导航:首页 > 研究方法 > 数据分析方法与思路

数据分析方法与思路

发布时间:2023-02-15 21:55:40

‘壹’ 数据分析的基本思路是什么 怎么才有数据分析思路

【导读】在我们的日常工作生活中,经常会用到数据分析,比如领导需要举办一场活动,让你做个活动策划,你就要对客流量,成本,展现等各方面进行数据分析,做数据分析就好比做一件衣服,首先的先有设计图,然后在根据设计图分步骤的去制作成成品。下面我们就来说说数据分析的基本思路是什么?怎么才有数据分析思路?

数据分析方法论主要有PEST分析法,5W2H分析法,逻辑树分析法,4P营销理论(现在用的比较多是4C),用户行为理论。下面呢,我就以5W2h分析方法,给大家详细的说明一下怎么建立完整的数据分析思路。

首先,先介绍一下什么是5W2H。

(1)WHAT——是什么?目的是什么?做什么工作?

(2)WHY——为什么要做?可不可以不做?有没有替代方案?

(3)WHO——谁?由谁来做?

(4)WHEN——何时?什么时间做?什么时机最适宜?

(5)WHERE——何处?在哪里做?

(6)HOW ——怎么做?如何提高效率?如何实施?方法是什么?

(7)HOW MUCH——多少?做到什么程度?数量如何?质量水平如何?费用产出如何?

例如要不要增加一个推广渠道,我们来形成一个完整的分析思路。

WHAT:一个引流的渠道,对这个渠道要有一定认识。

WHY :目前其他的渠道的流量不能满足,做了渠道之后可能会增加多少流量。

WHO:是直接让其他渠道的人来负责,还是重新招一个操作过这个渠道的人。

WHEN:如果要做这个渠道,有没有时间来做,什么时候开始实施。

WHERE:如果是大公司,要考虑是总公司来做,还是分公司来做。

HOW:怎么做,是否有详细的解决方案,是否先参考同行竞争对手。

HOW MUCH:新增加的这个渠道,需要投入多少成本,人力成本,广告成本等等。

对每个环节进行分析,评估,然后综合每个环节,看看这个渠道是否值得开发。

以上就是小编为大家整理发布的关于“数据分析的基本思路是什么?怎么才有数据分析思路?”,希望对大家有所帮助。做熟悉分析最重要的就是有完整的思路,有了完整的思路才可以更清晰准确的去进行数据分析。更多相关内容,关注小编,持续更新。

‘贰’ 数据分析有什么思路

1、明确思路


明确数据分析的目的以及思路是确保数据分析过程有效进行的首要条件。它作用的是可以为数据的收集、处理及分析提供清晰的指引方向。可以说思路是整个分析流程的起点。首先目的不明确则会导致方向性的错误。当明确目的后,就要建分析框架,把分析目的分解成若干个不同的分析要点,即如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标。


2、收集数据


收集数据是按照确定的数据分析框架收集相关数据的过程,它为数据分析提供了素材和依据。这里所说的数据包括第一手数据与第二手数据,第一手数据主要指可直接获取的数据比如公司自己的业务数据库中的业务数据,第二手数据主要指经过加工整理后得到的数据例如一些公开出版物或者第三方的数据网站。


3、处理数据


处理数据是指对收集到的数据进行加工整理,形成适合数据分析的样式,它是数据分析前必不可少的阶段。数据处理的基本目的是从大量的、杂乱无章、难以理解的数据中,抽取并推导出对解决问题有价值、有意义的数据。数据处理主要包括数据清洗、数据转化、数据提取、数据计算等处理方法。


4、分析数据


分析数据是指用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论的过程。由于数据分析多是通过软件来完成的,这就要求数据分析师不仅要掌握各种数据分析方法,还要熟悉数据分析软件的操作。


5、可视化


一般情况下,数据是通过表格和图形的方式来呈现的,我们常说用图表说话就是这个意思。常用的数据图表包括饼图、柱形图、条形图、折线图、散点图、雷达图等,当然可以对这些图表进一步整理加工,使之变为我们所需要的图形,例如金字塔图、矩阵图、漏斗图等。


