导航:首页 > 研究方法 > 面板数据分析方法

面板数据分析方法

发布时间:2022-01-21 21:38:47

如何做面板数据的聚类分析

如果你要考虑到面板数据本身的特定 还要再进行聚类的话,spss是没法做的,因为spss无法处理面板分析。
但是如果只是进行聚类的话,无论是否有时间序列因素在,都可以直接采用一般的聚类方式进行操作就可以了。

实际上做聚类分析,不需要考虑面板的时间序列因素,所以你可以直接按照一般聚类方法做就好了

Ⅱ 如何用spss进行面板数据分析

spss不能做面板数据分析,一直我都期望spss把这块功能加上去,这样我就不用再研究其他软件了,结果一直没有。
所以做面板数据分析 要用stata或eviews

什么叫面板数据分析方法呀这种方法对数据有什么要求吗哪位好人能帮忙回答一下。小女子感激不尽

就是百分比图啊!对数据的要求是越真实越好 越夸大 领导越喜欢。比如说群众的灾难打到0.0007% 领导的政绩达到99.999% 就可以升官 ,社会事实就这样 不信你去改变它。

Ⅳ 面板数据回归分析结果看不懂!!

我给你解读一份stata的回归表格吧,应该有标准表格的所有内容了,因为你没有给范例,……不过我们考试基本就是考stata或者eview的输出表格,它们是类似的。
X变量:教育年限
Y变量:儿女数目

各个系数的含义:
左上列:

Model SS是指计量上的SSE,是y估计值减去y均值平方后加总,表示的是模型的差异
Model df是模型的自由度,一般就是指解释变量X的个数,这里只有一个
Resial SS 和df 分别是残差平方和以及残差自由度 N-K-1(此处K=1)=17565
Total SS 和 df分别是y的差异(y减去y均值平方后加总)以及其自由度N-1=17566
MS都是对应的SS除以df,表示单位的差异

右上列:

Number of obs是观测值的数目N,这里意味着有17567个观测值
F是F估计值,它是对回归中所有系数的联合检验(H0:X1=X2=…=0),这里因为只有一个X,所以恰好是t的平方。这里F值很大,因此回归十分显着。
Prob>F是指5%单边F检验对应的P值,P=0意味着很容易否定H0假设,回归显着。
R-squared是SSE/SST的值,它的意义是全部的差异有多少能被模型解释,这里R-squared有0.0855,说明模型的解释度还是可以的。
Adj R-squared是调整的R-squared,它等于1-(n-1)SSR/(n-k-1)SST,它的目的是为了剔除当加入更多X解释变量时,R-squared的必然上升趋势,从而在多元回归中更好的看出模型的解释力,但是本回归是一元的,这个值没有太大意义。
Root MSE是RMS的开方,是单位残差平方和的一种表现形式。

下列:
Coef分别出示了X变量schooling的系数和常数项的值,其含义是,如果一个人没有受过教育,我们预测会平均生育3个子女,当其他因素不变时,一个人每多受一年教育,我们预测其将会少生0.096个孩子。X变量的coef并不大,因此其实际(也叫经济)显着性并不太高。
Std.err则是估计系数和常数项的标准差。一般我们认为,标准差越小,估计值越集中、精确。
t是t估计值,它用于检验统计显着性,t值较大,因此回归是显着的。
P>abs(t)项是5%双边t检验对应的P值,P=0意味着很容易否定H0假设,统计显着。
95%conf interval项是95%的置信区间,它是x变量的系数(或常数项)分别加减1.96*SE,这是说,有95%的可能性,系数的真值落在这个区域。

