水体系和甲醇一水体 系。
当植物样品中铁等金属离子含量较大时,原花 青素在中性条件下与金属离子发生络合沉淀,沉积 在纤维中不利于提取。此时也必须采用酸化溶剂, 一方面断裂原花青素与蛋白质、多糖及本身离子间 的氢键和疏水键,另一方面断裂原花青素一金属离 子络合键,提高提取率。
1.1 传统有机溶剂提取
Ayroles等在1991年发明酮类化合物水溶液作 提取剂提取银杏叶中的原花青素的方法。采用酮类化合物的水溶液作提取剂,提取液过滤后,用碱调 节滤液pH值至9左右,使原花青素沉淀,再用酸 调节滤液至pH值为2左右,在(NH4) SO 存在条件下用c ~c 酮类萃取滤液中的原花青素,除去酮类 化合物,干燥。
Romanczyk等发明从可可中提取原花青素时, 对脱脂可可豆用质量分数70%MeOH/去离子水提 取后,再用质量分数70%丙酮/去离子水溶剂提取 2次,真空浓缩,除去有机溶剂后,再溶于水中, 用CHC1,提取,其水相用乙酸乙酯提取后,真空浓 缩除去乙酸乙酯,水相冷冻干燥,得到原花青素。
1.2 绿色溶剂—— 水提取技术
由于丙酮等有机溶剂可能带来环境污染和产品 的有毒有机物残留,人们在大力发展对环境友好的绿色提取技术。1998年Duncan和Gilmour发明一 种从植物材料(树皮、树叶、葡萄籽、皮、大豆、绿茶)中提取原花青素的方法。将材料粉碎(≤15 mm),常压、60℃~100℃或高压100℃~125℃条 件下采用脱氧热水提取(1 min~20 h),过滤采用超滤 或反渗透或两者连用,浓缩滤液,真空喷雾或冷冻 干燥,此法主要是提取分子量≤5 000 D的水溶性原花青素,得率为0.5%~10.0%之间,通常为6.5% 一9.6% (随取样部位的差异而定),分离得到原花 青素B 、B,、B 和c 。获得的产物对AAPH引发 的亚油酸的氧化有明显抑制作用,1肛g/mL能达 到70%~79%的抑制率。毒理学检测表明:对于按人体重剂量给药组和100倍人体重量的剂量给药组 24 h内无毒害和副作用产生,慢性毒理学(5个月) 实验也无明显毒、副作用。
1999年Karim等人发明了在加压条件下,采用 脱氧去离子水提取植物材料中的原花青素。将提取 液超滤后,采用疏水性微孔聚合物树脂作填料的柱 色谱方法,选用极性洗脱液(乙醇+水)洗脱,将 洗脱液采用反渗透方法除去乙醇,干燥得到原花青素。
1.3 超临界流体萃取技术
孙传经等发明一种采用超临界二氧化碳加丙酮 和水组成的极性改性剂,从银杏叶中萃取含有原花青素提取物的方法。在萃取温度60℃~90℃,萃取 压力20 MPa~35 MPa下加入丙酮与水的体积比为 (50%~80%):(50%~20%)的极性改性剂,萃 取时向2 h-4 h,进行静态、动态萃取。萃取液经传统的树脂浓缩和喷雾干燥器干燥,得到精制银杏叶 提取物。产品含银杏黄酮甙>35 g/100 g,萜内酯> 8 g/100 g,原花青素<7 g/100 g,酚酸<5 mg/kg。该法的优点是流程短,能萃取最强的天然抗氧化剂原花青素。2000年孙传经等又发明一种超临界CO 从黑加仑籽中提取黑加仑籽油和原花青素低聚物的方法。该法分两步进行:第一步,是利用超临界 CO 提取黑加仑籽油,控制萃取压力在25 MPa一 29 MPa,温度为60℃ ;第二步是超临界CO2加人 丙酮与水的体积比为70:30的改性剂,CO 与改性 剂流量体积比为4:1,压力为22 MPa~25 MPa,温度为60℃,提取原花青素低聚物。黑加仑籽油得 率为16%,原花青素低聚物得率为4%。该法优 点是同时获得两种产品,流程简单可靠,CO 和改 性剂循环利用,产品中无溶剂残留,对环境无污 染。
1.4 微波提取技术
刘征涛等发明了一种采用频率为2450 MHz或 915 MHz、功率为500 W~15 000 W 的微波对葡萄籽 在选用水、碳链长为C ~C,的醇、乙醚、丙酮、乙 酸乙酯、甲苯或其混合物的溶剂中进行处理,从葡 萄籽提取原花青素类物质的新方法。该方法较常规 化学法工艺简便、高效、快速,成本低,废液排放 量少。
