‘壹’ 数字图像处理方法的研究
底层的图像处理包括增强,复原,编码,压缩等;
中层的图像分析包括预处理(增强,复原等),分割,特征提取,图像分类;
高层的图像理解包括预处理,图像描述,图像分析,图像理解。
数字图像处理的主要技术有:图像变换技术,图像增强技术,图像平滑技术,边缘锐化技术,图像分割技术,图像编码技术,图像识别技术。
各种技术有具体的方法研究。
‘贰’ 想学数字图像处理的研究生是属于哪个专业
“数字图像处理”是研究生专业中属于一项研究方向,以下专业都有开展教学:通信与信息系统、信号与信息处理、模式识别与智能系统、控制理论与控制工程。
数字图像处理作为一门学科,大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
(2)数字图像处理方法的研究扩展阅读
一般来讲,对图像进行处理(或加工、分析)的主要目的有三个方面:
1、提高图像的视感质量,如进行图像的亮度、彩色变换,增强、抑制某些成分,对图像进行几何变换等,以改善图像的质量。
2、提取图像中所包含的某些特征或特殊信息,这些被提取的特征或信息往往为计算机分析图像提供便利。提取特征或信息的过程是模式识别或计算机视觉的预处理。提取的特征可以包括很多方面,如频域特征、灰度或颜色特征等。
3、图像数据的变换、编码和压缩,以便于图像的存储和传输。不管是何种目的的图像处理,都需要由计算机和图像专用设备组成的图像处理系统对图像数据进行输入、加工和输出。
‘叁’ 数字图像处理的国内外研究现状
图像制式的统一是要做到进步提高的工业标准所必须的先决过程。
‘肆’ 图像扫描路径方法的研究 数字图像处理课设 求指点
本课程着重研究数字图像处理的方法,训练学生运用所学基础知识解决实际问题的能力,同时要求拓宽专业知识面。该课程是一门涉及多领域的专业选修课。它是图像通信、模式识别、计算机视觉等学科的基础。通过对本课程的学习,要求学生掌握数字图像处理的基本处理技术,较深入地理解数字图像处理的基本概念、基础理论以及解决问题的基本思想方法。从而使学生具有初步综合利用所学知识深入研究有关信息领域问题的能力。本课程数字图像处理是论述其基本理论、方法及其在计算机领域中应用的学科分支,是实现机器视觉的有效工具。学习本门课程的主要目的是使学生掌握数字图像处理的基本概念、原理、和方法,并未以后在此方向上的深入研究奠定基础。
通过本课程设计,使学生理解和巩固所学的理论知识,树立解决实际问题的严谨科学态度。实验前要求做好编程准备工作,提高实验效果,注重独立分析问题、解决问题的能力培养,训练实际操作,鼓励创新设想。
‘伍’ 数字图像处理的发展概况
数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。在以后的宇航空间技术,如对火星、土星等星球的探测研究中,数字图像处理技术都发挥了巨大的作用。数字图像处理取得的另一个巨大成就是在医学上获得的成果。
1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT(Computer Tomograph)。CT的基该方法是根据人的头部截面的投影,经计算机处理来重建截面图像,称为图像重建。
1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。1979年,这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。与此同时,图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。随着图像处理技术的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,因人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域。
数字图像处理在国民经济的许多领域已经得到广泛的应用。农林部门通过遥感图像了解植物生长情况,进行估产,监视病虫害发展及治理。水利部门通过遥感图像分析,获取水害灾情的变化。气象部门用以分析气象云图,提高预报的准确程度。国防及测绘部门,使用航测或卫星获得地域地貌及地面设施等资料。机械部门可以使用图像处理技术,自动进行金相图分析识别。医疗部门采用各种数字图像技术对各种疾病进行自动诊断。
数字图像处理在通信领域有特殊的用途及应用前景。传真通信、可视电话、会议电视、多媒体通信,以及宽带综合业务数字网(B-ISDN)和高清晰度电视(HDTV)都采用了数字图像处理技术。
图像处理技术的应用与推广,使得为机器人配备视觉的科学预想转为现实。计算机视觉或机器视觉迅速发展。计算机视觉实际上就是图像处理加图像识别,要求采用十分复杂的处理技术,需要设计高速的专用硬件。
数字图像处理技术在国内外发展十分迅速,应用也非常广泛,但是就其学科建设来说,还不成熟,还没有广泛适用的研究模型和齐全的质量评价体系指标,多数方法的适用性都随分析处理对象而各异。数字图像处理的研究方向是建立完整的理论体系。
‘陆’ 数字图像处理主要包括哪些研究内容
数字图像处理主要研究的内容有以下几个方面:1) 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大.因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理).目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用.2) 图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量.压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行.编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术.3) 图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等.图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分.如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响.图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立"降质模型",再采用某种滤波方法,恢复或重建原来的图像.4) 图像分割图像分割是数字图像处理中的关键技术之一.图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础.虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法.因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一.5) 图像描述是图像识别和理解的必要前提.作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法.对于特殊的纹理图像可采用二维纹理特征描述.随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法.6) 图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类.图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视.
