导航:首页 > 研究方法 > 大数据数据分析方法文档

大数据数据分析方法文档

发布时间:2023-02-22 14:19:07

‘壹’ 最常用的四种大数据分析方法

本文主要讲述数据挖掘分析领域中,最常用的四种数据分析方法:描述型分析、诊断型分析、预测型分析和指令型分析。
当刚涉足数据挖掘分析领域的分析师被问及,数据挖掘分析人员最重要的能力是什么时,他们给出了五花八门的答案。
其实我想告诉他们的是,数据挖掘分析领域最重要的能力是:能够将数据转化为非专业人士也能够清楚理解的有意义的见解。
使用一些工具来帮助大家更好的理解数据分析在挖掘数据价值方面的重要性,是十分有必要的。其中的一个工具,叫做四维分析法。
简单地来说,分析可被划分为4种关键方法。
下面会详细介绍这四种方法。
1. 描述型分析:发生了什么?

这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。
例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是“描述型分析”方法之一。利用可视化工具,能够有效的增强描述型分析所提供的信息。
2. 诊断型分析:为什么会发生?

描述性数据分析的下一步就是诊断型数据分析。通过评估描述型数据,诊断分析工具能够让数据分析师深入地分析数据,钻取到数据的核心。
良好设计的BI dashboard能够整合:按照时间序列进行数据读入、特征过滤和钻取数据等功能,以便更好的分析数据。
3. 预测型分析:可能发生什么?

预测型分析主要用于进行预测。事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点,这些都可以通过预测模型来完成。
预测模型通常会使用各种可变数据来实现预测。数据成员的多样化与预测结果密切相关。
在充满不确定性的环境下,预测能够帮助做出更好的决定。预测模型也是很多领域正在使用的重要方法。
4. 指令型分析:需要做什么?

数据价值和复杂度分析的下一步就是指令型分析。指令模型基于对“发生了什么”、“为什么会发生”和“可能发生什么”的分析,来帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。
例如,交通规划分析考量了每条路线的距离、每条线路的行驶速度、以及目前的交通管制等方面因素,来帮助选择最好的回家路线。
结论
最后需要说明,每一种分析方法都对业务分析具有很大的帮助,同时也应用在数据分析的各个方面。
End.

‘贰’ 大数据工程师常见数据分析方法是什么

1、可视化分析
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让群众们以更直观,更易懂的方式了解结果。
2、数据挖掘算法
数据挖掘又称数据库中的知识发现人工智能机式别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。
3、预测性分析能力
预测性分析结合了多种高级分析功能,包括特设统计分析、预测性建模、数据挖掘、文本分析、优化、实时评分、机器学习等。这些工具可以帮助企业发现数据中的模式,并超越当前所发生的情况预测未来进展。
4、语义引擎
由于非结构化数据的多样性带来了数据分析的新的挑战,需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
5、数据质量和数据管理
数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。

‘叁’ 大数据分析的基本方法有哪些

1.可视化分析


不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。


2. 数据挖掘算法


可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。


3. 预测性分析能力


数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。


4. 语义引擎


由于非结构化数据的多样性带来了数据分析的新的挑战,需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。


5. 数据质量和数据管理


数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。

‘肆’ 大数据分析的概念和方法

一、大数据分析的五个基本方面

1,可视化分析

大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。

2,数据挖掘算法

大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。

3,预测性分析能力

大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。

4,语义引擎

大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。

5,数据质量和数据管理

大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

二、如何选择适合的数据分析工具

要明白分析什么数据,大数据要分析的数据类型主要有四大类:

1.交易数据(TRANSACTION DATA)

大数据平台能够获取时间跨度更大、更海量的结构化交易数据,这样就可以对更广泛的交易数据类型进行分析,不仅仅包括POS或电子商务购物数据,还包括行为交易数据,例如Web服务器记录的互联网点击流数据日志。

2.人为数据(HUMAN-GENERATED DATA)

非结构数据广泛存在于电子邮件、文档、图片、音频、视频,以及通过博客、维基,尤其是社交媒体产生的数据流。这些数据为使用文本分析功能进行分析提供了丰富的数据源泉。

3.移动数据(MOBILE DATA)

能够上网的智能手机和平板越来越普遍。这些移动设备上的App都能够追踪和沟通无数事件,从App内的交易数据(如搜索产品的记录事件)到个人信息资料或状态报告事件(如地点变更即报告一个新的地理编码)。