6、撰写报告


撰写数据分析报告其实是对整个数据分析过程的一个总结与呈现,通过清晰的结构和图文并茂的展现方式去展具有建设意义的解决方案。

‘叁’ 怎样进行数据分析

进行数据分析方式如下:

1、要求明确:准确

明确需求主要是与他人沟通与需求相关的一切内容,并清晰准确地理解和表达相关内容。

在需求沟通中,通过掌握需求的核心内容,可以减少反复沟通。需求的核心内容可以从分析目的、分析主体、分析口径、分析思路、完成时间五个方面来确定。此外,在沟通的过程中,可以适当提出自己的想法,让需求更加清晰立体。

2、确定思路:全面、深入

分析思想是分析的灵魂,是细化分析工作的过程。分析思路清晰有逻辑,能有效避免反复分析问题。从分析目的出发,全面、深入地拆解分析维度,确定分析方法,最终形成完整的分析框架。

3、处理数据:高效

当我们进行数据分析时,我们可能会得到混乱的数据,这就要求我们清洁、整理、快速、准确地加工成适合数据分析的风格。

此时需要使用数据分析软件以工作流的形式提取数据模型的语义,通过易于操作的可视化工具将数据加工成具有语义一致性和完整性的数据模型。系统支持的数据预处理方法包括:采样、拆分、过滤和映射、列选择、空值处理、并行、合并行、元数据编辑、JOIN、行选择、重复值去除等。

4、数据分析:合适的数据

分析数据在分析过程中的地位是首要任务。从分析的目的出发,运用适当的分析方法或模型,使用分析工具分析处理过的数据,提取有价值的信息。

5、显示数据:直观

展示数据又称数据可视化,是以简单直观的方式传达数据中包含的信息,增强数据的可读性,让读者轻松看到数据表达的内容。

6、写报告:建议落地,逻辑清晰

撰写报告是指以文件的形式输出分析结果,其内容是通过全面科学的数据分析来显示操作,可以为决策者提供强有力的决策依据,从而降低操作风险,提高利润。

在撰写报告时,为了使报告更容易阅读和有价值,需要注意在报告中注明分析目标、口径和数据来源;报告应图文并茂,组织清晰,逻辑性强,单一推理;报告应反映有价值的结论和建议。

7、效果反馈:及时

所谓效果反馈,就是选择合适有代表性的指标,及时监控报告中提出的战略执行进度和执行效果。只有输入和输出才能知道自己的操作问题点和闪点,所以效果反馈是非常必要的。反馈时要特别注意两点,一是指标要合适,二是反馈要及时。