Ⅳ 什么叫面板数据分析

面板数据,即Panel Data,也叫“平行数据”,是指在时间序列上取多个截面,在这些截面上同时选取样本观测值所构成的样本数据。或者说他是一个m*n的数据矩阵,记载的是n个时间节点上,m个对象的某一数据指标。
其有时间序列和截面两个维度,当这类数据按两个维度排列时,是排在一个平面上,与只有一个维度的数据排在一条线上有着明显的不同,整个表格像是一个面板,所以把panel data译作“面板数据”。但是,如果从其内在含义上讲,把panel data译为“时间序列—截面数据” 更能揭示这类数据的本质上的特点。也有译作“平行数据”或“TS-CS数据(Time Series - Cross Section)”。
1如
城市名:北京、上海、重庆、天津的GDP分别为10、11、9、8(单位亿元)。这就是截面数据,在一个时间点处切开,看各个城市的不同就是截面数据。
如:2000、2001、2002、2003、2004各年的北京市GDP分别为8、9、10、11、12(单位亿元)。这就是时间序列,选一个城市,看各个样本时间点的不同就是时间序列。
2如
2000、2001、2002、2003、2004各年中国所有直辖市的GDP分别为:
北京市分别为8、9、10、11、12;
上海市分别为9、10、11、12、13;
天津市分别为5、6、7、8、9;
重庆市分别为7、8、9、10、11(单位亿元)。
这就是面板数据。
面板数据是按照英文的直译,也有人将Panel data翻译成综列数据、平行数据等。由于国内没有统一的说法,因此直接使用Panel data这种英文说法应该更准确一些。说面板数据也是比较通用的,但是面板数据并不能从名称上反映出该种数据的实际意义,故很多研究者不愿使用。
面板数据分析方法是最近几十年来发展起来的新的统计方法,面板数据可以克服时间序列分析受多重共线性的困扰,能够提供更多的信息、更多的变化、更少共线性、更多的自由度和更高的估计效率,而面板数据的单位根检验和协整分析是当前最前沿的领域之一。
面板数据的单位根检验的方法主要有 Levin,Lin and CHU(2002)提出的LLC检验方法[5]。Im,Pesearn,Shin(2003)提出的IPS检验[6] , Maddala和Wu(1999),Choi(2001)提出的ADF和PP检验[7]等。面板数据的协整检验的方法主要有Pedroni[8] (1999,2004)和Kao[9](1999)提出的检验方法,这两种检验方法的原假设均为不存在协整关系,从面板数据中得到残差统计量进行检验。Luciano(2003)中运用Monte Carlo模拟[10]对协整检验的几种方法进行比较,说明在T较小(大)时,Kao检验比Pedroni检验更高(低)的功效。
1.指标选取和数据来源
经济增长:本文使用地区生产总值 ,以1999年为基期,根据各地区生产总值指数折算成实际 ,单位:亿元。
能源消费:考虑到近年来我国能源消费总量中,煤炭和石油供需存在着明显低估,而电力消费数据相当准确。因此使用电力消费更能准确反映能源消费与经济增长之间的内在联系(林伯强,2003)。所以本文使用各地区电力消费量 作为能源消费量,单位:亿千瓦小时。
环境污染:污染物以气休、液体、固体形态存在,本文选取工业废水排放量作为环境污染的量化指标,单位:万吨。
本文采用1999-2006年全国30个省(直辖市,自治区)的地区生产总值 、电力消费量 和工业废水排放量 的数据构建面板数据集。30个省(直辖市,自治区)包括北京、天津、河北、辽宁、上海、江苏、浙江、福建、山东、广东、山西、内蒙古、吉林、黑龙江、安徽、江西、河南、湖北、湖南、海南、广西、重庆、四川、贵州、云南、陕西、西藏、甘肃、青海、宁夏、新疆,由于西藏数据不全故不包括在内。数据来源于《中国统计年鉴2000-2007》。为了消除变量间可能存在的异方差,本文先对地区生产总值 、地区电力消费量和工业废水排放量进行自然对数变换。