4.机器和传感器数据(MACHINE AND SENSOR DATA)

这包括功能设备创建或生成的数据,例如智能电表、智能温度控制器、工厂机器和连接互联网的家用电器。这些设备可以配置为与互联网络中的其他节点通信,还可以自动向中央服务器传输数据,这样就可以对数据进行分析。机器和传感器数据是来自新兴的物联网(IoT)所产生的主要例子。来自物联网的数据可以用于构建分析模型,连续监测预测性行为(如当传感器值表示有问题时进行识别),提供规定的指令(如警示技术人员在真正出问题之前检查设备)

‘伍’ 大数据分析方法解读以及相关工具介绍

大数据分析方法解读以及相关工具介绍
要知道,大数据已不再是数据大,最重要的现实就是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。
越来越多的应用涉及到大数据,这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以,大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于此,大数据分析方法理论有哪些呢?
大数据分析的五个基本方面
(预测性分析能力)
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
(数据质量和数据管理)
数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。
AnalyticVisualizations(可视化分析)
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
SemanticEngines(语义引擎)
我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
DataMiningAlgorithms(数据挖掘算法)
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
假如大数据真的是下一个重要的技术革新的话,我们最好把精力关注在大数据能给我们带来的好处,而不仅仅是挑战。
大数据处理
大数据处理数据时代理念的三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。具体的大数据处理方法其实有很多,但是根据长时间的实践,笔者总结了一个基本的大数据处理流程,并且这个流程应该能够对大家理顺大数据的处理有所帮助。整个处理流程可以概括为四步,分别是采集、导入和预处理、统计和分析,以及挖掘。
采集
大数据的采集是指利用多个数据库来接收发自客户端的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。
统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的K-Means、用于统计学习的SVM和用于分类的Naive Bayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,还有,常用数据挖掘算法都以单线程为主。
大数据分析工具详解 IBM惠普微软工具在列
去年,IBM宣布以17亿美元收购数据分析公司Netezza;EMC继收购数据仓库软件厂商Greenplum后再次收购集群NAS厂商Isilon;Teradata收购了Aster Data 公司;随后,惠普收购实时分析平台Vertica等,这些收购事件指向的是同一个目标市场——大数据。是的,大数据时代已经来临,大家都在摩拳擦掌,抢占市场先机。
而在这里面,最耀眼的明星是hadoop,Hadoop已被公认为是新一代的大数据处理平台,EMC、IBM、Informatica、Microsoft以及Oracle都纷纷投入了Hadoop的怀抱。对于大数据来说,最重要的还是对于数据的分析,从里面寻找有价值的数据帮助企业作出更好的商业决策。下面,我们就来看以下八大关于大数据分析的工具。
EMC Greenplum统一分析平台(UAP)
Greenplum在2010年被EMC收购了其EMC Greenplum统一分析平台(UAP)是一款单一软件平台,数据团队和分析团队可以在该平台上无缝地共享信息、协作分析,没必要在不同的孤岛上工作,或者在不同的孤岛之间转移数据。正因为如此,UAP包括ECM Greenplum关系数据库、EMC Greenplum HD Hadoop发行版和EMC Greenplum Chorus。
EMC为大数据开发的硬件是模块化的EMC数据计算设备(DCA),它能够在一个设备里面运行并扩展Greenplum关系数据库和Greenplum HD节点。DCA提供了一个共享的指挥中心(Command Center)界面,让管理员可以监控、管理和配置Greenplum数据库和Hadoop系统性能及容量。随着Hadoop平台日趋成熟,预计分析功能会急剧增加。
IBM打组合拳提供BigInsights和BigCloud
几年前,IBM开始在其实验室尝试使用Hadoop,但是它在去年将相关产品和服务纳入到商业版IBM在去年5月推出了InfoSphere BigI云版本的 InfoSphere BigInsights使组织内的任何用户都可以做大数据分析。云上的BigInsights软件可以分析数据库里的结构化数据和非结构化数据,使决策者能够迅速将洞察转化为行动。
IBM随后又在10月通过其智慧云企业(SmartCloud Enterprise)基础架构,将BigInsights和BigSheets作为一项服务来提供。这项服务分基础版和企业版;一大卖点就是客户不必购买支持性硬件,也不需要IT专门知识,就可以学习和试用大数据处理和分析功能。据IBM声称,客户用不了30分钟就能搭建起Hadoop集群,并将数据转移到集群里面,数据处理费用是每个集群每小时60美分起价。