‘肆’ 数据分析的8个流程与7个常用思路

数据分析的8个流程与7个常用思路
在产品运营过程中,数据分析具有极其重要的战略意义,是产品优化和产品决策的核心大脑。因此做好数据分析,是产品运营中最重要的环节之一。
那么如何做好支付的数据分析呢?以下梳理出数据分析的8步流程,以及常见的7种分析思路。新手在启动数据分析前,最好跟主管或数据经验较丰富的童鞋确认每一步的分析流程。
一、数据分析八流程:
为什么分析?
首先,你得知道为什么分析?弄清楚此次数据分析的目的。比如,这次短信方式的数据分析,为什么要做这个分析。你所有的分析都的围绕这个为什么来回答。避免不符合目标反复返工,这个过程会很痛苦。
分析目标是谁?
分析目标是谁? 要牢记清楚的分析因子,统计维度是订单,还是用户,还是金额,还是用户行为。避免把订单当用户算,把用户当订单算(上周运营同学真实案例),算出的结果是差别非常大的。
想达到什么效果?
通过分析各个维度的用户,订单,找到真正的问题。例如这次的XX通道的分析,全盘下线,或维持现状不动,都不符合利益最大化原则。通过分析,找到真正的问题根源,发现用户精细化运营已经非常必要了。
需要哪些数据?
支付的数据,茫茫大海,数据繁多,用“海”来形容一点都不为过。需要哪些源数据?付费总额,付费人数?新老用户维度?付费次数?转移人数?留存率?用户特征?画像?先整理好思路,列一个表。避免数据部门同学今天跑一个数据,明天又跑一个数据,数据部门同学也会比较烦。
如何采集?
直接数据库调取?或者交给程序猿导出? 自己写SQL?运营同学不妨都学一下SQL,自力更生。
如何整理?
整理数据是门技术活。不得不承认EXCEL是个强大工具,数据透视表的熟练使用和技巧,作为支付数据分析必不可少,各种函数和公式也需要略懂一二,避免低效率的数据整理。Spss也是一个非常优秀的数据处理工具,特别在数据量比较大,而且当字段由特殊字符的时候,比较好用。
如何分析?
整理完毕,如何对数据进行综合分析,相关分析?这个是很考验逻辑思维和推理能力的。同时分析推理过程中,需要对产品了如指掌,对用户很了解,对渠道很熟悉。看似一个简单的数据分析,其实是各方面能力的体现。首先是技术层面,对数据来源的抽取-转换-载入原理的理解和认识;其实是全局观,对季节性、公司等层面的业务有清晰的了解;最后是专业度,对业务的流程、设计等了如指掌。练就数据分析的洪荒之力并非一朝一夕之功,而是在实践中不断成长和升华。一个好的数据分析应该以价值为导向,放眼全局、立足业务,用数据来驱动增长。运营同学比较容易聚在某个点上转圈走不出来。
如何展现和输出?
数据可视化也是一个学问。如何用合适的图表表现?每一种图表的寓意是什么?下面列举下常用的8个图表:
(1)、折线图:合适用于随时间而变化的连续数据,例如随时间收入变化,及增长率变化。
(2)、柱型图:主要用来表示各组数据之间的差别。主要有二维柱形图、三维柱形图、圆柱图、圆锥图和棱锥图。如支付宝与微信覆盖率差别。
(3)、堆积柱形图:堆积柱形图不仅可以显示同类别中每种数据的大小,还可以显示总量的大小。例如我们需要表示各个支付方式的人数及总人数时。
(4)、线-柱图:这种类型的图不仅可以显示出同类别的比较,还可以显示出趋势情况。
(5)、条形图:类似于横向的柱状图,和柱状图的展示效果相同,主要用于各项类的比较。
(6)、饼图:主要显示各项占比情况。饼图一般慎用,除非占比区别非常明显。因为肉眼对对饼图的占比比例分辨并不直观。而且饼图的项,一般不要超过6项。6项后建议用柱形图更为直观。
(7)、复合饼图:一般是对某项比例的下一步分析。
(8)、母子饼图:可直观地分析项目的组成结构与比重。例如上次短信支付能力用户中,没有第3方支付能力的用户,中间有X%比例是没银行卡,X%比例是没微信支付账号等。
图表不必太花哨,一个表说一个问题就好。用友好的可视化图表,节省阅读者的时间,也是对阅读者的尊重。
有一些数据,辛辛苦苦做了整理和分析,最后发现对结论输出是没有关系的,虽然做了很多工作,但不能为了体现工作量而堆砌数据。
在展现的过程中,请注明数据的来源,时间,指标的说明,公式的算法,不仅体现数据分析的专业度,更是对报告阅读者的尊重。
二、数据分析七思路:
简单趋势
通过实时访问趋势了解产品使用情况。如总流水,总用户,总成功率,总转化率。
多维分解
根据分析需要,从多维度对指标进行分解。例如新老用户、支付方式、游戏维度、产品版本维度、推广渠道、来源、地区、设备品牌等等维度。
转化漏斗
按照已知的转化路径,借助漏斗模型分析总体和每一步的转化情况。常见的转化情境有下单率,成功转化率等。
用户分群
在精细化分析中,常常需要对有某个特定行为的用户群组进行分析和比对;数据分析需要将多维度和多指标作为分群条件,有针对性地优化产品,提升用户体验。例如我们这次对短信这类用户,短信里又有第3方和无第3方支付能力的,需要再进行分群的运营。
细查路径
数据分析可以观察用户的行为轨迹,探索用户与产品的交互过程;进而从中发现问题、激发灵感亦或验证假设。例如我们这次对新用户的运营,也非常有意思。
留存分析
留存分析是探索用户行为与回访之间的关联。一般我们讲的留存率,是指“新增用户”在一段时间内“回访”的比例。通过分析不同用户群组的留存差异、使用过不同功能用户的留存差异来找到产品的增长点。
A/B 测试
A/B测试就是同时进行多个方案并行测试,但是每个方案仅有一个变量不同;然后以某种规则(例如用户体验、数据指标等)优胜略汰选择最优的方案。数据分析需要在这个过程中选择合理的分组样本、监测数据指标、事后数据分析和不同方案评估。
不单是支付的数据分析,其他的产品运营数据分析流程和思路也一样适用,只是支付数据相对其他产品而言,维度很多,以及组合的维度也非常多,因此就需要更清晰的思路和大局观,避免陷入到数据海洋中。