Ⅵ 如何用excel进行面板数据回归分析

1、首先,在单元格里输入要回归的数据

2、选择“插入”——散点图,选择自己想要的散点图

3、做散点图,在点上右击,添加趋势线

4、进入“趋势线”选项,选择显示公式和显示R平方值,就出现了回归方程,这样就能较粗略的得出系数和截距

5、成果展示图

6、对应框入Y值和X值,即可进行分析

Ⅶ 面板数据分析方法总结

面板数据分析方法总结

横截面的异方差与序列的自相关性是运用面板数据模型时可能遇到的最为常见的问题,此时运用OLS可能会产生结果失真,因此为了消除影响,对我国东、中、西部地区的分析将采用不相关回归方法( SeeminglyUnrelated Regression, SUR)来估计方程。而对于全国范围内的估计来说,由于横截面个数大于时序个数,所以采用截面加权估计法(Cross SectionWeights, CSW) 。
一般而言,面板数据可用固定效应(fixed effect) 和随机效应(random effect) 估计方法,即如果选择固定效应模型,则利用虚拟变量最小二乘法(LSDV) 进行估计;如果选择随机效应模型,则利用可行的广义最小二乘法(FGLS) 进行估计(Greene ,2000) 。它可以极大限度地利用面板数据的优点,尽量减少估计误差。至于究竟是采用固定效应还是随机效应,则要看Hausman 检验的结果。
单位根检验:在进行时间序列的分析时,研究者为了避免伪回归问题,会通过单位根检验对数据平稳性进行判断。但对于面板数据则较少关注。随着面板数据在经济领域应用,对面板数据单位根的检验也逐渐引起重视。面板数据单位根的检验主要有Levin、Lin 和Chu 方法(LLC 检验) (1992 ,1993 ,2002) 、Im、Pesaran 和Shin 方法( IPS 检验) (1995 ,1997) 、Maddala 和Wu 方法(MW检验) (1999) 等。
协整检验:协整检验是考察变量间长期均衡关系的方法。在进行了各变量的单位根检验后,如果各变量间都是同阶单整,那么就可以进行协整检验了。面板协整检验理论目前还不成熟,仍然在不断的发展过程中,目前的方法主要有:(1)Kao(1999)、Kao and Chiang(2000)利用推广的DF和ADF检验提出了检验面板协整的方法,这种方法零假设是没有协整关系,并且利用静态面板回归的残差来构建统计量。(2)Pedron(i1999)在零假设是在动态多元面板回归中没有协整关系的条件下给出了七种基于残差的面板协整检验方法。和Kao的方法不同的是,Pedroni的检验方法允许异质面板的存在。(3)Larsson et a(l2001)发展了基于Johansen(1995)向量自回归的似然检验的面板协整检验方法。这种检验的方法是检验变量存在共同的协整的秩。
一般的顺序是:先检验变量的平稳性,当变量均为同阶单整变量时,再采用协整检验以判别变量间是否存在长期均衡关系。如果变量间存在长期均衡的关系,我们可以通过误差修正模型(ECM) 来检验变量间的长期因果关系;如变量间不存在协整关系,我们将对变量进行差分,然后通过向量自回归模型(VAR),检验变量间的短期因果关系。

Ⅷ 面板数据怎么做因子分析和主成分分析的区别

主成分分析和因子分析有十大区别:
1.原理不同
主成分分析基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。
因子分析基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成。就是要从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)
2.线性表示方向不同
因子分析是把变量表示成各公因子的线性组合;而主成分分析中则是把主成分表示成各变量的线性组合。
3.假设条件不同
主成分分析:不需要有假设(assumptions),
因子分析:需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specificfactor)之间也不相关,共同因子和特殊因子之间也不相关。
4.求解方法不同
求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知),采用的方法只有主成分法。
(实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计)
注意事项:由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法;一般当变量单位相同或者变量在同一数量等级的情况下,可以直接采用协方差阵进行计算;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分;实际应用中应该尽可能的避免标准化,因为在标准化的过程中会抹杀一部分原本刻画变量之间离散程度差异的信息。此外,最理想的情况是主成分分析前的变量之间相关性高,且变量之间不存在多重共线性问题(会出现最小特征根接近0的情况);
求解因子载荷的方法:主成分法,主轴因子法,极大似然法,最小二乘法,a因子提取法。
5.主成分和因子的变化不同
主成分分析:当给定的协方差矩阵或者相关矩阵的特征值唯一时,主成分一般是固定的独特的;
因子分析:因子不是固定的,可以旋转得到不同的因子。
6.因子数量与主成分的数量
主成分分析:主成分的数量是一定的,一般有几个变量就有几个主成分(只是主成分所解释的信息量不等),实际应用时会根据碎石图提取前几个主要的主成分。
因子分析:因子个数需要分析者指定(SPSS和sas根据一定的条件自动设定,只要是特征值大于1的因子主可进入分析),指定的因子数量不同而结果也不同;
7.解释重点不同:
主成分分析:重点在于解释个变量的总方差,
因子分析:则把重点放在解释各变量之间的协方差。
8.算法上的不同:
主成分分析:协方差矩阵的对角元素是变量的方差;
因子分析:所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分)

