导航:首页 > 研究方法 > 钢中锆的分析方法标准

钢中锆的分析方法标准

发布时间:2023-02-11 07:55:26

‘壹’ 简述钢铁五大元素的作用和危害以及分析方法概要

钢铁五大元素指的是,除铁元素以外的碳、硫、锰、磷、硅五种元素。
他们的元素国家是有控制标准的:
碳(C) 0.7~1.20%、锰(Mn)0.35~1.20%、硅(Si)≥0.40%、硫(S))≤0.05%
、磷(P)≤0.05%。
碳:钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏。
锰:在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。
硅:在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显着提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。
硫:硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。
磷:在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。
五大元素分析:
锰元素(依据GB/T 223.63-1988标准)采用银盐--过硫酸铵氧化光度法。
磷元素(依据GB/T 223.61-1988标准)采用氟化钠--氯化亚锡钼蓝光度法。
硅元素(依据GB/T 223.5-1997标准) 采用亚铁还原--硅钼蓝光度法。
碳元素(依据GB/T 223.69-1997标准)采用气体容量法。
硫元素(依据GB/T 223.68-1997标准)采用碘量法。
化学原理:
一、重量分析法:使被测组分转化为化学组成一定的化合物或单质与试样中的其他组分分离,然后用称重方法测定该组分的含量。
二、滴定分析法:将已知准确浓度的试剂溶液(标准溶液)滴加到被测物质的溶液中,直到所加的试剂与被测物质按化学计量定量反应完为止,化学分析仪器根据所用试剂溶液的体积和浓度计算被测物质的含量。
三、气体容量法:通过测量待测气体(或者将待测物质转化成气体形式)被吸收(或发生)的容积来计算待测物质的量。这种方法应用天平滴定管和量气管等作为最终的测量手段。用这种方法测定钢铁等金属物质中总碳量时,应将试样置于高温炉中加热并通氧燃烧,使碳和氧结合成二氧化碳,所得二氧化碳与氧的混合气体收集于量气管中,然后用氢氧化钾吸收其中的二氧化碳,吸收前后体积之差即为二氧化碳的体积,碳硫联测仪由此计量碳的含量。