‘伍’ 数据分析怎么做

一、 具备基本的数据素养

1. 具备基本的统计学概念

先来说一下最基础的概念:平均值,中位数,百分位数,众数,离散程度,方差,标准差。这里不一一赘述,只简单说一下均值和中位数的差异。 均值:即平均数,优势是,均值跟所有数据都相关,劣势是容易受到极端值影响。
比如,你和你的3个好友,跟比尔盖茨组成一个团队,然后这个团队的人均身价是200亿美金,你会觉得自己是有钱人吗? 中位数:只跟排在中间的数据相关,优点是不受极端值影响,缺点是缺乏敏感性。

2. 避免数据逻辑错误常见数据逻辑谬误1:相关当因果

“有研究结果表明:颜值高的人收入也更高。” 听到这个结论,你会不会觉得应该去整容? 但有可能是因为,颜值高的人相对比较自信,而自信的人容易在职场上获得成功,所以收入高。也有可能,是收入高的人有能力装扮自己,所以看起来颜值更高。所以说,上面这个表达,只是在说颜值和收入相关,但没有说两者是因果关系。

二、数据沟通和表达:如何用数据讲故事

如果你能够具备足够的数据素养,知道如何呈现数据,同时能够把数据表达出来,那么就能在故事当中融入足够有说服力的数据,故事自然变得很有说服力。

1. 理解沟通目的和对象

如果你说服一个客户购买你的理财产品,你会怎么跟他说?

第一种:这个理财产品有10%的概率会亏;

第二种:这个理财产品有90%的概率能赚。

当然是后者,他听完大概率愿意买,但如果是前一种说法,他可能会很恐惧。 所以,当你在公司里面跟不同的对象沟通时,也应该呈现不一样的数据。
比如,高层可能关心公司整体营收、盈利等等相关数据,中层可能关心他们部门的KPI数据,而主管更关注某个活动、某个举措的成功失败情况。

2. 选择合适的数据表达类型

怎么样用更加合适的数据图表类型?这里有些经验干货分享给大家,常用表格适用范围如下:

o 散点图(适合相关)

o 折线图(适合趋势)

o 横的和竖的条形图(适合对比)

o 瀑布图(适合演变)

o 热力图(适合聚焦)

o 雷达图(适合多指标)

o 词云图(适合看分布)等等

3. 符合数据可视化原则

数据的可视化也非常重要,因为如果没有可视化,就是一些数字罗列,那就跟文字信息没什么差异了。
数据可视化的几个原则:阅读门槛别太高,不要过多颜色,突出关键信息,文本与数据呼应。

‘陆’ 怎样对数据进行分析—数据分析的六大步骤

        时下的大数据时代与人工智能热潮,相信很多人都会对数据分析产生很多的兴趣,其实数据分析师是Datician的一种,指的是不同行业中,专门从事行业数据收集,整理,分析,并依据数据做出行业研究、评估和预测的专业人员。

        很多人学习过数据分析的知识,但是当真正接触到项目的时候却不知道怎样去分析了,导致这样的原因主要是没有属于自己的分析框架,没有一个合理的分析步骤。那么数据分析的步骤是什么呢?比较让大众认可的数据分析步骤分为

六大步骤。只有我们有合理的分析框架时,面对一个数据分析的项目就不会无从下手了。

        无论做什么事情,首先我们做的时明确目的,数据分析也不例外。在我们进行一个数据分析的项目时,首先我们要思考一下为什么要进展这个项目,进行数据分析要解决什么问题,只有明确数据分析的目的,才不会走错方向,否则得到的数据就没有什么指导意义。

