‘壹’ 结构分析的软件工程结构分析
为了理解系统A,把它分解为子系统l、子系统2及子系统3。若它们还很复杂,再进行细分,一直到各部分都足够简单,容易理解,能清楚地表达为止。在分解过程中,不考虑细节问题,而用抽象的办法找出复杂问题对应的子问题来。SA方法在表达问题时尽可能使用DFD和数据字典工具;用DFD表示软件的数据流和数据加工,用数据词典对它们进行更详细的描述。
‘贰’ 什么是代数值
结构分析数值方法
numerical method in structural analysis
用微分方程的数值解法对工程结构进行分析计算的方法。
主要的数值方法 在结构分析中使用的数值方法很多,其中以有限元法使用最广,此外,还有差分法、变分法、加权余量法及边界元法等。这些方法都是将求解微分方程的问题化为求解代数方程的问题,进而求出未知函数(结构的位移、内力、应力等)的数值解。
有限元法 又称有限单元法,是结构分析中适应性最强、应用最广泛的数值方法。对于杆件结构的有限元法也就是结构矩阵分析法。在有限元法中,通过剖分所计算的区域,把一个连续体近似地用有限个在结点处相连接的单元所组成的离散结构来代替,并通过未知函数在各个单元上的分片插值,把连续体的分析化为单元的分析以及由单元集合成离散结构的分析。有限元法具有便于处理复杂边界条件,便于分析复杂结构以及便于编制通用计算程序等优点。
差分法 结构分析中发展较早,应用较广的数值方法,特别适用于形状比较规则的结构。在用差分法求数值解时,亦须对计算区域作网格剖分,进而将在结构分析的支配微分方程中出现的导数或偏导数用差商代替,得到对应于原微分方程的差分方程。求解差分方程组,便得到未知函数在网格结点处的近似值。
变分法 用变分法进行结构分析时,首先根据变分原理(如最小势能原理、最小余能原理)将求解结构分析中的支配微分方程的问题用等价的求解某种泛函极值的问题来代替,进而设定包含待定系数的满足规定条件的试探解,将泛函的极值问题化为多元函数的极值问题,从而由极值条件获得用以确定待定系数的代数方程组。解出待定系数后,便得到未知函数的近似解。由于试探解是对整个计算区域选取的,因而当边界条件较复杂时,要使它预先满足规定条件较为困难。
加权余量法 又称加权残数法。将包含待定系数的试探解代入结构分析的支配微分方程和边界条件,一般不能满足而会出现余量,选择某种权函数与余量相乘,列出在加权平均的意义上使余量为零的方程式,就把求解微分方程的问题化为求解代数方程的问题。其中未知量就是试探解中的待定系数。按照权函数的不同,加权余量法可分为子域法、矩量法、配点法、最小二乘法以及伽辽金法等。
边界元法 首先将求解结构分析的支配微分方程的边值问题转化为求解边界积分方程的问题,然后将计算区域的边界离散化,再通过边界上的未知函数在各个边界单元上的分片插值,进一步转化为求解代数方程组的问题。边界元法的主要优点是:将问题的维数降低了一次,因而计算前处理工作量大为减少;能直接计算出工程上感兴趣的边界应力;特别便于解决与无限域或半无限域有关的问题。
结构分析应用软件 20世纪50年代以来,由于电子计算机的发展使得结构分析数值方法的应用有了迅速发展,作为这种发展的一个重要标志,已研制成功一大批结构分析数值方法的应用软件,在各个工程领域中发挥了极大的作用。
结构分析数值方法的应用软件按其适用程度可分为专用结构分析程序系统以及通用结构分析程序系统两类。专用程序具有针对性强、使用方便、效率高等优点,对于一些需要大量重复计算的问题可以显着缩短计算时间,降低计算费用。通用程序具有通用性强、功能较全面,灵活性、可靠性好,便于修改补充等优点,适用于大型复杂结构的各种力学分析计算工作。结构分析程序系统往往还具有较完善的前、后处理功能,便于用户准备原始数据并获得形象的计算成果。
结构分析程序系统一般采用模块式结构,每个模块实现某种功能并以一定的输入、输出内容与其他模块相连接。这些模块按它们的作用大致可分为数据输入及数据自动生成模块、各种功能模块(例如形成线性代数方程组的系数矩阵与右端列阵、解线性代数方程组、解特征值与特征向量等)、成果整理及输出、绘图模块。鉴于模块的特性,程序编制人员在研制一个新的结构分析程序时,往往可以选用一些已有的模块,仅需新编制一部分新的模块,这就大大节省了编制程序的工作量。
应用 数值方法、结构试验方法与求解析解是结构分析的三种主要方法。由于数值方法适应性强、应用方便、省钱省时,而成果又有足够的精度,故在各种工程的结构分析中已得到广泛应用。在水利工程中,由于水工结构的复杂性与重要性,结构分析数值方法得到了较多的应用与较快的发展。其中比较典型的课题有:大型复杂空间结构(如拱坝)的静、动力分析;复杂地基与上部结构联合作用的结构非线性分析;大体积混凝土的温度场与蠕变温度应力分析;地下结构与围岩联合作用的弹塑性分析;坝体形状优化分析等。