‘贰’ gb t223钢铁及合金化学分析方法拜托各位了 3Q

GB/T223.3-1988 钢铁及合金化学分析方法 二安替比林甲烷磷钼酸重量法测定磷量 GB/T223.4-1988 钢铁及合金化学分析方法 硝酸铵氧化容量法测定锰量 GB/T223.5-1997 钢铁及合金化学分析方法 还原型硅钼酸盐光度法测定酸溶硅含量 GB/T223.6-1994 钢铁及合金化学分析方法 中和滴定法测定硼量 GB/T223.7-2000 钢铁及合金化学分析方法 合金及铁粉中铁量的测定 GB/T223.8-2000 钢铁及合金化学分析方法 氟化钠分离- EDTA 滴定法测定铝含量 GB/T223.9-2000 钢铁及合金化学分析方法 铬天青 S 光度法测定铝含量 GB/T223.10-2000 钢铁及合金化学分析方法 铜铁试剂分离-铬天青 S 光度法测定铝含量 GB/T223.11-2000 钢铁及合金化学分析方法 过硫酸铵氧化容量法测定铬量 GB/T223.12-2000 钢铁及合金化学分析方法 碳酸钠分离-二苯碳酰二肼光度法测定铬量 GB/T223.13-2000 钢铁及合金化学分析方法 硫酸亚铁铵滴定法测定钒含量 GB/T223.14-2000 钢铁及合金化学分析方法 钽试剂萃取光度法测定钒含量 GB/T223.15-1982 钢铁及合金化学分析方法 重量法测定钛 GB/T223.16-1991 钢铁及合金化学分析方法 变色酸光度法测定钛量 GB/T223.17-1989 钢铁及合金化学分析方法 二安替比林甲烷光度法测定钛量 GB/T223.18-1994 钢铁及合金化学分析方法 硫代硫酸钠分离-碘量法测定铜量 GB/T223.19-1989 钢铁及合金化学分析方法 新亚铜灵-三氯甲烷萃取光度法测定铜量 GB/T223.20-1994 钢铁及合金化学分析方法 电位滴定法测定钴量 GB/T223.21-1994 钢铁及合金化学分析方法 5-CI-PADAB 分光光度法测定钴量 GB/T223.22-1994 钢铁及合金化学分析方法 亚硝基 R 盐分光光度法测定钴量 GB/T223.23-1994 钢铁及合金化学分析方法 丁二酮肟分光光度法测定镍量 GB/T223.24-1994 钢铁及合金化学分析方法 萃取分离-丁二酮肟分光光度法测定镍量 GB/T223.25-1994 钢铁及合金化学分析方法 丁二酮肟重量法测定镍量 GB/T223.26-1989 钢铁及合金化学分析方法 硫氰酸盐直接光度法测定钼量 GB/T223.27-1994 钢铁及合金化学分析方法 硫氰酸盐-乙酸丁酯萃取分光光度法测定钼量 GB/T223.28-1989 钢铁及合金化学分析方法 a- 安息香肟重量法测定钼量 GB/T223.29-1984 钢铁及合金化学分析方法 载体沉淀-二甲酚橙光度法测定铅量 GB/T223.30-1994 钢铁及合金化学分析方法 对-溴苦杏仁酸沉淀分离-偶氮胂 Ⅲ 分光光度法测定锆量 GB/T223.31-1994 钢铁及合金化学分析方法 蒸馏分离-钼篮分光光度法测定砷量 GB/T223.32-1994 钢铁及合金化学分析方法 次磷酸钠还原-碘量法测定砷量 GB/T223.33-1994 钢铁及合金化学分析方法 萃取分离-偶氮氯膦 mA 光度法测定铈量 GB/T223.34-2000 钢铁及合金化学分析方法 铁粉中盐酸不溶物的测定 GB/T223.35-1985 钢铁及合金化学分析方法 脉冲加热惰气熔融库伦滴定法测定氧量 GB/T223.36-1994 钢铁及合金化学分析方法 蒸馏分离-中和滴定法测定氮量 GB/T223.37-1989 钢铁及合金化学分析方法 蒸馏分离-靛酚篮光度法测定氮量 GB/T223.38-1985 钢铁及合金化学分析方法 离子交换分离-重量法测定铌量 GB/T223.39-1994 钢铁及合金化学分析方法 氯磺酚 S 光度法测定铌量 GB/T223.40-1985 钢铁及合金化学分析方法 离子交换分离-氯磺酚 S 光度法测定铌量 GB/T223.41-1985 钢铁及合金化学分析方法 离子交换分离-连苯三酚光度法测定钽量 GB/T223.42-1985 钢铁及合金化学分析方法 离子交换分离-溴邻苯三酚红光度法测定钽量 GB/T223.43-1994 钢铁及合金化学分析方法 钨量的测定 GB/T223.45-1994 钢铁及合金化学分析方法 铜试剂分离-二甲苯胺篮 Ⅱ 光度法测定镁量 GB/T223.46-1989 钢铁及合金化学分析方法 火焰原子吸收光谱法测定镁量 GB/T223.47-1994 钢铁及合金化学分析方法 载体沉淀-钼篮光度法测定锑量 GB/T223.48-1985 钢铁及合金化学分析方法 半二甲酚橙光度法测定铋量 GB/T223.49-1994 钢铁及合金化学分析方法 萃取分离-偶氮氯膦 mA 分光光度法测定稀土总量 GB/T223.50-1994 钢铁及合金化学分析方法 苯基荧光酮-溴化十六基三甲基胺直接光度法测定锡量 GB/T223.51-1987 钢铁及合金化学分析方法 5-Br-PADAP 光度法测定锌量 GB/T223.52-1987 钢铁及合金化学分析方法 盐酸羟胺-碘量法测定硒量 GB/T223.54-1987 钢铁及合金化学分析方法 火焰原子吸收分光光度法测定镍量 GB/T223.55-1987 钢铁及合金化学分析方法 示波极谱(直接)法测定碲量 GB/T223.56-1987 钢铁及合金化学分析方法 巯基棉分离-示波极谱法测定碲量 GB/T223.57-1987 钢铁及合金化学分析方法 萃取分离-吸附催化极谱法测定镉量 GB/T223.58-1987 钢铁及合金化学分析方法 亚砷酸钠-亚硝酸钠滴定法测定锰量 GB/T223.59-1987 钢铁及合金化学分析方法 锑磷钼篮光度法测定磷量 GB/T223.60-1997 钢铁及合金化学分析方法 高氯酸脱水重量法测定硅含量 GB/T223.61-1988 钢铁及合金化学分析方法 磷钼酸铵容量法测定磷量 GB/T223.62-1988 钢铁及合金化学分析方法 乙酸丁酯萃取光度法测定磷量 GB/T223.63-1988 钢铁及合金化学分析方法 高碘酸钠(钾)光度法测定锰量 GB/T223.64-1988 钢铁及合金化学分析方法 火焰原子吸收光谱法测定锰量 GB/T223.65-1988 钢铁及合金化学分析方法 火焰原子吸收光谱法测定钴量 GB/T223.66-1989 钢铁及合金化学分析方法 硫氰酸盐-盐酸氯丙嗪-三氯甲烷萃取光度法测定钨量 GB/T223.67-1989 钢铁及合金化学分析方法 还原蒸馏-次甲基篮测定硫量 GB/T223.68-1997 钢铁及合金化学分析方法 管式炉内燃烧后碘酸钾滴定法测定硫含量 GB/T223.69-1997 钢铁及合金化学分析方法 管式炉内燃烧后气体容量法测定碳含量 GB/T223.70-1989 钢铁及合金化学分析方法 邻菲啰啉分光光度法测定铁量 GB/T223.71-1997 钢铁及合金化学分析方法 管式炉内燃烧后重量法测定碳含量 GB/T223.72-1991 钢铁及合金化学分析方法 氧化铝色层分离-硫酸钡重量法测定硫量 GB/T223.73-1991 钢铁及合金化学分析方法 三氯化钛-重铬酸钾容量法测定铁量 GB/T223.74-1997 钢铁及合金化学分析方法 非化合碳含量的测定 GB/T223.75-1991 钢铁及合金化学分析方法 甲醇蒸馏-姜黄素光度法测定硼量 GB/T223.76-1994 钢铁及合金化学分析方法 火焰原子吸收光谱法测定钒量 GB/T223.77-1994 钢铁及合金化学分析方法 火焰原子吸收光谱法测定钙量 GB/T223.78-2000 钢铁及合金化学分析方法 姜黄素直接光度法测定硼含量

‘叁’ 钢中常见合金元素的含量测定方法

钢中常见合金元素的含量测定方法:钢材常见者主要有碳素钢、不锈钢、低合金钢、轴承钢这几大类,有时还要包括弹簧钢等。每一类有很多牌号,每种牌号的钢材,其具体组分在《金属材料手册》中都有详细讲述,你可以自行查阅。
至于你所说的操作过程,那是得几十万字的内容呢,一下子讲不清楚,每种不同的钢材,甚至不同牌号的,分析方法都不完全一致呢,更何况不知道你懂不懂分析。如果不懂,那就根本不可能三五天就听明白。就必须得从头来,从《无机化学》、《有机化学》、《分析化学》、《仪器分析》、《分析化学手册》开始学起,认认真真看它三五年,才能真正明白。我在这里告诉你一些,不如当面告诉你;当面告诉你,不如带你操作;带你操作,不如你自己掌握了。如果你学过化学(大学级别的),那就去找《金属材料分析方法(手册)》、《钢铁材料分析方法(手册)》、《工厂实用化学分析》、某种钢材分析的国标等书籍、资料来看,就可以了。在电炉冶炼及产品检验中,元素的测定,多采用氧化还原滴定法测定元素:称取一定量样品,硫酸溶解,滴加浓硝酸促进溶解,驱除氮氧化物后,在酸性溶液中,用硝酸银做催化剂...煮沸分解多余的过硫酸铵后,以经同一牌号钢的标准样品标定过的硫酸亚铁铵标准溶液进行滴定,从标准溶液的消耗量计算出含量。对熟悉化验的人员来说,前面的叙述基本可以自己写出一个测钢元素的操作规程来了。然而,看样子,你对炼钢及化验钢中的各种元素一点也不熟悉,因为你提到的问题涉及许多内容,不是在网络里可以全部回答得了的,仅仅是了解它的全过程,也是需要用一本小册子才能大概说明白。更何况具体的技术细节,只有到现场去学习观察了解才能真正弄明白是怎么一回事。还有,化验只能是帮助冶炼人员了解钢里的成分含量,只是一种监控手段,本身不能提高钢的质量。在炼钢过程中,在熔融、氧化除杂、还原和调整钢的成分(包括碳、硅、锰、硫、磷及其它合金成分)等过程中,要取3-5个钢水样品进行高速分析,在几分钟内向炉前报出结果,指导炉前掌握并调整钢的成分,最终炼出合格的钢产品。而成品钢的分析,则是在事后分析。建议你还是找一些相关的小册子或书看看,最好到炼钢现场看看...