Ⅸ 面板数据模型的定义和操作方法

(第3组 宏现经济增长与发展,6686个字符)
中国能源、环境与经济增长基于面板数据的计量分析
王洲洋
(河北经贸大学数统学院,石家庄,050061)
摘 要
本文运用面板数据的分析方法对我国各地区的能源消费、环境污染与经济增长进行了实证研究。研究表明:能源消费、环境污染与经济增长变量均为不平稳变量,但它们之间存在着长期的协整关系。如果能源供应每增加1%,GDP就会增加0.269%;环境污染每减少1%,GDP就能增加0.043%。
关键词 经济增长 面板协整检验 Hausman检验
Abstract
This paper assesses the relationship among the energy consumption, environment pollution and economic growth in all the regions of China by the method of Panel Data. Research results indicate that the energy consumption, environment pollution and economic growth are not balanced variables,but they have the Co-integration relations in a long run.If the energy supply increases 1%,the economic growth will increase 0.269%;And if the environment pollution decreases 1%,the economic growth will increase 0.043%.
Key words : economical growth Panel data Co-integration Test Hausman-test
一、引言
自从进入工业化时期以来,世界上许多国家为了追求经济的快速增长和物质产品的极大丰富,对能源进行了大规模的开发和利用,而能源的逐渐枯竭及能源带来的生态环境问题,都将严重阻碍经济的发展。环境作为经济、社会发展的物质条件,作为经济发展的基础,既可以直接地促进经济的发展,也可能成为经济的发展的阻力,环境污染已成为危害人们健康、制约经济和社会发展的重要因素之一。如今能源与环境问题已成为制约一个国家经济增长的瓶颈,而这种现象在我国尤为突出。不断开发新能源,开发可再生能源,提高能源利用效率,保护环境将对我国经济发展起到重要作用。党的十七大报告再次强调要加强能源资源节约和生态环境保护,并指出,加强能源资源节约和环境环境保护,增强可持续发展能力,坚持节约资源和保护环境的基本国策,关系人民群众切身利益和中华民族生存发展。因此,对于我国能源消费、环境保护和经济发展的关系研究具有十分重要的理论价值和现实意义。
近年来我国的能源、环境问题已成为被关注的热点,许多学者从不同的角度进行了大量的分析,得出了许多有用的启示。如林伯强[1](2003)通过协整分析考察了我国能源需求与经济增长的关系;王逢宝[2]等(2006)运用线性回归的方法对区域能源、环境与经济增长进行了研究。冯秀[3](2006)则探讨了我国能源利用现状及能源、环境与经济增之长的关系。林师模等[4](2006)研究了能源技术创新对我国经济,环境与能源之间的关系。目前大多的文献是用时间序列的数据,或是从总量的角度来分析全国或某个地区的能源消费、环境污染与经济增长之间的关系,但由于我国幅员辽阔,各地区间的经济、能源消费与环境方面都存在着巨大的差异,因而不能把各个地区的经济、能源消费与环境污染视为一个同质的整体,且运用时间序列数据往往很难解释它们间的内在联系。
本文使用我国省级的面板数据,运用面板数据的分析方法对我国各地区的能源消费、环境污染与经济增长进行实证分析,从而来揭示我国能源消费、环境污染与经济增长之间的内在联系。
二、研究方法
面板数据分析方法是最近几十年来发展起来的新的统计方法,面板数据可以克服时间序列分析受多重共线性的困扰,能够提供更多的信息、更多的变化、更少共线性、更多的自由度和更高的估计效率,而面板数据的单位根检验和协整分析是当前最前沿的领域之一。在本文的研究中,我们首先运用面板数据的单位根检验与协整检验来考察能源消费、环境污染与经济增长之间的长期关系,然后建立计量模型来量化它们之间的内在联系。
面板数据的单位根检验的方法主要有 Levin,Lin and CHU(2002)提出的LLC检验方法[5]。Im,Pesearn,Shin(2003)提出的IPS检验[6] , Maddala和Wu(1999),Choi(2001)提出的ADF和PP检验[7]等。面板数据的协整检验的方法主要有Pedroni[8] (1999,2004)和Kao[9](1999)提出的检验方法,这两种检验方法的原假设均为不存在协整关系,从面板数据中得到残差统计量进行检验。Luciano(2003)中运用Monte Carlo模拟[10]对协整检验的几种方法进行比较,说明在T较小(大)时,Kao检验比Pedroni检验更高(低)的功效。具体面板数据单位根检验和协整检验的方法见参考文献[5-10]。
三、实证分析
1.指标选取和数据来源
经济增长:本文使用地区生产总值 ,以1999年为基期,根据各地区生产总值指数折算成实际 ,单位:亿元。
能源消费:考虑到近年来我国能源消费总量中,煤炭和石油供需存在着明显低估,而电力消费数据相当准确。因此使用电力消费更能准确反映能源消费与经济增长之间的内在联系(林伯强,2003)。所以本文使用各地区电力消费量 作为能源消费量,单位:亿千瓦小时。
环境污染:污染物以气休、液体、固体形态存在,本文选取工业废水排放量 作为环境污染的量化指标,单位:万吨。
本文采用1999-2006年全国30个省(直辖市,自治区)的地区生产总值 、电力消费量 和工业废水排放量 的数据构建面板数据集。30个省(直辖市,自治区)包括北京、天津、河北、辽宁、上海、江苏、浙江、福建、山东、广东、山西、内蒙古、吉林、黑龙江、安徽、江西、河南、湖北、湖南、海南、广西、重庆、四川、贵州、云南、陕西、西藏、甘肃、青海、宁夏、新疆,由于西藏数据不全故不包括在内。数据来源于《中国统计年鉴2000-2007》。为了消除变量间可能存在的异方差,本文先对 、 和 进行自然对数变换。
记 , , .
2.面板数据的单位根检验
为了避免单一方法可能存在的缺陷,本文使用LLC检验、IPS检验、Fisher-ADF检验和Fisher-PP检验四种方法来进行面板数据的单位根检验。利用Eviews 6.0软件(下同),检验结果见表1。
表1 , , 的面板单位根检验
变 量 LLC p值 IPS p值 Fisher-ADF p值 Fisher-PP p值