发展方向 结构分析数值方法的发展主要有三个方向:①研究与改进适用于各种工程结构分析的数值方法以及它们的误差、收敛性等理论问题;②研究各种数值方法的结合以及数值方法与结构试验方法或解析解的结合,以期耗费最少的金钱与时间获得最能反映实际情况的高精度的成果;③根据需要研制或改进结构分析应用软件,特别是着重发展适用于小型计算机、微型计算机的高度模块化的结构分析程序系统。此外,为了使数值计算能更好地符合实际情况,有效、准确地测定反映结构静、动力性态的各种计算参数已成为急待发展的课题。
‘叁’ 请帮帮忙,软件工程中:典型的结构化分析设计方法有哪些 谢谢
看了这个问题,我倒是有很多问题了?软件工程,哪方面啊,机械、建筑、还是...,再就是结构化分析设计方法?我也不明白,请高手回答,顺便学习学习。
‘肆’ 工程结构分析的介绍
工程结构分析是指用工程力学方法进行结构分析,以检验是否满足规范规定的强度、刚度、稳定、尺寸等。
‘伍’ 现在主要采用的结构弹塑性分析方法有哪些
现在主要采用的结构弹塑性分析方法有哪些
(1) 建立结构的计算模型、构件的物理参数和恢复力模型等;
(2) 计算结构在竖向荷载作用下的内力;
(3) 建立侧向荷载作用下的荷载分布形式,将地震力等效为倒三角或与第一振型等效的水平荷载模式。在结构各层的质心处,沿高度施加以上形式的水平荷载。确定其大小的原则是:水平力产生的内力与前一步计算的内力叠加后,恰好使一个或一批杆件开裂或屈服;
(4) 对于开裂或屈服的杆件,对其刚度进行修改后,再增加一级荷载,又使得一个或一批杆件开裂或屈服;
(5) 不断重复步骤(3)、(4),直至结构达到某一目标位移或发生破坏,将此时的结构的变形和承载力与允许值比较,以此来判断是否满足“大震不倒”的要求。 该方法的优点是:
(1) 相比目前的承载力设计方法,POA可以估计结构和构件的非线性变形,比承载力方法接近实际;
(2) 相对于弹塑性时程分析,POA方法的概念、所需参数和计算结果相对明确,构件设计和配筋是否合理能够直观的判断,易被工程设计人员接受;
(3) 可以花费相对较少的时间和费用得到较稳定的分析结果,减少分析结果的偶然性,达到工程设计所需要的变形验算精度。
该方法的缺点是:
(1) POA方法将地震的动力效应近似等效为静态荷载,只能给出结构在某种荷载作用下的性能,无法反映结构在某一特定地震作用下的表现,以及由于地震的瞬时变化在结构中产生的刚度退化和内力重分布等非线性动力反应;
(2) 计算中选取不同的水平荷载分布形式,计算结果存在一定的差异,为最终结果的判断带来了不确定性;
(3) POA方法以弹性反应谱为基础,将结构简化为等效单自由度体系。因此,它主要反映结构第一周期的性质,对于结构振动以第一振型为主、基本周期在2秒以内的结构,POA方法较为理想。当较高振型为主要时,如高层建筑和具有局部薄弱部位的建筑,POA方法并不适用;
(4) 对于工程中常见的带剪力墙结构的分析模型尚不成熟,三维构件的弹塑性性能和破坏准则、塑性铰的长度、剪切和轴向变形的非线性性能有待进一步研究完善。
正是由于存在以上的一些缺点,对于目前工程中遇到的许多超限结构分析,POA方法显得力不从心,人们逐渐开始重视动力弹塑性分析方法的理论研究和工程应用。
‘陆’ 软件工程的结构化方法是什么
结构化分析方法(Structured Method)是强调开发方法的结构合理性以及所开发软件的结构合理性的软件开发方法。结构是指系统内各个组成要素之间的相互联系、相互作用的框架。结构化开发方法提出了一组提高软件结构合理性的准则,如分解与抽象、模块独立性、信息隐蔽等。针对软件生存周期各个不同的阶段,它有结构化分析(SA)、结构化设计(SD)和结构化程序设计(SP)等方法。
结构化分析方法给出一组帮助系统分析人员产生功能规约的原理与技术。它一般利用图形表达用户需求,使用的手段主要有数据流图、数据字典、结构化语言、判定表以及判定树等。
结构化分析的步骤如下:①分析当前的情况,做出反映当前物理模型的DFD;②推导出等价的逻辑模型的DFD;③设计新的逻辑系统,生成数据字典和基元描述;④建立人机接口,提出可供选择的目标系统物理模型的DFD;⑤确定各种方案的成本和风险等级,据此对各种方案进行分析;⑥选择一种方案;⑦建立完整的需求规约。