‘肆’ 检测钢铁中各化学成分的方法

主要成分铁可以用氧化还原滴定
其他微量成分可以用原子吸收光谱

‘伍’ 钢材化学成分测定

1
用途
适用于钢的化学成分熔炼分析和成品分析用试样的取样
本标准规定了成品化学
成分允许偏差

2
术语

2.1
熔炼分析
熔炼分析是指在钢液浇注过程中采取样锭
然后进一步制成试样
并对其进
行的化学分析
分析结果表示同一炉或同一罐钢液的平均化学成分

2.2
成品分析
成品分析是指在经过加工的成品钢材
包括钢坯
上采取试样
然后对其进
行的化学分析
成品分析主要用于验证化学万分
又称验证分析
由于钢液在结晶过程中产
生元素的不均匀分布
偏析
成品分析的值有时与熔炼分析的值不同

2.3
成品化学成分允许偏差
成品化学成分允许偏差是指熔炼分析的值虽在标准规定的范围

但由于钢中元素偏析
成品分析的值可能超出标准规定的成分范围
对超出的范围规定
一个允许的数值
就是成品化学成分允许偏差

3
取样总测

3.1
用于钢的化学成分熔炼分析和成品分析的试样
必须在钢液或钢材具有代表性的部位采

试样应均匀一致
能充分代表每一熔炼号
或每一罐
或每批钢材的化学成分
并应具
有足够的数量
以满足全部分析要求

3.2
化学分析用试样样屑
可以钻取
刨取
或用某些工具机制取
样屑应粉碎并混合均匀
制取样屑时
不能用水
油或其他润滑剂
并应去除表面氧化铁皮和脏物
成品钢材还应除
去脱碳层
渗碳层
涂层
镀层金属或其他外来物资

3.3
当用钻头采取试样样屑时
对熔炼分析或小断面钢材成品分析
钻头直径应尽可能的大
至少不应小于
6mm
对大断面钢材成品分析
钻头直径不应小于
12mm

3.4
供仪器分析用的度样样块
使用前应根据分析仪器的要求
适当地给以磨平或抛光

4
熔炼分析取样

4.1
测定钢的熔炼化学成分时
从每罐钢液采取两个制取试样的样锭
第二个样锭供复验用
样锭是在钢液浇注中期采取

4.2
当整个熔炼号
用下注法浇注
且仅浇注一盘钢锭时样锭采取方法为
如浇注镇静钢
则应在浇注钢液达到保温帽部位并高出钢锭本体约
50mm-100mm
时采取
如浇注沸腾钢
则应在浇注到距规定高度尚差
100-150mm
时采取

4.3
样锭浇注在样模内
模内应洁净
干燥
样模尺寸可为
下部内径
30mm-50mm
上部
内径
40mm-60mm
高度
70mm-120mm
或由工厂自行确定

4.4
往样模内浇注钢液时
钢流应均匀
不应使钢液流出或溢溅
样模不得注满
应使样模
内钢液镇静地冷疑
沸腾钢可加入适量高纯度金属铝使其平静
样锭不应有气孔和裂缝

4.5
每个样锭应经检查员检查合格
标明熔炼号和样锭号

4.6
必要时样锭应进行缓慢冷却
或在制样屑前对样锭进行热处理
以保证容易加工制样

4.7
未能按
19.4.1
条或
19.4.2
条的规定取得样锭时
或在仅浇注一盘钢锭情况下需采用与
19.4.2
条的规定不同的取样方法时
由工厂制订补充方法
并报上级公司或主管局批准

4.8
本标准规定的熔炼分析取样
适用于平炉
转炉和电弧炉炼钢的熔炼分析
电渣炉

空感应和真空自耗炉炼钢的熔炼分析
由工厂自行制订取样方法
或按有关技术条件的规定

‘陆’ 直读光谱仪进行钢铁成分化学分析可参照的国家标准和行业标准

国家标准都是用的化学法,中国目前还不承认原子发射光谱仪所出的数据,国标都是化学法的结果。原子发射光谱仪中有一款叫直读光谱仪,可以检测铸铁 合金铸铁 碳钢 中中低合金钢 高速工具钢 易切削钢。还可以测Fe以外 还可以测 Al Cu Mg Ni Co Ti Zn Sn Pb.测出的数据非常准确达到PPM级只是国家制定国标都还是化学法。其中Fe中可测 C Si Mn P S Cr Ni Mo V Ti 等等32种元素。