        明确好数据分析目的,梳理分析思路,并搭建分析框架,把分析目的分解成若干不同的分析要点,即如何具体开展数据分析,需要从那几个角度进行分析,采用哪些分析指标(各类分析指标需合理搭配使用)。同时,确保分析框架的体系化和逻辑化,确定分析对象、分析方法、分析周期及预算,保证数据分析的结果符合此次分析的目的。

        数据收集的按照确定的数据分析框架,收集相关数据的过程,它为数据分析提供了素材和依据。常见的数据收集方式主要有以下几种

        一般地我们收集过来的数据都是杂乱无章的,没有什么规律可言的,所以就需要对采集到的数据进行加工处理,形成合适的数据样式,保证数据的一致性和有效性。一般在工作中数据处理会占用我们大部分的时间

        数据处理的基本目的是从大量的,杂乱无章的数据中抽取到对接下来数据分析有用的数据形式。常见的数据处理方式有 数据清洗、数据分组、数据检索、数据抽取 等,使用的工具有 Excel、SQL、Python、R 语言等。

        对数据整理完毕之后,就需要对数据进行综合的分析。数据分析方式主要是使用适当的分析方法和工具,对收集来的数据进行分析,提取有价值的信息,形成有效结论的过程。

        在确定数据分析思路的阶段,就需要对公司业务、产品和分析工具、模型等都有一定的了解,这样才能更好地驾驭数据,从容地进行分析和研究,常见的分析工具有 SPSS、SAS、Python、R语言 等,分析模型有 回归、分类、聚类、关联、预测 等。其实数据分析的重点不是采用什么分析工具和模型而是找到合适的分析工具和模型,从中发现数据中含有的规律。

        通过对数据的收集、整理、分析之后,隐藏的数据内部的关系和规律就会逐渐浮现出来,那么通过什么方式展现出这些关系和规律,才能让别人一目了然。一般情况下,是通过表格和图形的方式来呈现出来。多数情况下,人们通常愿意接受图形这样数据展现方式,因为它能更加有效、直观地传递出数据所要表达的观点。

        常用数据图表 有饼图、柱形图、条形图、折线图、气泡图、散点图、雷达图、矩阵图 等图形,在使用图形展现的情况下需要注意一下几点:

        当分析出来最终的结果之后,我们是知道这部分数据展现出来的意义,适用的场景。但是如果想让更多人了解你分析出来的东西,让你的分析成果为众人所熟知,这时就需要一份完美的PPT报告,一个逻辑合理的故事。这样的分析结果才是最完美的。

        一份好的数据分析报告,首先需要有一个好的分析框架,并且图文并茂,层次清晰,能够让阅读者一目了然。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼,提高视觉冲击力,有助于阅读者更形象,直观地看清楚问题和结论,从而产生思考。

                                                           数据分析的四大误区

1、分析目的不明确,不能为了分析而分析 。只有明确目的才能更好的分析

2、缺乏对行业、公司业务的认知,分析结果偏离实际 。数据必须和业务结合才有意义,清楚所在行业的整体结构,对行业的上游和下游的经营情况有大致的了解,在根据业务当前的需要,制定发展计划,归类出需要整理的数据,同时,熟悉业务才能看到数据背后隐藏的信息。

3、为了方法而方法,为了工具而工具 。只要能解决问题的方法和工具就是好的方法和工具

4、数据本身是客观的,但被解读出来的数据是主观的 。同样的数据由不同的人分析很可能得出完全相反的结论,所以一定不能提前带着观点去分析

‘柒’ 数据分析常用的4大分析方法

1. 描述型分析:发生了什么?


这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。


例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是“描述型分析”方法之一。利用可视化工具,能够有效的增强描述型分析所提供的信息。


2. 诊断型分析:为什么会发生?


描述性数据分析的下一步就是诊断型数据分析。通过评估描述型数据,诊断分析工具能够让数据分析师深入地分析数据,钻取到数据的核心。


良好设计的BI dashboard能够整合:按照时间序列进行数据读入、特征过滤和钻取数据等功能,以便更好的分析数据。


3. 预测型分析:可能发生什么?


预测型分析主要用于进行预测。事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点,这些都可以通过预测模型来完成。


预测模型通常会使用各种可变数据来实现预测。数据成员的多样化与预测结果密切相关。在充满不确定性的环境下,预测能够帮助做出更好的决定。预测模型也是很多领域正在使用的重要方法。


4. 指令型分析:需要做什么?