4.21 1.00 5.78 1.00 16.95 1.00 7.67 1.00

6.35 1.00 10.24 1.00 5.37 1.00 9.45 1.00

-2.91 0.0018 1.26 0.89 56.97 0.058 90,56 0.0066

-14.89 0.00 -3.17 0.0008 103.88 0.0004 86.42 0.0144

-21.99 0.00 -5.80 0.00 143.77 0.00 146.44 0.00

-12.21 0.00 -4.52 0.00 135.51 0.00 184.48 0.00

从表1可以看出, , 在5%水平不平稳,经一阶差分后 , 均在5%水平拒绝原假设, 的LLC检验在5%水平不显着,但其它三种检验方法均显着, 的四种检验方法均在5%水平下拒绝原假,所以我们认为 , , 均为一阶差分平稳变量。
3.面板数据的协整检验
对 , , 的协整关系进行Pedroni协整检验和Kao协整检验。其检验结果见表2和表3。
表2 Pedroni协整检验
统计量 p值
Panel v统计量 -1.145 0.0056
Panel rho统计量 2.588 0.0277
Panel PP统计量 -1.543 0.0013
Panel ADF统计量 -3.811 0.0000
Group rho统计量 5.088 0.0000
Group PP统计量 -2.559 0.0151
Group ADF统计量 -6.985 0.0000