‘柒’ 关于金属物质锆是什么的详细解释

元素名称:锆 元素原子量:91.22 元素类型:金属
发现人:克拉普罗德 发现年代:1789年
发现过程:1789年,德国的克拉普罗德,在分析锡兰锆时,发现了锆土。
元素英文名称:Zirconium 相对原子质量:91.22
核内质子数:40 核外电子数:40 核电核数:40
质子质量:6.692E-26 质子相对质量:40.28
所属周期:5 所属族数:IVB 摩尔质量:91
氢化物:ZrH4 氧化物:ZrO2
最高价氧化物化学式:ZrO2 密度:6.49
熔点:1852.0 沸点:4377.0
外围电子排布:4d2 5s2 核外电子排布:2,8,18,10,2
颜色和状态:钢灰色金属 原子半径:2.16
常见化合价:+2,+3,+4
高熔点金属之一,呈浅灰色。密度6.49克/厘米3。熔点1852±2℃,沸点4377℃。化合价+2、+3和+4。第一电离能6.84电子伏特。锆的表面易形成一层氧化膜,具有光泽,故外观与钢相似。有耐腐蚀性,不溶于氢氟酸和王水;高温时,可与非金属元素和许多金属元素反应,生成固体溶液化合物。
元素来源:四氧化锆用镁还原可制得。
元素用途:粉末状铁与硝酸锆混合,可作闪光粉。金属锆几乎全部用作核反应堆中铀燃料元件的包壳。也用来制造照相用的闪光灯,以及耐腐蚀的容器和管道,特别是能耐盐酸和硫酸。锆的化学药品可作聚合物的交联剂。
元素辅助资料:含锆的天然硅酸盐矿石被成为锆石(zircon)或风信子石(hyacinth),广泛分布在自然界中。由于它们美丽的颜色,自古以来被称为宝石。化学家很早就对锆石进行了分析,认为是含有硅、铝、钙和铁的氧化物。1789年,德国化学家克拉普罗特发表研究来自斯里兰卡锆石的报告中提到他发现了一种未知的独特而简单物质的氧化物,并提议称之为Zirconerde(锆土——氧化锆)。不久,法国化学家德毛沃和沃克兰两人都证实克拉普罗特的分析是正确的。Zirconerde的存在被肯定,元素得到zirconnium的命名,元素符号为Zr。
克拉普罗特最初研究锆的硅酸盐实验操作一直到今天仍是工业上提取锆的基础。但一直到1914年,荷兰一家金属白热电灯制造厂的两位研究人员列里和汉保格将四氯化锆和金属钠作用,取得纯金属锆。
锆一般被认为是稀有金属,其实它在地壳中的含量相当大,比一般的常用的金属锌、铜、锡等都大。

‘捌’ 锆、铪矿石分析

锆、铪的测定见本章。

造岩元素的测定见本章59.6.3及第16章硅酸盐岩石分析。

参考文献

锆矿石化学分析方法[S](GB/T17416.1—1998).1999.北京:中国标准出版社,6-10

李国会.2001.X射线荧光光谱法测定土壤和水系沉积物中的痕量铪和锆[J].岩矿测试,20(3):217-219

任志槐.1999.ICP-AES法同时测定矿样中锆、铪[J].广西地质,12(1):75

稀有金属矿产地质勘查规范[S](DZ/T0203—2002).2003.北京:地质出版社

稀有金属矿中稀有元素分析规程[S](DZG93—04).1994.西安:陕西科学技术出版社

闫欣,许荣华.2001.电感耦合等离子体质谱法测定岩石中的锆、铪、铌、钽[J].矿物岩石地球化学通报,7(4):458-460

岩石分解方法编写组.1979.岩石分解方法[M].北京:科学出版社

岩石矿物分析(DZG20.01-91)[S].1991.北京:地质出版社

本章编写人:冯静(国土资源部东北矿产资源监督检测中心)。

‘玖’ 锆、铪的测定

60.2.2.1 苦杏仁酸重量法测定锆(铪)合量

方法提要

将测定二氧化硅的滤液,以盐酸调节酸度,煮沸,用苦杏仁酸沉淀,重量法测定ZrO2和HfO2的合量。方法适用于锆钛砂、锆英石中ZrO2和HfO2合量的测定。

试剂

苦杏仁酸。

盐酸。

分析步骤

将60.2.1中二氧化硅滤液,以盐酸和水调整溶液体积至150mL,并保持酸度在Φ(HCl)=20%~25%,加热至近沸,加入3g苦杏仁酸,搅匀,于80℃左右的水浴中保温30min,然后放置3h以上,过滤,用(5+95)HCl(每100mL溶液中加2g苦杏仁酸)洗净烧杯,并洗沉淀8~10次,滤液及洗液收集于400mL烧杯中,用于测定Ti、Mn、Ca、Mg、Al、Fe2O3、ΣR2O3和Th。

将沉淀连同滤纸放入已恒量的瓷坩埚中,低温灰化,在850~900℃灼烧60min,称量,并灼烧至恒量,即得到ZrO2和HfO2的合量。

ZrO2和HfO2沉淀按纸上色层分离,偶氮胂Ⅲ光度法测定HfO2(详见下面60.2.2.3)。

按下式计算试样中ZrO2和HfO2的合量:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:w(B)为ZrO2和HfO2合量的质量分数,%;m1为坩埚和沉淀的质量,g;m0为坩埚的质量,g;m为称取试样的质量,g。

注意事项

1)对于含有铌、钽的试样,可在苦杏仁酸沉淀前,加入酒石酸掩蔽铌、钽,使其留在溶液中。

2)当试样中铁的含量较高时,会使锆、铪沉淀缓慢,甚至沉淀不完全,对此应预先用40mL(1+1)HCl和1mLH3PO4(或1gNH4H2PO4),加热至大部分铁盐溶解,加水调至!(H3PO4)=20%酸度,静置后过滤,用(2+8)HCl溶液洗涤3~4次,沉淀及滤纸经灰化,碱熔,以下步骤同上。

3)沉淀锆、铪时,盐酸浓度应在!(HCl)=20%~25%,过高会使沉淀不完全,过低则会引起杂质沾污,使结果偏高。

60.2.2.2 EDTA容量法测定锆(铪)合量

方法提要

试样经碱熔,用水提取后,在1mol/LHCl中,以甲基百里酚蓝作指示剂,用EDTA标准溶液滴定测定锆(铪)。方法适用于锆钛砂、锆英石中ZrO2和HfO2合量的测定。

试剂

氢氧化钾。

过氧化钠。

硼酸钠。

盐酸。

硫酸。

氢氧化钾溶液(20g/L)。

二氯化锡溶液(100g/L)称取10gSnCl2·2H2O溶于10mLHCl中,用水稀释至100mL,混匀。

EDTA标准溶液c(EDTA)≈0.02mol/L称取EDTA7.5g于250mL烧杯中,加入200mL水,稍加热溶解,冷却后,转入1000mL容量瓶中,用水稀释至刻度,混匀。用锆标准溶液标定其滴定度。

标定:吸取20mL已校准锆标准溶液于250mL锥瓶中,加20mL水,并以1mol/LHCl稀释至50mL,加热至近沸,加入1滴SnCl2溶液、0.2g甲基百里酚蓝指示剂,用EDTA标准溶液滴定至溶液由蓝色变为淡黄色即为终点,计算EDTA标准溶液对锆的滴定度T(mg/mL)。