数据价值和复杂度分析的下一步就是指令型分析。指令模型基于对“发生了什么”、“为什么会发生”和“可能发生什么”的分析,来帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。


关于数据分析常用的4大分析方法的内容,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

‘捌’ 三种数据分析方法

首先,常见的数据分析方法有9种: 对比分析,多维度拆解分析,漏斗观察 ,分布分析,用户留存分析,用户画像,归因查找,路径挖掘,行为序列分析。

这里将重点展开分享前三种数据分析方法:  对比分析,多维度拆解分析,漏斗观察。

1、对比分析 

对比分析是 最基础最常见 的数据分析方法,能 直观的看出事物某阶段的变化,并且可以准确、量化地表达出这种变化/差距是多少 ,重点从“比什么”“怎么比”“跟谁比”三个维度进行分析。

(1)比什么 

比什么,分为绝对值(#)和比例值(%)的比较。

绝对值本身已是具备“价值”的数据,比如销售金额2000元,阅读数10000万,单看数字不易得知问题的严重程度;

比例值只有在具体环境中看比例才具备对比价值 ,比如活跃占比,注册转化率, 单看比例值容易受到极端值的影响。 

(2)怎么比 

怎么比,分为环比和同比。

常见的环比有日环比,月环比 ,是指 与当前时间范围相邻的上一个时间范围对比 ,主要用于对短期内具备连续性的数据进行分析,如指标设定;

常见的同比有周同比,年同比 ,是指 与当前时间范围上层时间范围的前一范围中同样位置进行数据对比分析 ,主要用于观察更长期的数据集,消除短期数据的干扰。

(3)和谁比 

和谁比,分为和自己比、和行业比。

和自己比 ,可以从不同的时间维度,不同的业务线,过往经验估计,跟自己比较;

和行业比 ,可以观察分析得出是自身因素,还是行业趋势,比如都跌的时候,能否比同行跌的少?都涨的时候,能都比同行涨的快? 

现在回到上面这条“飞猪公关数据”“放假消息公布以后,10点到12点,国内机票的预定量,比上周同时段增长超过50%;国际机票的增长更加惊人,超过了150%。” 

很显然, 

“50%,150%”都是比例值; 

“比上周同时段增长...”由于是#五一放假4天#消息导致的数据短期内连续上涨,所以选择的是周同比; 

“国内机票的预定…国际机票...”飞猪是在跟自己比,若有行业数据公布作为依据,可以判断飞猪是比同行涨的快/慢。 

2、多维度拆解 

多维度拆解,是最重要的一种思维方式, 一个单一指标是不具备分析价值的,我们需要从多个维度进行拆解分析才有意义,最终以获得更加全面的数据洞察。 

数据分析的本质是用不同的视角去拆分,观察同一数据指标。多维度拆解的本质多维度拆分指标/业务流程,来观察数据变动。 

多维度拆解的适用场景: 

(1) 分析单一指标的构成、比例时 ,比如分栏目的播放量、新老用户比例;

(2) 针对流程进行拆解 ,比如不同渠道的浏览、购买转化率,不同省份的活动参与漏斗;

(3) 还原行为发生时的场景 ,比如打赏主播的用户的等级、性别、关注频道,是否在WiFi或4G环境下。

现在回到第一个场景:“比如,某段时间公司做了一波网红大V推广,老板想看看推广效果,你需要来个复盘分析…” 

这时就需要用到多维度拆解分析方法,大致的分析思路这样这样: 

(1)从APP启动事件来分析 

按照 设备类型 查看,比如Android、iPhone…不同机型的启动情况;

按照 启动来源 来看,比如是从桌面、短信、PUSH…不同来源的启动情况;

按照 城市等级 观察,比如一线、二线、三线及以下…不同城市的启动情况;

按照 新老用户 细分,比如总体、新用户、老用户...不同用户群体的启动情况。

(2)从业务流程拆解 

比如对于简单的“注册——>下单——>支付”流程而言:

支付漏斗按照 渠道 查看,渠道可能分为网络、头条、微信公众号…

支付漏斗按照 城市 来看,城市可能分为一线、二线、三线及以下…

支付漏斗按照 设备 来看,设备可能分为Android、iPhone…

3、漏斗观察 

漏斗观察的分析方法我们常见且熟悉,它的运作原理是 通过一连串向后影响的用户行为来观察目标。 

适用于有明确的业务流程和业务目标的业务,不适用于没有明确的业务流程、跳转关系纷繁复杂的业务。 

通过漏斗观察核心业务流程的健康程度。 

盘点一下在建立漏斗时容易掉的坑: 

(1)首先漏斗观察需要有一定的时间窗口 ,具体需要根据业务实际情况,选择对应的时间窗口。 

按天观察 ,适用于对用户心智的影响只在短期内有效的情况,比如一些短期活动(当前有效,倒计时设置等); 

按周观察 ,适用于业务本身复杂,用户决策成本高,需要跨日才能完成的情况,比如投资理财,开户注资; 

按月观察 ,适用于用户决策周期更长的情况,比如装修买房。 

(2)其次漏斗观察是有严格顺序的 ,不可以用ABCDE(仅搜索途径的数据)的漏斗,看ACE(包含分类、搜索、推荐位三条途径的数据)的数据 。

(3)漏斗的计算单位可以基于用户,也可以基于时间。

观察用户,是关心整个业务流程的推动;

观察事件,是关心某一步具体的转化率,但无法获知事件流转的真实情况。

(4)结果指标的数据不符合预期时,需要自查是否只有一个漏斗能够触达最终目标 ,也就是检查下,是否出现第二个坑的情况。

四、案例分享——某款社交APP在国庆期间数据猛涨原因分析

场景是这样,现在有一款匿名社交APP,类似于探探,数据范围在 2018 年 9 月 1 日 - 10 月 14 日之间,其中在国庆期间数据猛涨,试分析其原因。

(1)首先定义“数据猛涨”

作为一款匿名社交产品,可以选择观察“注册成功”事件。

由于产生行为数据的时间较短,所以最后选择关注“注册用户数的日环比是否有比较大的增涨”,并按照“注册成功”事件的“触发用户数”进行查看:

(2)发现异常定位问题

从上面这张注册成功的触发用户数折线图可以看出,国庆期间的注册用户日环比存在较高的数据增长差,就是折线右侧出现的一段高峰。

由此判断,国庆期间由于某种原因造成了注册用户数的大幅增长,具体原因,待进一步拆解分析。

(3)多维度拆解分析

按照操作系统区分观察,可以发现Android的涨幅明显高于iOS,iOS稍有涨幅,但涨幅不明显。

这一步仍无法直接定位问题,需进一步拆解分析。

上图 按照注册方式观察 ,微信、微博、手机号这三种注册方式,在国庆期间均有涨幅且涨幅相似,可初步判断注册方式与此次数据异常无关。

上图 按照性别观察 ,男生和女生在国庆期间均有涨幅,男生略高于女生,但仍无法直接定位问题,需进一步拆解分析;

上图 按照年龄观察 ,不同年龄层的用户在国庆期间均有涨幅且涨幅相似,可初步判断年龄与此次数据异常无关。

问题来了!按照省份观察 ,上图明显看到有一根折现异常升高!

其实是海南省的日环比涨幅增高,除此之外,云南省的环比涨幅相较其他省份也明显升高。

综上观察分析基本可以判断,国庆期间数据猛涨,跟海南省、云南省的注册用户数大幅增长有关,具体原因待进一步拆解分析。

继续 按照城市观察 ,筛选条件设置为省份等于海南省,云南省,直观看到丽江市、大理市、三亚市、海口市国庆期间数据猛涨。

综合以上多维度分析发现,国庆期间数据猛涨,主要是由于 丽江市、大理市、三亚市、海口市 四个城市有明显涨幅。

而这四个城市都属于旅游城市,且数据增长时期伴随国庆假期。

于是猜测可能是,该款匿名社交产品在国庆期间,面向这四个热门旅游目的地,做了推广活动,关于数据猛涨真实的具体原因,还需要与市场、运营、或负责增长相关的同事沟通确认。