表3 Kao协整检验
t统计量 p值
ADF -5.873 0.0000

由表2和表3的面板协整检验结果可知: Pedroni协整检验的七个统计量与Kao协整检验的ADF统计量均在5%显着性水平下拒绝原假设,表明 , , 之间存在显着的协整关系。
4.模型检验
(1) 固定效应模型显着性检验
固定效应模型显着性检验是检验模型中固定效应系数 是否有差异,即原假设为 。其检验结果如表4所示:
表4 固定效应模型的显着性检验
固定效应显着性检验 统计量 自由度 p值
Cross-section F 374.484 (29,208) 0.0000
Cross-section Chi-square 953.827 29 0.0000

由表4固定效应模型的显着性检验结果可知,p值小于5%,因此拒绝固定效应系数 相同的原假设,所以我们选取固定效应模型比较合适。
(2)Hausman检验
Hausman检验的原假设是随机效应模型的系数与固定效应模型的系数没有差别,如果接受原假设,表明应选择随机效应模型,否则就应该选择固定效应模型。检验结果在表4和表5中列出。
表5 Hausman检验
Chi-Sq. 统计量 Chi-Sq. Statistic自由度 p值
Cross-section random 117.766 2 0.000

表6 固定效应与随机效应检验比较
变量 固定效应 随机效应 两种效应方差之差 p值

0.269 0.279 0.000002 0.0000

-0.0434 -0.017 0.000007 0.0000

从表5中Hausman检验结果与表6中固定效应与随机效应检验比较可以看出,p值在5%水平下拒绝原假设,模型中被忽视的效应与模型中的两个解释变量相关,所以我们认为固定效应模型是更好的选择。
5.模型的估计
根据上面的分析我们采用固定效应模型对模型进行估计,模型估计结果如下式所示:
(1)
(44.647) (20.341) (-3.097)
[0.0000] [0.0000] [0.0022]
小括号中是t统计量,中括号中是相应的p值。
模型调整后的 为0.996,F值为2484.3,残差平方和为0.599,各个系数均通过t检验,模型拟合的相当不错。
固定效应系数 见表7所示:
表7各地区的固定效应系数
地区

地区

地区

北京 0.207 浙江 0.792 海南 -1.044
天津 -0.268 安徽 0.283 重庆 -0.222
河北 0.582 福建 0.425 四川 0.440
山西 -0.351 江西 -0.00158 贵州 -0.808
内蒙古 -0.454 山东 1.034 云南 -0.121
辽宁 0.473 河南 0.623 陕西 -0.228
吉林 -0.138 湖北 0.429 甘肃 -0.815
黑龙江 0.251 湖南 0.424 青海 -1.962
上海 0.555 广东 1.139 宁夏 -1.908
江苏 1.058 广西 -0.0147 新疆 -0.380