锆标准溶液ρ(ZrO2)≈2mg/mL称取5.2820gZrOCl2·8H2O,加入5mL(1+1)HCl溶解后,转入1000mL容量瓶中(有沉淀时需过滤),加入350mL(1+1)HCl,用水稀释至刻度,混匀,校准后使用。

校准:移取上述锆标准溶液20.0~25.0mL置于250mL烧杯中,加入50mL(2+8)HCl,加热至85℃,加入3g苦杏仁酸,充分搅拌后,置于85℃水浴中保温30~40min,取下,静置过夜。翌日用定量滤纸过滤,用(2+8)HCl-20g/L苦杏仁酸洗液洗涤沉淀6~8次,灰化后,沉淀在900℃灼烧至恒量。求得锆标准溶液的浓度(mg/mL)。

甲基百里酚蓝指示剂称取0.2g甲基百里酚蓝和20gNaCl于瓷研钵中,混匀并研磨成粉末,贮于棕色玻璃磨口瓶中。

分析步骤

称取0.1~0.5g(精确至0.0001g)试样,于预先盛有赶去水分的1~2gNa2B4O7的镍坩埚中,再加4~5gKOH(如为难熔矿样可再加2gNa2O2),置于高温炉中升温至650~700℃,熔融15~20min,取出稍冷,放入250mL烧杯中,加入100mL沸水浸提,用水洗出坩埚,煮沸片刻,过滤,用KOH溶液洗涤6~8次,然后用20mL热的4mol/LHCl溶解滤纸上的沉淀,溶液收集于100mL容量瓶中,待过滤完后,将滤纸移入原烧杯中,加20mL4mol/LHCl,加热煮沸,过滤,滤液合并于100mL容量瓶中,用(2+98)HCl洗至滤纸上无铁(Ⅲ)离子的黄色,冷却,用(2+98)HCl稀释至刻度,混匀。

分取10.0~25.0mL试液(使二氧化锆量在1.5~50mg之间)于250mL锥形瓶中,补加2mol/LHCl至40mL,使酸度为1mol/LHCl,并加40mL水,加5滴(1+1)H2SO4,加热至近沸,滴加SnCl2溶液还原至铁(Ⅲ)的黄色刚好褪去,加0.1g甲基百里酚蓝指示剂,用EDTA标准溶液滴定至溶液的颜色由蓝色变为淡黄色,再将溶液煮沸,如溶液返回蓝色,继续滴定至溶液变为黄色即为终点。

按下式计算试样中ZrO2和HfO2的合量:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:w(B)为ZrO2和HfO2合量的质量分数,%;T为EDTA标准溶液对ZrO2的滴定度,mg/mL;V1为分取试样溶液体积,mL;V2为消耗EDTA标准溶液体积,mL;V为试样溶液总体积,mL;m为称取试样的质量,g。

注意事项

1)EDTA能与多种金属离子配位,但在1mol/LHCl介质中,加热近沸的条件下,只有锆(铪)的离子配合物最稳定。在上述条件下,锆以ZrO2+形式存在,与EDTA生成组成为1∶1的稳定配合物,而Zr4+则与EDTA生成组成为1∶2的配合物,因此,须将溶液煮沸,使锆全部转化为ZrO2+形式。

2)本法也可用二甲酚橙作指示剂,溶液的盐酸酸度应控制在0.8~1.2mol/L,酸度过大,难于判别滴定终点。其他条件同上。

3)无论以甲基百里酚蓝或以二甲酚橙作指示剂,滴定锆时都会出现终点“回头”现象。加入5~10滴(1+1)H2SO4可降低或克服“回头”现象,但加入过多,会使终点提前,使结果偏低。

4)如溶液中含有微量铌和钽,则出现假终点。如铌和钽含量较高,由于铌、钽的水解,使锆的测定结果偏低。若溶液中存在大量的铌和钽,可在碱性溶液中,以大量的钾盐使其生成可溶的铌酸钾和钽酸钾,经过滤分离除去大部分。残留的微量铌和钽,可在溶液中加入氟化钠以防止铌和钽的水解和滴定过程中出现假终点,过量的氟离子用铝盐掩蔽。分析步骤如下:

试样碱熔,提取,过滤,洗涤后的氢氧化物沉淀,用50mL热的含10g/LNaF的4mol/LHCl溶解于100mL容量瓶中,用(1+99)HCl洗至无铁(Ⅲ)离子,冷却,用水稀释至刻度,混匀。取试液5.0~25.0mL于250mL锥瓶中,补加2mol/LHCl至40mL,加4~5gAlCl3,于电炉上加热至溶液清亮,取下,加水40mL,以下分析步骤同上。

60.2.2.3 纸色层分离-偶氮胂Ⅲ光度法测定铪

方法提要

在硝酸介质中,以磷酸三丁酯-正丁醇-二甲苯为流动相,氯化铵为固定相,用纸色层法分离锆和铪,在规定条件下,锆的比移值(Rf)为0.7,铪的比移值(Rf)为0.4,两元素的分离效果很好。

在7mol/LHCl介质中,以偶氮胂Ⅲ光度法测定铪,最大吸收波长650nm,0~30μgZrO2符合比耳定律。对本法有干扰的物质:锆、铁(Ⅲ)、钍、铀、铈、草酸盐、磷酸盐、硝酸盐、过氧化氢等,通过苦杏仁酸沉淀和纸色层法分离完全。

本法适用于锆钛砂、锆英石中铪的测定,最低测定限为0.05%。

仪器

分光光度计。

试剂

焦硫酸钾。

氢氧化钾。

氯化铵。

尿素。

盐酸。

硝酸。

氢氧化铵。

磷酸三丁酯。

正丁醇。

二甲苯。

无水乙醇。

盐酸羟胺溶液(200g/L)。

偶氮胂Ⅲ溶液(0.5g/L)。

偶氮胂Ⅲ溶液(1.5g/L)配制时需过滤。

色层纸的处理将中速滤纸裁剪成29cm×15cm,竖向的三分之二浸入50g/LNH4Cl溶液中,取出风干或烘干。

展开剂取磷酸三丁酯、正丁醇和二甲苯按(10+7+4)混合,置于1000mL分液漏斗中,加100mL(1+1)HNO3,振摇100次,放置分层,弃去水相,将有机相转入干燥器中,展开剂的量以能使色层纸浸没1~2cm为宜。