‘柒’ 数字图像处理有哪些小的研究方向
整个图像处理领域都处于发展之中,每一个步骤都可以作为方向来研究。
1)预处理。包括特定图像增强、放大插值、去噪、去模糊、分割等。
2)压缩。是一个悠久的方向,但一直有人在研究。这两年最红火的压缩感知把压缩和成像结合在一起。
3)特征提取。最近主要集中在不变特征提取,即旋转不变、缩放不变等,比如SIFT,SURF等。
4)识别。这个太多,人脸识别、车牌识别、虹膜识别、指纹识别等等。
5)检索。主要是基于标注的检索、基于内容的检索等等。
6)语义提取。这个比较难,目前设计的人少。
其他还有很多方向。总的来说,这个发展中的领域,你随便找一个题目都可以作为硕士、或博士的题目。当然如果你要以之为数年的研究对象,那么选题就要稍微慎重一点。只是混个学位就随便啦
‘捌’ 数字图像处理 中数学形态学主要包括哪些研究内容
可以通过以下几个步骤来实现数学形态学算法对数字图像的处理:
步骤 1、提取图像的几何结构特征,也就是针对所要处理的图像找出相应的 几何结构模式。
步骤 2、根据步骤 1 找出的几何结构模式选合适的结构元素,这里结构元 素的选择标准择首先是要能最有效的展现该几何结构模式,其次该结构元素的形 态还应该尽量的最简。
步骤 3、为了得到比原始图像更能显着突出物体特征信息的图像,用步骤 2 选取的结构元素对目标进行相应的数学形态学变换,如果能对结构元素给予合适 的变量,则还能够定量的表示出目标的几何结构模式。
步骤 4、通过上面的三个步骤,相对于我们的处理需求,目标图像会变得更 加清晰、明了,并且更有利于我们提取出相应的图像信息。
‘玖’ 矩阵在数字图像处理中研究到什么地步了
矩阵应用在数字图像处理中,可以得到像素点一世界坐标点之间的对应关系为:光学三角法知识点总结 光学三角测量法是一种最常用的一种光学三维测量技术,以传统的三角测量为基础,通过待测点相对于光学光学基准线偏移产生的角度变化计算该点的深度信息。根据具体的照明方式的不同,三角法可以分为被动三角法和主动三角法。 双目立体视觉双目立体视觉属于被动三维测量技术,优点在于其适应性强,可以在多种条件下灵活测量物体三维信息。但是被动三维测量技术需要大量相关匹配运算和较复杂的空间几何参数的标定等,测量精度低,常用于对三维目标的识别、理解,以及用于位置、形态分析。尤其在无法采用结构光照明的时候优势凸显。主动三维测量 主动三维测量采用结构照明方式,能快速、高精度地获取物体表面三维信息,因而获得了广泛的研究和应用。根据三维面形对结构光调制方式的不同,主动三角法可分为时间调制飞行时间法和空间调制结构光:直接三角法、光栅投射法等两大类。 光学三角法属于主动视觉测量方法,由于该方法具有结构简单、测试速度快、实时处理能力强、使用灵活方便等优点,在长度、距离以及三维形貌测量中有着广泛的应用。按照入射光线与被测表面法线的光学,单点式光学三角法可分为直射式和斜射式两种。
‘拾’ 《数字图像处理》研究报告要求
金卡是空间哈师大好事坎大哈开始觉得哈哈是