结构化设计方法给出一组帮助设计人员在模块层次上区分设计质量的原理与技术。它通常与结构化分析方法衔接起来使用,以数据流图为基础得到软件的模块结构。SD方法尤其适用于变换型结构和事务型结构的目标系统。在设计过程中,它从整个程序的结构出发,利用模块结构图表述程序模块之间的关系。结构化设计的步骤如下:①评审和细化数据流图;②确定数据流图的类型;③把数据流图映射到软件模块结构,设计出模块结构的上层;④基于数据流图逐步分解高层模块,设计中下层模块;⑤对模块结构进行优化,得到更为合理的软件结构;⑥描述模块接口。
‘柒’ 地下工程结构类型计算方法介绍
地下工程结构类型计算方法是很重要的,能很好的计算出相关内容从而确定方法,做出最合适的选择。中达咨询就地下工程结构类型计算方法给大家详细介绍一下。
地下工程的设计长期以来主要是考虑地层弹性抗力的方法,锚喷方法的应用出现后,仍然以结构力学的原理处理锚喷的结构。国际隧道协会结构模型研究人员在上世纪80年代曾对盾构开挖的软土隧道,锚喷钢拱支护软岩隧道,中硬岩石深埋隧道和明挖施工的框架结构计4种类型的隧道,收集了11个国家所采用的结构计算模型。
1、工程类比法,即是经验法以围岩分类为基础的新奥法,q系统图和以q系统为基础的挪威法等,都反映了初始确定支护时的工程类比,在现在及以后相当长的一段时间内,仍然是不可缺少的一种设计方法。由于地层和地下工程包含着很多随机因素,单纯的理论分析还是难以全面解决这些问题,因此认真分析多征求意见作出正确判断是不可忽视的。
2、收敛——约束法,收敛——约束法主要用于新奥法施工的隧道,是用此种方法监控量测的重要部分,借助于收敛量测数据的反分析,可以实现正确的信息反馈,用图像或数字显示各施工阶段中围岩和衬砌中的变形及应力状况,强度发挥系数或安全状况,指出薄弱环节或强度的多余程度,可以采取措施保证安全,或调整设计
更多关于标书代写制作,提升中标率,点击底部客服免费咨询。
‘捌’ 软件 工程中什么是结构化分析方法
结构化分析(Structured Analysis,简称SA)是软件工程中的一种方法,结构化分析和结构化设计可以分析商业的需求,再转换为规格文件,最后再产生电脑软件、硬件配置及相关的手册及程序。
‘玖’ 什么是工程分解结构,一般有几种工程结构的分解方法
一个由多目标及其内在相互关系构成的目标系统,其中费用、工期、质量是三个至关重要的目标,针对项目的目标,把整个项目分解成易于操作和管理的工作单元,对于项目整体目标的实现至关重要,这种分解的方法称为工程分解结构。
‘拾’ 如何学好结构力学,关键和方法是什么
关键:研究工程结构在外载荷作用下的应力、应变和位移等的规律;运用力学的基本理论和新的观点,分析不同形式和不同材料的工程结构,为工程设计提供分析方法和计算公式;确定工程结构承受和传递外力的能力;研究和发展新型工程结构。
结构力学的研究方法主要有工程结构的使用分析、实验研究、理论分析和计算三种。在结构设计和研究中,这三方面往往是交替进行并且是相辅相成的进行的。
1、使用分析在结构的使用过程中,对结构中出现的情况进行分析比较和总结,这是易行而又可靠的一种研究手段。使用分析对结构的评价和改进起着重要作用。新设计的结构也需要通过使用来检验性能。
2、实验研究能为鉴定结构提供重要依据,这也是检验和发展结构力学理论和计算方法的主要手段。实验研究分为三类:模型实验、真实结构部件实验、真实结构实验。
结构的力学实验通常要耗费较多的人力、物力和财力,因此只能有限度地进行,特别是在结构设计的初期阶段,一般多依靠对结构部件进行理论分析和计算。
3、理论计算主要有两方面内容:
计算模型工程结构的形式很多,它们的联结方式也各不相同。并且,在实际结构中还存在局部的加强和削弱。因此,在理论计算时必须采用一些假设,把实际结构简化成理想的典型结构,即简化成计算模型,然后再进行理论计算。
计算方法计算模型确定后,就要进行结构和结构部件的基本设计计算,即运用各种力学方法,求出结构内部的受力和变形状态以及结构的破坏极限载荷,用以检验真实结构是否满足工程设计的要求。
(10)工程结构分析的方法有哪些扩展阅读
结构力学中的能量原理以内部和外部力量的能量或作业的形式表达应力,应变或变形,位移,材料特性和外部影响之间的关系。由于能量是一个标量,这些关系为固体力学中可变形体的控制方程提供了方便和可选的方法。它们也可以用于获得相当复杂系统的近似解,绕过了解一组控制偏微分方程的困难任务。
评定结构的优劣,从力学角度看,主要是结构的强度和刚度。工程结构设计既要保证结构有足够的强度,又要保证它有足够的刚度。强度不够,结构容易破坏;刚度不够,结构容易皱损,或出现较大的振动,或产生较大的变形。
皱损能够导致结构的变形破坏,振动能够缩短结构的使用寿命,皱损、振动、变形都会影响结构的使用性能,例如,降低机床的加工精度或减低控制系统的效率等。