铪标准储备溶液ρ(HfO2)=100.0μg/mL称取0.1000gHfO2于瓷坩埚中,加4gK2S2O7,低温加热赶去水分,于高温炉中900℃熔融10~15min,以(1+9)HCl浸提并洗出坩埚,煮沸,用氢氧化铵中和至析出沉淀再过量5mL,煮沸稍冷后过滤,以(5+95)NH4OH洗涤硫酸根,再以(1+1)HCl溶解沉淀,转入1000mL容量瓶中,定容,混匀。

铪标准溶液ρ(HfO2)=10.0μg/mL以(1+1)HCl稀释铪标准储备溶液配制。

校准曲线

移取含HfO20.0μg、5.0μg、10.0μg、15.0μg、20.0μg、25.0μg、30.0μg的铪标准溶液,分别置于一组25mL比色管中,以(1+1)HCl稀释至10mL,加2.5mL无水乙醇、1mL盐酸羟胺溶液,用力混匀。静置片刻,再加入10mLHCl和1.5mL1.5g/L偶氮胂Ⅲ水溶液,用水稀释至刻度,混匀。用1cm比色皿,于分光光度计650nm波长处,以试剂空白作参比测量吸光度,绘制校准曲线。

分析步骤

将60.2.2.1苦杏仁酸重量法的ZrO2和HfO2沉淀中,加入4gK2S2O7,于高温炉中900℃熔融10~20min,以(1+9)HCl浸提和洗出坩埚,并以(1+9)HCl调整体积约100mL,加热使盐类溶解。用氢氧化铵中和至沉淀完全,再过量5mL,煮沸,稍冷后过滤,以(5+95)NH4OH洗涤硫酸根(可用氯化钡溶液检查),再用水洗涤3~4次。沉淀以热的7mol/LHNO3溶解于25mL或50mL容量瓶中,冷却后,以7mol/LHNO3稀释至刻度,混匀。

分取0.50mL或1.0mL上述试液,均匀地涂在色层纸上未浸氯化铵溶液部分距底端5cm处,卷成圆筒放入盛有展开剂的大干燥器中,展开12~14h,使展开剂上升至29cm处,取出,稍烘一下,以0.5g/L偶氮胂Ⅲ溶液喷洒色层纸,显出蓝色锆、铪带(锆带在上,铪带在下),稍烘一下,剪下铪带,撕碎,放入150mL烧杯中,加入约0.5g尿素、20mL(1+1)HCl,置于沸水浴中边加热边搅拌,使色层纸成白色糊状,取下,以流水冷却,转入50mL或100mL容量瓶中,加入10mL或20mL无水乙醇(使溶液中乙醇体积分数!=20%),用(1+1)HCl洗净烧杯并入容量瓶中,用(1+1)HCl稀释至刻度,混匀。干过滤,移取10.0mL清液,置于25mL比色管中,以下按校准曲线进行测定。

按下式计算试样中二氧化铪的含量:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:w(HfO2)为二氧化铪的质量分数,%;m1为从校准曲线上查得分取试样溶液中二氧化铪的质量,μg;m0为从校准曲线上查得分取试样空白溶液中二氧化铪的质量,μg;V1为分取试样溶液体积,mL;V为试样溶液总体积,mL;m为称取试样的质量,g。

注意事项

1)用纸色层分离锆和铪时,需注意:①色层纸的湿度。色层纸用50g/LNH4Cl溶液浸过后,注意不能烘焦,否则会阻碍展开剂上升;也不能太湿,否则锆、铪的分离效果不佳,最好是烘干后置于干燥器中存放。试液上色层纸后不能烘干,否则锆、铪水解不能分离。②层析环境的温度。温度高展开得快,但效果不好;在15~25℃,一般展开时间为12~14h。③展开剂的重复使用次数。一般可连续使用5次左右,如使用次数过多,将影响分离效果。磷酸三丁酯的质量对分离效果有影响,可能是其中含有的其他有机磷酸酯影响分配系数引起的。④上色层的锆、铪量。为达到理想分离效果,上色层的锆、铪量不宜大于15mgZrO2和0.2mgHfO2

2)经苦杏仁酸沉淀分离的锆、铪,用本法进行纸色层分离时,可以见到明显的蓝绿色的锆(上端)和铪(下端)两个色带。当试样未经苦杏仁酸沉淀分离,直接进行纸色层分离时,则会出现5个色带,分别是铀和钍、锆、铪、稀土,其他元素留在原点。如果杂质较多时,可能使铪不能完全展开;因此,如果试样中稀土(主要是铈)及铁含量不高时,可不必用苦杏仁酸沉淀分离杂质元素,直接进行纸色层分离,将由原点至铪带处的色层纸剪下,光度法测定铪。分析步骤简述如下:

试样经碱熔,用水浸提,过滤,沉淀以(1+3)HCl溶解,用氢氧化铵沉淀一次,过滤,洗涤后,将沉淀制成50mL7mol/LHNO3的溶液。分取0.50~1.0mL溶液进行色层分离,以下步骤同上。

3)用(1+1)HCl处理铪的色层纸时,温度不宜太高,不能进行煮沸;否则铪的回收率严重偏低。可在水浴上加热。加入尿素是为了破坏色层上的硝酸。加入无水乙醇是为了使有机相(即铪的色带所含有的少量展开剂)能与水相混成均相,而使铪完全溶解于盐酸溶液中。必须控制乙醇的加入量,太少时铪不能完全溶解于盐酸溶液中,太多时则会影响光度法测定。当显色溶液中含!=10%的乙醇时,25mL溶液中HfO2含量在0~30μg符合比耳定律。

4)以偶氮胂Ⅲ显色时,各溶液(包括标准系列)的酸度必须严格控制一致,吸光度会随着酸度的升高而增大。

5)如同时测定锆和铪,可将试样经碱熔,用水浸提,过滤,沉淀以(1+3)HCl溶解,并用(1+3)HCl稀释至50mL或100mL,然后分取部分溶液进行苦杏仁酸沉淀-色层分离-光度法测定铪。另取部分溶液用重量法或EDTA滴定法测定锆(铪)合量后,减去铪的量即为锆的含量。