1.5 双水相萃取方法
自1956年瑞典伦德大学的Albertsson发现双水 相体系到1979年德国GBF的Kula等人将双水相萃取分离技术应用于生物产品分离,虽然只有20多 年历史,但由于其条件温和,容易放大,目前已成 功地应用于蛋白质、核酸和病毒等生物产品的分离纯化。近几年来,有关双水相萃取技术提取中草药 有效成分的文献开始报道,尽管数量不多,但是已 有的实例充分表明其有良好的应用前景。用双水相萃取体系富集分离银杏叶浸提液的研究,表现良好 的分配系数和分离效果。研究认为双水相体系具有 分相快,使用温度低,易于操作等待点,且所使用的PEG及盐类对人体及环境无毒害,萃取率高,为 银杏黄酮化合物富集分离的一种有效方法。尽管双 水相萃取对中草药提取研究的应用处于起步阶段,这一技术的应用有望为从天然产物中提取有效成分 提供一个新的思路。
2 原花青素的纯化、分离
2.1 液相萃取法
原花青素的纯化多采用乙酸乙酯、甲苯、二氯 甲烷、醚等多级有机溶剂通过液相萃取的方法进行,这类方法因为有机溶剂用量大,对环境可能带 来污染,同时也容易造成产品中有毒有机物残留。
2-2 柱层析法
目前常采用的纯化方法多用柱层析法进行。王 建清等对大麦中的原花青素丙酮提取液,采用 PVPP树脂作柱层析的填料,以CH CN作流动相进 行纯化。
Ricardo da silva等将葡萄用甲醇提取,提取液 回收甲醇后,通过聚酰胺柱进行初步分离,先用中 性水洗去酚酸,再用体积比30:70的乙腈/水洗脱 儿茶素,再用体积比75:25丙酮水洗脱原花青素, 进行纯化。
刘睿等采用大孔树脂对高粱中的原花青素用乙醇 的水溶液进行纯化,得到产物纯度大于95 g/100 g的 低聚体原花青素。
2.3 固相萃取法
从复杂体系中选择性地萃取所需成分,固相萃 取(SPE)是其中最为有效的方法之一。1999年 Lazarus等人对杏仁皮、葡萄汁和红葡萄酒中的原花 青素采用SPE方法进行纯化,条件:supelcosil Envi一18 20mL SPE柱,流动相:丙酮:水:乙酸= 70:29.5:0.5 (体积比)。Kennedy和Waterhouse 对红葡萄酒中的原花青素采用c一18柱(Alhech), 流动相:水和甲醇。洗脱除去有机酸、糖类和其他 不溶于有机相中的化合物而将提取得到的原花青素 进行纯化。
2,4 凝胶色谱法
凝胶色谱也常用于原花青素的纯化。 SephadexLH一20是一种对黄酮类化合物具有高度亲 和性的羟丙基化葡聚糖凝胶,Sephadex LH一20凝 胶色谱目前多用于原花青素的纯化和分离。但 Sephadex LH一20凝胶的物理特性决定其并不能对原花青素进行高效率分离。所以进一步的纯化和分离 要采用凝胶过滤色谱或HPLC进行。
此外,Sepherdex 75HR作为平均粒度为13 m 的葡聚糖聚合物,也用于原花青素的纯化、分离, 其能承受超过1.8 MPa的反压,尽管这种材料的商业 柱通常用于蛋白质的分离,发现其分离原花青素的 能力优于Sephadex LH一20。McMurrough和Madigan 将大麦提取液浓缩后,直接采用高效凝胶过滤色谱 (Sepherdex 75HR),用甲醇洗脱,根据uV检测, 收集洗脱物,用DMACA鉴定每个组分。Escribano— Bail 6 n et al采用Sephadex LH一20和半制备RP—HPLC对葡萄籽中的原花青素进行纯化。
Rigaud等对可可和葡萄籽的提取物,采用凝胶 渗透色谱(GPC)TSK G 2500 Hxl和TSK G3000 Hxl, 采用四氢呋喃(流速1 mL/min)洗脱进行纯化。
2.5 微生物发酵法
Ariga等发明一种由活性酵母,可将用水和有 机溶剂提取得到的提取物中的淀粉发酵除去而达到 纯化原花青素的目的;同时还发现纯化的原花青素 中金属离子也能较好的被除去,如果提取剂是水和 水/乙醇,能直接浓缩后发酵,若提取剂是丙酮, 则要除去丙酮后才能进行发酵。常用的酵母有:葡 萄酒酵母、酵母属和接枝酵母属的菌株。