Informatica 9.1:将大数据的挑战转化为大机遇
Informatica公司在去年10月则更深入一步,当时它推出了HParser,这是一种针对Hadoop而优化的数据转换环境。据Informatica声称,软件支持灵活高效地处理Hadoop里面的任何文件格式,为Hadoop开发人员提供了即开即用的解析功能,以便处理复杂而多样的数据源,包括日志、文档、二进制数据或层次式数据,以及众多行业标准格式(如银行业的NACHA、支付业的SWIFT、金融数据业的FIX和保险业的ACORD)。正如数据库内处理技术加快了各种分析方法,Informatica同样将解析代码添加到Hadoop里面,以便充分利用所有这些处理功能,不久会添加其他的数据处理代码。
Informatica HParser是Informatica B2B Data Exchange家族产品及Informatica平台的最新补充,旨在满足从海量无结构数据中提取商业价值的日益增长的需求。去年, Informatica成功地推出了创新的Informatica 9.1 for Big Data,是全球第一个专门为大数据而构建的统一数据集成平台。

甲骨文大数据机——Oracle Big Data Appliance
甲骨文的Big Data Appliance集成系统包括Cloudera的Hadoop系统管理软件和支持服务Apache Hadoop 和Cloudera Manager。甲骨文视Big Data Appliance为包括Exadata、Exalogic和 Exalytics In-Memory Machine的“建造系统”。Oracle大数据机(Oracle Big Data Appliance),是一个软、硬件集成系统,在系统中融入了Cloudera的Distribution Including Apache Hadoop、Cloudera Manager和一个开源R。该大数据机采用Oracle Linux操作系统,并配备Oracle NoSQL数据库社区版本和Oracle HotSpot Java虚拟机。Big Data Appliance为全架构产品,每个架构864GB存储,216个CPU内核,648TBRAW存储,每秒40GB的InifiniBand连接。Big Data Appliance售价45万美元,每年硬软件支持费用为12%。
甲骨文Big Data Appliance与EMC Data Computing Appliance匹敌,IBM也曾推出数据分析软件平台InfoSphere BigInsights,微软也宣布在2012年发布Hadoop架构的SQL Server 2012大型数据处理平台。
统计分析方法以及统计软件详细介绍
统计分析方法有哪几种?下面我们将详细阐述,并介绍一些常用的统计分析软件。