6)试样中如铌、钽含量较高,应预先分离除去。

‘拾’ 钢铁五元素分析方法的国标号是多少

钢铁分析方法通常分为化学分析法和仪器分析法。化学分析法有重量法和滴定法。目前使用仪器分析方法有吸光光度计、原子发射光谱法、原子吸收光谱法、极谱法、原子荧光光谱法、红外吸收法、X-身线荧光光谱法、电感耦合等离子体-原子发射光谱法(ICP-AES)、辉光放电、发射光谱法(GD、OES)及电感耦合等离子体、质谱法(ICP-MS)等。执行国家标准号码是一个系列:
GBT2022320钢铁及合金化学分析方法合集
GB-T 223.1-1981 钢铁及合金中碳量的测定 (0.1~5.0%)
GB-T 223.2-1981 钢铁及合金中硫量的测定 (0.003%以上)
GB-T 223.3-1988 钢铁及合金化学分析方法二安替比林甲烷磷钼酸重量法测定磷量 (0.01~0.80%)
GB-T 223.4-2008 钢铁及合金 锰含量的测定 电位滴定或可视滴定法
GB-T 223.5-2008 钢铁 酸溶硅和全硅含量的测定
GB-T 223.6-1994 钢铁及合金化学分析方法 中和滴定法测定硼量 (0.50~2.00%)
GB-T 223.7-2002 铁粉 铁含量的测定 重铬酸钾滴定法 (大于96%)
GB-T 223.8-2000 钢铁及合金化学分析方法 氟化钠分离—EDTA滴定法测定铝含量 (0.50~10.00%)
GB-T 223.9-2008 (GB-T 223.10-2000) 钢铁及合金 铝含量的测定铬天青S分光光度法
GB-T 223.10-2000 钢铁及合金化学分析方法 铜铁试剂分离—铬天青S光度法测定铝含量 (0.015~0.50%)
GB-T 223.11-2008 钢铁及合金 铬含量的测定 可视滴定或电位滴定法
GB-T 223.12-1991 钢铁及合金化学分析方法 碳酸钠分离—二苯碳酰二肼光度法测定铬量 (0.005~0.500%)
GB-T 223.13-2000 钢铁及合金化学分析方法 硫酸亚铁铵滴定法测定钒含量 (0.100~3.50%)
GB-T 223.14-2000 钢铁及合金化学分析方法 钽试剂萃取光度法测定钒含量 (0.0050~0.50%)
GB-T 223.15-1982 钢铁及合金化学分析方法 重量法测定钛 (1.00% 以上)
GB-T 223.16-1991 钢铁及合金化学分析方法 变色酸光度法测定钛量 (0.010~2.50%)
GB-T 223.17-1989 钢铁及合金化学分析方法 二安替比林甲烷光度法测定钛量 (0.10~2.400%)
GB-T 223.18-1994 钢铁及合金化学分析方法 硫代硫酸钠分离—碘量法测定铜量 (0.10~5.00%)
GB-T 223.19-1989 钢铁及合金化学分析方法 新亚铜灵—三氯甲烷萃取光度法测定铜量 (0.010~1.00%)
GB-T 223.20-1994 钢铁及合金化学分析方法 电位滴定法测定钴量 (3.00%以上)
GB-T 223.21-1994 钢铁及合金化学分析方法 5—Cl—PADAB分光光度法测定钴量 (0.0050~0.50%)
GB-T 223.22-1994 钢铁及合金化学分析方法 亚硝基R盐分光光度法测定钴量 (0.10~3.00%)
GB-T 223.23-2008 (GB-T 223.23-1994 GB-T 223.24-1994) 钢铁及合金 镍含量的测定 丁二酮肟分光光度法
GB-T 223.25-1994 钢铁及合金化学分析方法 丁二酮肟重量法测定镍量 2%) 以上
GB-T 223.26-2008 (GB-T 223.27-1994) 钢铁及合金 钼含量的测定 硫氰酸盐分光光度法
GB-T 223.28-1989 钢铁及合金化学分析方法 α—安息香肟重量法测定钼量 1.00~9.00%)
GB-T 223.29-2008 钢铁及合金 铅含量的测定 载体沉淀-二甲酚橙分光光度法
GB-T 223.30-1994 钢铁及合金化学分析方法 对—溴苦杏仁酸沉淀分离—偶氮胂Ⅲ分光光度法测定锆量 (0.0050~0.30%)
GB-T 223.31-2008 钢铁及合金 砷含量的测定 蒸馏分离-钼蓝分光光度法
GB-T 223.32-1994 钢铁及合金化学分析方法 次磷酸钠还原—碘量法测定砷量 (0.010~3.00%)
GB-T 223.33-1994 钢铁及合金化学分析方法 萃取分离—偶氮氯膦mA光度法测定铈量 (0.0010~0.20
GB-T 223.34-2000 钢铁及合金化学分析方法 铁粉中盐酸不溶物的测定 (0.10~1.00%)
GB-T 223.35-1985 钢铁及合金化学分析方法 脉冲加热惰气熔融库仑滴定法测定氧量 (0.002~0.10%)
GB-T 223.36-1994 钢铁及合金化学分析方法 蒸馏分离—中和滴定法测定氮量 (0.010~0.50%)
GB-T 223.37-1989 钢铁及合金化学分析方法 蒸馏分离—靛酚蓝光度法测定氮量 (0.0010~0.050%)
GB-T 223.38-1985 钢铁及合金化学分析方法 离子交换分离—重量法测定铌量 (1.00%以上)
GB-T 223.40-2007 (GB-T 223.39-1994) 钢铁及合金 铌含量的测定 氯磺酚S分光光度法(0.01~0.50%)
GB-T 223.41-1985 钢铁及合金化学分析方法 离子交换分离—连苯三酚光度法测定钽量 (0.50~2.00%)
GB-T 223.42-1985 钢铁及合金化学分析方法 离子交换分离—溴邻苯三酚红光度法测定钽量 (0.010~0.50%)
GB-T 223.43-2008 (GB-T 223.44-1985) 钢铁及合金 钨含量的测定 重量法和分光光度法