式(1)表明,GDP与能源消费、环境污染之间存在着显着的长期均衡关系,从全国的平均水平来看,能源消费的弹性系数是0.269,也就是能源供应每增加1%,GDP就会增加0.269%;环境污染的弹性系数是-0.043,即环境污染每减少1%,GDP就能增加0.043%,这说明GDP与环境污染存在着反向的关系,与我们普遍认为的保护环境能促进经济健康快速发展的观点相一致。
四、主要结论
本文通过采用比较前沿的面板单位根检验、面板协整检验等分析方法,对1999年到2006年我国能源消费、环境污染与经济增长的省级面板数据进行了实证研究。研究表明:我国能源消费、环境污染与经济增长均为不平稳过程,这主要是因为我国各地区由于政策、环境等多种原因,使得各地区间存在着很大的差异,所以不同的地区表现出非一致性,但不同地区的能源消费、环境污染与经济增长之间都存在着显着的协整关系。能源和环境作为经济持续增长的要素,对我国经济发展有着重大的影响作用。能源供应与经济增长存在着正向的关系,经济增长对能源有很强的信赖性,而环境污染与经济增长存在着反向的关系,环境污染程度的加剧将会严重阻碍经济的增长。从全国平均水平来看,能源供应每增加1%,GDP将增加0.269%;环境污染每减少1%,GDP将增加0.043%。因此坚持节约能源、提高能源使用效率和保护环境将对我国经济的持续、快速、健康发展具有极其重要的意义。
需要指出的是,由于数据方面的原因,本文使用的面板数据时间跨度并不长(1999-2006),得到的长期关系有可能受到质疑 (DimitrisK.Christopoulos and Efthvmios G.Tsionas,2004) [11]。本文使用各地区电力消费量来代替能源消费总量,工业废水排放量来反映环境污染程度,但它们都只反映了能源消费、环境污染程度的一个方面,所以指标的选取并不全面,应该将煤、石油等能源的消费以及大气污染、固体废弃物污染等全部纳入指标体系,这样指标体系才更加全面、更加合理,这有待我们今后更加深入的研究。

参考文献:
[1]林伯强:《电力消费与中国经济增长:基于生产函数的研究》[J],《管理世界》2003年第11期。
[2]王逢宝、张磊、秦贞兰:《能源、环境与区域经济增长的计量分析》[J],《天津财贸管理干部学院学报》2006年第3期。
[3]冯秀、丁勇:《可持续发展下中国的能源、环境与经济》[J],《北方经济》2006年第2期。
[4]林师模、苏汉邦、林幸桦:《能源技术创新对经济、能源及环境》的影响[J]《东莞理工学院学报》2006年第4期。
[5]Levin.A.,C.F.Lin Unit Root Tests in Panel Data:Asymptotic and Finite Sample Properties[C].UC San Diego.Working Paper,1992.92-93.
[6]Im K.S.,M.H.Pesaran and Y.Shin.Testing for Unit Roots in Heterogeneous Panels[J].Journal of Econometrics 2003,115:53-74.
[7]Maddala G.S.,Wu Shaowen,1999.Acomparative Study of Unit Root Tests with Panel Data and a New Simple Test [J].Oxford Bulletin of Economics and Statistics,1999,61:631-652.
[8]Luciano,G..On the Power of Panel Cointegration Tests:A Monte Carlo Comparison[J].Economics Letters,2003,80:105-111.
[9]Pedroni,P.Critical Value for Cointegration Tests in Heterogeneous Panels with Multiple Regressors[J].Oxford Bulletin of Economics and Statistics,1999,61:653-678.
[10]Kao,C,Spurious Regression and Resial-based Tests for Cointetration in Panel Data[J].Journal of Econometrics,1999,90:1-44.
[11]Dimitris K. Christopoulos,Efthymios G.Tsionas,2004,Financial development and economic growth: evidence from panel.

阅读全文

与面板数据分析方法相关的资料

热点内容
油炸鱼的制作方法和步骤 浏览:981
净水机五级安装技巧和方法 浏览:249
鼻子撞肿了怎么消肿好方法 浏览:839
买项链手围测量方法 浏览:948
风管的计算方法 浏览:108
双腿后窝疼治疗方法 浏览:243
大内科的治疗方法 浏览:713
美国民族问题的解决方法 浏览:444
股票正确简单打板的3种方法 浏览:914
用简便方法可以抓到鱼 浏览:343
企查查vip账户如何导出数据方法 浏览:367
中频的使用方法 浏览:439
卫生间集成取暖器安装方法 浏览:407
姨妈流的多有什么解决方法 浏览:420
自行车激光器安装方法 浏览:852
拆纸抽的技巧和方法 浏览:811
手机保护测试方法 浏览:485
木条的鉴别方法 浏览:178
空调水管道安装检验方法 浏览:915
测量体顶子的方法 浏览:817