一、指标对比分析法指标对比分析法
统计分析的八种方法一、指标对比分析法指标对比分析法,又称比较分析法,是统计分析中最常用的方法。是通过有关的指标对比来反映事物数量上差异和变化的方法。有比较才能鉴别。单独看一些指标,只能说明总体的某些数量特征,得不出什么结论性的认识;一经过比较,如与国外、外单位比,与历史数据比,与计划相比,就可以对规模大小、水平高低、速度快慢作出判断和评价。
指标分析对比分析方法可分为静态比较和动态比较分析。静态比较是同一时间条件下不同总体指标比较,如不同部门、不同地区、不同国家的比较,也叫横向比较;动态比较是同一总体条件不同时期指标数值的比较,也叫纵向比较。这两种方法既可单独使用,也可结合使用。进行对比分析时,可以单独使用总量指标或相对指标或平均指标,也可将它们结合起来进行对比。比较的结果可用相对数,如百分数、倍数、系数等,也可用相差的绝对数和相关的百分点(每1%为一个百分点)来表示,即将对比的指标相减。
二、分组分析法指标对比分析法
分组分析法指标对比分析法对比,但组成统计总体的各单位具有多种特征,这就使得在同一总体范围内的各单位之间产生了许多差别,统计分析不仅要对总体数量特征和数量关系进行分析,还要深入总体的内部进行分组分析。分组分析法就是根据统计分析的目的要求,把所研究的总体按照一个或者几个标志划分为若干个部分,加以整理,进行观察、分析,以揭示其内在的联系和规律性。
统计分组法的关键问题在于正确选择分组标值和划分各组界限。
三、时间数列及动态分析法
时间数列。是将同一指标在时间上变化和发展的一系列数值,按时间先后顺序排列,就形成时间数列,又称动态数列。它能反映社会经济现象的发展变动情况,通过时间数列的编制和分析,可以找出动态变化规律,为预测未来的发展趋势提供依据。时间数列可分为绝对数时间数列、相对数时间数列、平均数时间数列。
时间数列速度指标。根据绝对数时间数列可以计算的速度指标:有发展速度、增长速度、平均发展速度、平均增长速度。
动态分析法。在统计分析中,如果只有孤立的一个时期指标值,是很难作出判断的。如果编制了时间数列,就可以进行动态分析,反映其发展水平和速度的变化规律。
进行动态分析,要注意数列中各个指标具有的可比性。总体范围、指标计算方法、计算价格和计量单位,都应该前后一致。时间间隔一般也要一致,但也可以根据研究目的,采取不同的间隔期,如按历史时期分。为了消除时间间隔期不同而产生的指标数值不可比,可采用年平均数和年平均发展速度来编制动态数列。此外在统计上,许多综合指标是采用价值形态来反映实物总量,如国内生产总值、工业总产值、社会商品零售总额等计算不同年份的发展速度时,必须消除价格变动因素的影响,才能正确的反映实物量的变化。也就是说必须用可比价格(如用不变价或用价格指数调整)计算不同年份相同产品的价值,然后才能进行对比。
为了观察我国经济发展的波动轨迹,可将各年国内生产总值的发展速度编制时间数列,并据以绘制成曲线图,令人得到直观认识。
四、指数分析法
指数是指反映社会经济现象变动情况的相对数。有广义和狭义之分。根据指数所研究的范围不同可以有个体指数、类指数与总指数之分。
指数的作用:一是可以综合反映复杂的社会经济现象的总体数量变动的方向和程度;二是可以分析某种社会经济现象的总变动受各因素变动影响的程度,这是一种因素分析法。操作方法是:通过指数体系中的数量关系,假定其他因素不变,来观察某一因素的变动对总变动的影响。
用指数进行因素分析。因素分析就是将研究对象分解为各个因素,把研究对象的总体看成是各因素变动共同的结果,通过对各个因素的分析,对研究对象总变动中各项因素的影响程度进行测定。因素分析按其所研究的对象的统计指标不同可分为对总量指标的变动的因素分析,对平均指标变动的因素分析。
五、平衡分析法
平衡分析是研究社会经济现象数量变化对等关系的一种方法。它把对立统一的双方按其构成要素一一排列起来,给人以整体的概念,以便于全局来观察它们之间的平衡关系。平衡关系广泛存在于经济生活中,大至全国宏观经济运行,小至个人经济收支。平衡种类繁多,如财政平衡表、劳动力平衡表、能源平衡表、国际收支平衡表、投入产出平衡表,等等。平衡分析的作用:一是从数量对等关系上反映社会经济现象的平衡状况,分析各种比例关系相适应状况;二是揭示不平衡的因素和发展潜力;三是利用平衡关系可以从各项已知指标中推算未知的个别指标。
六、综合评价分析
社会经济分析现象往往是错综复杂的,社会经济运行状况是多种因素综合作用的结果,而且各个因素的变动方向和变动程度是不同的。如对宏观经济运行的评价,涉及生活、分配、流通、消费各个方面;对企业经济效益的评价,涉及人、财、物合理利用和市场销售状况。如果只用单一指标,就难以作出恰当的评价。
进行综合评价包括四个步骤:
1.确定评价指标体系,这是综合评价的基础和依据。要注意指标体系的全面性和系统性。
2.搜集数据,并对不同计量单位的指标数值进行同度量处理。可采用相对化处理、函数化处理、标准化处理等方法。
3.确定各指标的权数,以保证评价的科学性。根据各个指标所处的地位和对总体影响程度不同,需要对不同指标赋予不同的权数。
4.对指标进行汇总,计算综合分值,并据此作出综合评价。
七、景气分析
经济波动是客观存在的,是任何国家都难以完全避免的。如何避免大的经济波动,保持经济的稳定发展,一直是各国政府和经济之专家在宏观调控和决策中面临的重要课题,景气分析正是适应这一要求而产生和发展的。景气分析是一种综合评价分析,可分为宏观经济景气分析和企业景气调查分析。
宏观经济景气分析。是国家统计局20世纪80年代后期开始着手建立监测指标体系和评价方法,经过十多年时间和不断完善,已形成制度,定期提供景气分析报告,对宏观经济运行状态起到晴雨表和报警器的作用,便于国务院和有关部门及时采取宏观调控措施。以经常性的小调整,防止经济的大起大落。
企业景气调查分析。是全国的大中型各类企业中,采取抽样调查的方法,通过问卷的形式,让企业负责人回答有关情况判断和预期。内容分为两类:一是对宏观经济总体的判断和预期;一是对企业经营状况的判断和预期,如产品订单、原材料购进、价格、存货、就业、市场需求、固定资产投资等。
八、预测分析
宏观经济决策和微观经济决策,不仅需要了解经济运行中已经发生了的实际情况,而且更需要预见未来将发生的情况。根据已知的过去和现在推测未来,就是预测分析。
统计预测属于定量预测,是以数据分析为主,在预测中结合定性分析。统计预测的方法大致可分为两类:一类是主要根据指标时间数列自身变化与时间的依存关系进行预测,属于时间数列分析;另一类是根据指标之间相互影响的因果关系进行预测,属于回归分析。
预测分析的方法有回归分析法、滑动平均法、指数平滑法、周期(季节)变化分析和随机变化分析等。比较复杂的预测分析需要建立计量经济模型,求解模型中的参数又有许多方法。