GB-T 223.45-1994 钢铁及合金化学分析方法 铜试剂分离—二甲苯胺蓝Ⅱ光度法测定镁量 (0.010~0.10%)
GB-T 223.46-1989 钢铁及合金化学分析方法 火焰原子吸收光谱法测定镁量 (0.002~0.100%)
GB-T 223.47-1994 钢铁及合金化学分析方法 载体沉淀—钼蓝光度法测定锑量 (0.0003~0.10%)
GB-T 223.48-1985 钢铁及合金化学分析方法 半二甲酚橙光度法测定铋量 (0.0002~0.010%)
GB-T 223.49-1994 钢铁及合金化学分析方法 萃取分离—偶氮氯膦mA分光光度法测定稀土总量 (0.0010~0.20%)
GB-T 223.50-1994 钢铁及合金化学分析方法 苯基荧光酮-溴化十六烷基三甲基胺直接光度法测定锡量 (0.0050~0.20%)
GB-T 223.51-1987 钢铁及合金化学分析方法 5—Br—PADAP光度法测定锌量 (0.0015~0.005%)
GB-T 223.52-1987 钢铁及合金化学分析方法 盐酸羟胺—碘量法测定硒量 (0.05~1.00%)
GB-T 223.53-1987 钢铁及合金化学分析方法 火焰原子吸收分光光度法测定铜量 (0.005~0.50%)
GB-T 223.54-1987 钢铁及合金化学分析方法 火焰原子吸收分光光度法测定镍量 (0.005~0.50%)
GB-T 223.55-2008 (GB-T 223.56-1987) 钢铁及合金 碲含量的测定 示波极谱法
GB-T 223.57-1987 钢铁及合金化学分析方法 萃取分离—吸附催化极谱法测定镉量 (0.00005~0.010%)
GB-T 223.58-1987 钢铁及合金化学分析方法 亚砷酸钠—亚硝酸钠滴定法测定锰量 (0.10~2.50%)
GB-T 223.59-1987 钢铁及合金化学分析方法 锑磷钼蓝光度法测定磷量 (0.01~0.06%)
GB-T 223.59-2008 钢铁及合金 磷含量的测定铋磷钼蓝分光光度法
GB-T 223.60-1997 钢铁及合金化学分析方法 高氯酸脱水重量法测定硅含量 (0.10~6.00%)
GB-T 223.61-1988 钢铁及合金化学分析方法 磷钼酸铵容量法测定磷量 (0.01~1.0%)
GB-T 223.62-1988 钢铁及合金化学分析方法 乙酸丁酯萃取光度法测定磷量 (0.001~0.05%)
GB-T 223.63-1988 钢铁及合金化学分析方法 高碘酸钠(钾)光度法测定锰量 (0.010~2.00%)
GB-T 223.64-2008 钢铁及合金 锰含量的测定 火焰原子吸收光谱法
GB-T 223.65-1988 钢铁及合金化学分析方法 火焰原子吸收光谱法测定钴量 (0.01~0.5%)
GB-T 223.66-1989 钢铁及合金化学分析方法 硫氰酸盐—盐酸氯丙嗪—三氯甲烷萃取光度法测定钨量 (0.0020~0.100%)
GB-T 223.67-2008 钢铁及合金 硫含量的测定 次甲基蓝分光光度法
GB-T 223.68-1997 钢铁及合金化学分析方法 管式炉内燃烧后碘酸钾滴定法测定硫含量 (0.0030~0.20%)
GB-T 223.69-2008 钢铁及合金 碳含量的测定 管式炉内燃烧后气体容量法
GB-T 223.70-2008 钢铁及合金 铁含量的测定 邻二氮杂菲分光光度法
GB-T 223.71-1997 钢铁及合金化学分析方法 管式炉内燃烧后重量法测定碳含量 (0.10~5.00%)
GB-T 223.72-2008 钢铁及合金 硫含量的测定 重量法
GB-T 223.73-2008 钢铁及合金 铁含量的测定 三氯化钛—重铬酸钾滴定法
GB-T 223.74-1997 钢铁及合金化学分析方法 非化合碳含量的测定 (0.030~5.00%)
GB-T 223.75-2008 钢铁及合金 硼含量的测定 甲醇蒸馏-姜黄素光度法
GB-T 223.76-1994 钢铁及合金化学分析方法 火焰原子吸收光谱法测定钒量 (0.005~1.0%)
GB-T 223.77-1994 钢铁及合金化学分析方法 火焰原子吸收光谱法测定钙量 (0.0005~0.010%)
GB-T 223.78-2000 钢铁及合金化学分析方法 姜黄素直接光度法测定硼含量 (钢0.0005~0.012%) (非合金钢0.0001~0.0005%)
GB-T 223.79-2007 钢铁 多元素含量的测定 X-射线荧光光谱法(常规法)
GB-T 223.80-2007 钢铁及合金 铋和砷含量的测定 氢化物发生-原子荧光光谱法
GB-T 223.81-2007 钢铁及合金 总铝和总硼含量的测定微波消解-电感耦合等离子体质谱法
GB-T 223.82-2007 钢铁 氢含量的测定 惰气脉冲熔融热导法。

阅读全文

与钢中锆的分析方法标准相关的资料

热点内容
绝地求生的快速上分的方法 浏览:379
短期经验决策分析方法的特点 浏览:638
苹果x指纹锁在哪里设置方法 浏览:898
日产逍客变速箱异响解决方法 浏览:195
计算方法第 浏览:60
汤臣倍健维生素c食用方法 浏览:105
家庭教育学习的方法和步骤 浏览:903
蝗虫解决方法 浏览:472
凉的种植方法 浏览:698
治疗鸡眼最快的方法 浏览:466
镁砖粉的化学分析方法 浏览:659
如何在家做u池的方法 浏览:206
如何有效排队的方法 浏览:987
动物奶油制作方法的视频 浏览:356
猪病的根源和治疗方法 浏览:608
能量石的锻炼方法 浏览:573
少白头治疗方法 浏览:881
常用电器元件极性判断方法和操作 浏览:22
如何保护肝的方法 浏览:612
小孩篮球球性训练方法 浏览:575