2.6 高速逆流色谱法
高速逆流色谱技术由美国国家医学院Ito Yiochiro 博士20世纪60年代首创,最初是一种制备型色谱技术,是一种不用固体载体或支撑体的液液分配色 谱,主要根据化合物在不相溶的两相间的分配能力 进行分离,具有分离效率高,产品纯度高,不存在载体对样品的吸附和污染,制备量大,溶剂消耗 少,而且操作条件简单(室温、Teflon惰性柱材) 的特点。目前已被广泛用于天然药物材料的制备和分析。
目前高速逆流色谱仪已成功开发出分析型和制 备型两大系列。即高速逆流色谱仪既可用于天然药 物成分的制备分离,又可定量。进样量从几毫克到克,进样体积从几毫升到几十毫升,不但适于非极 性化合物的分离,也适用于极性化合物的分离,既 适合于天然产物功效成分的粗分,也可进一步精制、纯化。
2-7 分子烙印技术
分子烙印技术(molecular imprinting technology, MIT)是20世纪末出现的一种高选择性分离技术,由于MIT模仿了生物界的锁匙作用原理,使制备的 材料具有极高的选择性,因而很快在许多相关领域 如手性分离和底物选择性分离、固相萃取、化学或生物传感器、不对称催化和模拟酶等方面得到了应 用。在普通分离方面,较之传统方法,MIT法具有 高效、快速、专一的优点。MIT法在手性分离方面的作用更是无与伦比。据统计,现有药物60%具 有一个或一个以上的手性中心,而对映体间的药效 及对人体影响有很大不同,因此1992年美国食品和药物管理局规定,今后含不对称中心的药物必须 将光学异构体分离开。相对于传统方法的一筹莫展,MIT法就显得非常珍贵了。P>
周力等人在2002年制备了以槲皮素为模板的 分子烙印聚合物(MIP),从沙棘粗提物中分离提取槲皮素和异鼠李素两种黄酮,得到良好的分离效果。 谢建春等用非共价法,在极性溶剂中、以丙烯酰胺 作功能单体,以强极性化合物槲皮素为模板,制备了分子烙印聚合物(MIP)。液相色谱实验表明,MIP 对懈皮素具有特异的亲合性,将此MIP直接分离银杏叶提取物水解液,得到主要含模板槲皮素及与槲 皮素结构相似化合物山奈酚两种黄酮的组分。研究 证实了MIP技术用于直接分离、提取中草药中具有特定药效化合物的可行性。
④ 如何提取花青素
花青素,是一种热敏性活性物质。属于水溶性多酚黄酮类化合物,其特殊的结构和化学成分赋予了花青素多种生物活性,这些活性物质对温度较为敏感,当所在环境温度超过一定界限后,就会失活,也就是我们俗话说的死掉。(比如我们都知道,乳酸菌、益生菌等都属于热敏性活性物质,不能加热,否则失去活性就会失去其主要作用。)花青素失活就会失去其特有的功效作用。
有机溶剂萃取法
这是目前国内外最广泛使用的提取方法。多数选择甲醇、乙酮、丙酮等混合溶剂对材料进行溶解过滤,通过调节溶液酸碱度萃取滤液中的花青素。国内吴信子等用盐酸一甲醇溶液提取,然后用纸层析法(中号)和柱层析法(聚乙酰胺)进行花色苷的分离 。目前,有机溶剂萃取法已成功地应用于诸如葡萄籽、石榴皮、蓝莓等绝大多数含花青素物质的提取分离。有机溶剂萃取法的关键是选择有效溶剂,要求既要对被提取的有效成分有较大溶解度,又要避免大量杂质的溶解。该方法原理简单,对设备要求较低,不足之处是大多数有机溶剂毒副作用大且产物提取率低。
2水溶液提取法
有机溶剂萃取的花青素多有毒性残留且生产过程环境污染大,有鉴于此,水溶液提取应运而生。该方法一般将植物材料在常压或高压下用热水浸泡,然后用非极性大孔树脂吸附;或直接使用脱氧热水提取,再采用超滤或反渗透,浓缩得到粗提物。它是Duncan和Gilmour(1998)发明的提取花青素的方法 ,此方法设备要求简单,但产品纯度低。
3超临界流体萃取法
超临界流体萃取是利用压力和温度对超临界流体溶解能力的影响进行提取。这种方法产品提取率高,但设备成本过高。孙传经 采用超临界CO:萃取法从银杏叶、黑加仑籽及葡萄籽中提取花青素工艺进行了研究。该工艺中CO 和改性剂可循环使用,对环境无污染。