‘陆’ 海量数据分析处理方法

海量数据分析处理方法
一、Bloom filter
适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集
基本原理及要点:
对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。
还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。
举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。
注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。
扩展:
Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。
问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?
根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。
二、Hashing
适用范围:快速查找,删除的基本数据结构,通常需要总数据量可以放入内存
基本原理及要点:
hash函数选择,针对字符串,整数,排列,具体相应的hash方法。
碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing。
扩展:
d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing。2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h2。在存储一个新的key时,同时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key存储在左边的T1子表中,2-left也由此而来。在查找一个key时,必须进行两次hash,同时查找两个位置。
问题实例:
1).海量日志数据,提取出某日访问网络次数最多的那个IP。
IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。
三、bit-map
适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下
基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码
扩展:bloom filter可以看做是对bit-map的扩展
问题实例:
1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。
8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。
2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。
将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map。
四、堆
适用范围:海量数据前n大,并且n比较小,堆可以放入内存
基本原理及要点:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我们比较当前元素与最大堆里的最大元素,如果它小于最大元素,则应该替换那个最大元素。这样最后得到的n个元素就是最小的n个。适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很高。
扩展:双堆,一个最大堆与一个最小堆结合,可以用来维护中位数。
问题实例:
1)100w个数中找最大的前100个数。
用一个100个元素大小的最小堆即可。
五、双层桶划分-—其实本质上就是【分而治之】的思想,重在分的技巧上!
适用范围:第k大,中位数,不重复或重复的数字
基本原理及要点:因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。可以通过多次缩小,双层只是一个例子。
扩展:
问题实例:
1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。
有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。
2).5亿个int找它们的中位数。
这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。
实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定区域的第几大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。
六、数据库索引
适用范围:大数据量的增删改查
基本原理及要点:利用数据的设计实现方法,对海量数据的增删改查进行处理。
七、倒排索引(Inverted index)
适用范围:搜索引擎,关键字查询
基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。
以英文为例,下面是要被索引的文本: T0 = “it is what it is” T1 = “what is it” T2 = “it is a banana”
我们就能得到下面的反向文件索引:
“a”: {2} “banana”: {2} “is”: {0, 1, 2} “it”: {0, 1, 2} “what”: {0, 1}
检索的条件”what”,”is”和”it”将对应集合的交集。
正向索引开发出来用来存储每个文档的单词的列表。正向索引的查询往往满足每个文档有序频繁的全文查询和每个单词在校验文档中的验证这样的查询。在正向索引中,文档占据了中心的位置,每个文档指向了一个它所包含的索引项的序列。也就是说文档指向了它包含的那些单词,而反向索引则是单词指向了包含它的文档,很容易看到这个反向的关系。
扩展:
问题实例:文档检索系统,查询那些文件包含了某单词,比如常见的学术论文的关键字搜索。
八、外排序
适用范围:大数据的排序,去重
基本原理及要点:外排序的归并方法,置换选择败者树原理,最优归并树
扩展:
问题实例:
1).有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词。
这个数据具有很明显的特点,词的大小为16个字节,但是内存只有1m做hash有些不够,所以可以用来排序。内存可以当输入缓冲区使用。
九、trie树
适用范围:数据量大,重复多,但是数据种类小可以放入内存
基本原理及要点:实现方式,节点孩子的表示方式
扩展:压缩实现。
问题实例:
1).有10个文件,每个文件1G,每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序。
2).1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。请问怎么设计和实现?
3).寻找热门查询:查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个,每个不超过255字节。
十、分布式处理 maprece
适用范围:数据量大,但是数据种类小可以放入内存
基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。
扩展:
问题实例:
1).The canonical example application of MapRece is a process to count the appearances ofeach different word in a set of documents:
2).海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。
3).一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数的中数(median)?