‘玖’ 数据分析师常用的数据分析思路

01 细分分析


细分分析是数据分析的基础,单一维度下的指标数据信息价值很低。


细分分析法可以大致分为两类,一类是逐步分析,如:来北京市的访客可分为朝阳和海淀等区;另一类是维度交叉,如:来自付费SEM的新访客。


02 对比分析


对比分析主要是把两个有关联的数据指标进行相互比较,从数量上说明和展现研究对象的规模大小,水平的高低,速度快慢等方面的相对值,然后通过在一样的维度下的指标数据对比,可以发现,找出业务在不同阶段的问题。


03 漏斗分析


转化漏斗分析是数据分析师进行业务分析的基本模型,我们最经常见的就是把最终的转化设置为某种目的的实现,最典型的就是完成交易。但也可以是其他任何目的的实现,比如一次使用app的时间超过10分钟。


04 同期群分析


同期群(cohort)分析在数据分析运营领域相当重要,尤其是互联网运营,特别需要仔细观察留存的情况。通过对性质完全一样的可对比群体的留存情况的比较,来分析哪些因素影响用户的留存。


05 聚类分析


聚类分析具有简单,直观的特征,网站分析中的聚类主要分为:用户,页面或内容,来源。


用户聚类主要体现为用户分群,用户标签法;页面聚类则主要是相似,相关页面分组法;来源聚类主要包括渠道,关键词等。


06 AB测试


增长黑客的一个主要思想之一,是千万不要做一个大又全的东西,相反是需要不断做出能够快速验证的小而精的东西。快速验证,那如何验证呢?主要方法就是AB测试。


07 埋点分析


只有采集了足够的基础数据,才能通过各种分析方法得到需要的分析结果。


通过分析用户行为,并细分为:浏览行为,轻度交互,重度交互,交易行为,对于浏览行为和轻度交互行为的点击按钮等事件,因其使用频繁,数据简单,采用无埋点技术实现自助埋点,即可以提高数据分析的实效性,需要的数据可立即提取,又大量减少技术人员的工作量,需要采集更丰富信息的行为。


08 来源分析


流量红利消失,我们对获客来源的重视度极高,如何有效的标注用户来源,至关重要。


传统分析工具,渠道分析仅有单一维度,要深入分析不同渠道不同阶段效果,SEM付费搜索等来源渠道和用户所在地区进行交叉分析,得出不同区域的获客详细信息,维度越细,分析结果也越有价值。


09 用户分析


众所周知,用户分析是互联网运营的核心环节,通常用到的分析方法有:活跃分析,留存分析,用户分群,用户画像,用户细查等。可将用户活跃细分为浏览活跃,互动活跃,交易活跃等,通过活跃行为的细分,掌握关键行为指标。


10 表单分析


表单分析中的填写表单,这个环节是每个平台与用户交互的必有环节,一份完美的表单设计,对客户转化率的提升有至关重要的作用。


用户进入表单页面,这时候就已经产生了微漏斗,从进入的总共的人数到最后完成,并且成功提交表单人数,这个过程之中,有多少人开始填写表单,填写表单时,遇到了什么困难导致无法完成表单,都影响最终的转化效果。


有关数据分析师常用的数据分析思路的内容,青藤小编就和您分享到这里了。如果您对互联网大数据有着浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于大数据、数据分析师的技巧及素材等内容,可以点击本站的其他文章进行学习。

阅读全文

与数据分析方法与思路相关的资料

热点内容
老年房颤的治疗方法 浏览:869
java类的构造方法有什么用 浏览:626
提高手机照片质量的方法 浏览:779
核心投资方法和技巧 浏览:838
孔隙水压力计算方法 浏览:723
棋盘法可以用什么方法代替 浏览:950
精油护发使用方法 浏览:330
干疮的最土治疗方法 浏览:219
高粱标准水分检测方法 浏览:651
卡纸制作房子简单方法 浏览:831
如何克服猛兽的方法 浏览:659
花岗岩异形抛光最佳方法 浏览:25
调研报告的分析方法 浏览:400
如何自制辣椒酱的方法 浏览:972
羊肚菌的种植方法和技术管理 浏览:144
俄罗斯人都有哪些做薯仔的方法 浏览:545
酸度检测国标方法有 浏览:200
更新手机系统几种方法 浏览:374
手指头有点发黄怎么治疗方法 浏览:463
如何降薪最快的方法 浏览:257