‘柒’ 如何对数据进行分析 大数据分析方法整理

【导读】随着互联网的发展,数据分析已经成了非常热门的职业,大数据分析师也成了社会打工人趋之若鹜的职业,不仅高薪还没有很多职场微世界的繁琐事情,不过要想做好数据分析工作也并不简单,今天小编就来和大家说说如何对数据进行分析?为此小编对大数据分析方法进行的归纳整理,一起来看看吧!

画像分群

画像分群是聚合契合某种特定行为的用户,进行特定的优化和剖析。

比方在考虑注册转化率的时候,需求差异移动端和Web端,以及美国用户和我国用户等不同场景。这样可以在途径战略和运营战略上,有针对性地进行优化。

趋势维度

树立趋势图表可以活络了解商场,用户或产品特征的根柢体现,便于进行活络迭代;还可以把方针依据不同维度进行切分,定位优化点,有助于挑选方案的实时性。

趋势维度

漏斗查询

经过漏斗剖析可以从先到后的次序恢复某一用户的途径,剖析每一个转化节点的转化数据。

悉数互联网产品、数据分析都离不开漏斗,不论是注册转化漏斗,仍是电商下单的漏斗,需求注重的有两点。首先是注重哪一步丢掉最多,第二是注重丢掉的人都有哪些行为。

注重注册流程的每一进程,可以有用定位高损耗节点。

漏斗查询

行为轨道

行为轨道是进行全量用户行为的恢复,只看PV、UV这类数据,无法全面了解用户怎样运用你的产品。了解用户的行为轨道,有助于运营团队注重具体的用户领会,发现具体问题,依据用户运用习气规划产品、投进内容。

行为轨道

留存剖析

留存是了解行为或行为组与回访之间的相关,留存老用户的本钱要远远低于获取新用户,所以剖析中的留存是十分重要的方针之一。

除了需求注重全体用户的留存情况之外,商场团队可以注重各个途径获取用户的留存度,或各类内容招引来的注册用户回访率,产品团队注重每一个新功用用户的回访影响等。

留存剖析

A/B查验

A/B查验是比照不同产品规划/算法对效果的影响。

产品在上线进程中常常会运用A/B查验来查验产品效果,商场可以经过A/B查验来完毕不同构思的查验。

要进行A/B查验有两个必备要素:

1)有满意的时刻进行查验

2)数据量和数据密度较高

由于当产品流量不行大的时候,做A/B查验得到核算经果是很难的。

A/B查验

优化建模

当一个商业方针与多种行为、画像等信息有相关时,咱们一般会运用数据挖掘的办法进行建模,猜测该商业效果的产生。

优化建模

例如:作为一家SaaS企业,当咱们需求猜测判别客户的付费自愿时,可以经过用户的行为数据,公司信息,用户画像等数据树立付费温度模型。用更科学的办法进行一些组合和权重,得知用户满意哪些行为之后,付费的或许性会更高。

以上就是小编今天给大家整理分享关于“如何对数据进行分析
大数据分析方法整理”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,一直学习,这样更有核心竞争力与竞争资本。

阅读全文

与大数据数据分析方法文档相关的资料

热点内容
电脑打不了机维修方法 浏览:148
发动机舱的鉴别方法 浏览:915
有什么催尿的方法 浏览:175
如何洗脚养肾的方法 浏览:571
胜利兆欧表使用方法 浏览:137
朱砂使用方法 浏览:954
缓解牙疼的最快方法按摩哪里 浏览:51
游完泳耳朵闷堵快速解决方法 浏览:940
厨房中鉴别白醋显酸性的三种方法 浏览:966
折纸飞机折得最远的简便方法 浏览:67
尿酸碱度检测标准方法 浏览:828
浴室热水管道安装方法 浏览:278
手机网络黑屏解决方法 浏览:209
花卉土培检测方法 浏览:277
获取检测信息的方法有哪些 浏览:120
蛋糕比容的计算方法 浏览:738
破坏动物细胞膜最常用的方法 浏览:246
社会作业研究方法 浏览:542
手机怎么拍摄长视频的方法 浏览:302
如何把数字变成字母的方法 浏览:194